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Abstract. In this research, we study the null ideal of a polynomial ring

T (D)[x], where D is an integral domain and T (D) is the ring of 3 by 3

tri-diagonal matrices with entries from D. The null ideal consists of the

polynomials f(x) in T (D)[x] such that f(A) = 0 for all A ∈ T (D). We give

the structure of the null ideal and properties of the polynomials involved.

1. Introduction

Polynomials are not only central to a breadth of mathematical areas of study

but also are fundamental to common applications of mathematics. Regarding

real world applications, many scientific problems can be modeled by polyno-

mial functions. In statistics, linear regression, quadratic regression, and higher

degree polynomial regressions are often applied to describe complicated data

structures through abstract and quantitative representations in the polynomial

form. In many cases, solving a polynomial equation or finding all the roots of

a polynomial is an important task in order to solve a challenging real-world

problem. For example, the famous quadratic formula:

x =
−b±

√
b2 − 4ac

2a
,

which serves as a powerful tool to find the solutions to the quadratic equation

ax2+ bx+ c = 0, where a, b, c are arbitrary real numbers. Any solution to this

equation gives the “zero” situation of the polynomial involved, which can be

viewed as a root of the polynomial function f(x) = ax2 + bx+ c. Polynomials

with real coefficients are considered one of the best types of functions among

all the real functions because each of them is continuous and differentiable in

any order everywhere along the real number line. Given any polynomial f(x),
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the local maximum and minimum values of it only can be achieved at the roots

of the derivative f ′(x). The concavity of the graph of f(x) only changes at

the root(s) of the second derivative f ′′(x) and f ′′(x) also tell the increasing or

decreasing situation of the rate of change of the function f(x) itself. It makes

simple and feasible to solve any related optimization problem modeled by a

polynomial.

Let us look at the problem from a different perspective. Consider two alge-

braic structures A and B, both having additive identity 0, and a map ϕ from

A to B. The set ker(ϕ) = {a ∈ A | ϕ(a) = 0} is called the kernel of the map ϕ

(see Definition 1.5). Consider any polynomial f(x) of degree n > 0 with real

coefficients. We can view it as a map, f , from the set R of all real numbers

to itself. The the kernel of f is the set of all of the roots of f(x), that is,

ker(f) = {a ∈ R | f(a) = 0}. In particular, if f(x) = ax2+ bx+ c, a quadratic

polynomial with real coefficients a, b, c, and let r1 and r2 be the two roots of

f(x) (it is possible that the two roots are identical, called double root). Then

f(r1) = f(r2) = 0. If we define two related subsets of R: S1 = {r1, r2} and

S2 = {0}, then the polynomial f(x) maps every element in S1 onto S2. That

is, f(S1) = S2 or ker(f) = S1. That the entirety of S1 maps onto {0}, or S1 as

the kernel of the map f , is of importance here and forms the basis of inquiry

into this particular research.

There are two binary operations in the real number system, the addition

“+” and the multiplication “×”. These two operations satisfy a set of axioms

such as commutativity, closure of both operations, and distributive properties.

One of such algebra structures is called a ring, which is of the interest for this

research. We focus on the ring R of all real numbers, the ring Z of all integers,

the ring R[x] of all real polynomials, and the ring of certain matrices. The

precise definition for a set to be a ring is given in section 1.1.

Now consider a commutative ring R. An important type of subset of R is

called “ideal” of R, which is a subring of R satisfying additional conditions

(see Definition 1.3). Briefly, if I is an ideal of R, then it is closed under the

addition and multiplication of R (sum and product sit in I) and furthermore,

when multiplying an element of R, which may be outside of I, with an element

in I, the product is in I. In case R is a noncommutative ring, “left ideals”
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and “right ideals” correspondingly defined. The popular “ideal membership

problem” is to determine whether a given subset of R is an ideal of R and

it attracts many researchers in ring theory. Consider two non-empty subsets

S1, S2 of a ring R and denote the set of all polynomials in R[x] that map S1

into S2 by

Int(R)(S1,S2) = {f(x) ∈ R[x] | f(S1) ⊂ S2}.

A natural question is that, is the set Int(R)(S1,S2) an ideal of R[x]? In general,

the answer is “no”. Though, it is the case for certain polynomial rings that

the answer is “yes” [3], meaning it claims the ideal membership. An example

is given below.

Example 1.1. Let f(x) = x2 − 3x + 6 and g(x) = 3x2 − 9x + 10 be two

polynomials in R[x]. It is easy to see that both f(x) − 4 and g(x) − 10 have

two roots: 1 and 2. Consider two subsets of R, S1 = {1, 2} and S2 = {4}.
Then f(1) = 4, g(x) = 4 and so f(x), g(x) ∈ Int(R)(S1,S2). But f(x) + g(x) ̸∈
Int(R)(S1,S2) because f(1) + g(1) = 8 ̸∈ S2. Thus Int(R)(S1,S2) in not an ideal

of R[x].
However, if we take S1 = {1, 2}, S2 = {0}, then Int(R)(S1,S2) is an ideal of

R[x].

Consider a ring R. In this paper we focus on a related problem that is

important to mapping such sets. The problem at a more general level is

to identify some subsets S1 into S2 of the ring R such that the set of all

polynomials in R[x] mapping S1 into S2 is an ideal of R[x]. Then the main

question becomes: “Is the set Int(R)(S1,S2) an ideal of R[x]? The background

knowledge on this topic is the integer-valued polynomial problem which deals

with a special case of the above, when S1 = S2. Suppose D is an integral

domain with quotient field K (Definition 1.4). With the setting of S1 = D =

S2 ⊆ D, we obtain a new set Int(D) = {f(x) ∈ K[x] | f(D) ⊂ D}. This set is
called the set of integer-valued polynomials over D. It is known that Int(D) is

a subring of the polynomial ring K[x].

The ring Int(D) has been extensively studied, for instance in [2]. The name

“integer-valued polynomial” suggests that it is a generalization of the “poly-

nomial with integer coefficients”. Indeed, if D = Z, then K = Q, the ring
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of rational numbers. One can check that the polynomial f(x) = x + 1 maps

all integers to integers. Thus, f(x) ∈ Int(Z). However, as stated in [2], the

integer-valued polynomials over a general algebraic structure are largely still

undeveloped. More recently attention has been given to the case over a matrix

ring. In [11], the notion of a two sided ideal is considered with regard to the

null ideal as defined later in Definition 1.17. Some general results for matrices

in Mn(D) (the ring of n×n matrices over D), where D is a domain, are given

along with some specific examples of up to subrings of M3(D). Here we start

by considering a special subset of matrices in M3(D) which is known to form

a ring.

We are interested in a special type of ideals, called “null” ideal defined

in Definition 1.17. In particular, we focus on the null ideal of a polynomial

ring T [x], where T is a subring of the matrix ring Mn(D), where D is an

integral domain. We discuss what conditions are needed to be added so that a

given set of matrices can form a subsring. A set of 3× 3 tri-diagonal matrices,

denoted T (D), where D is a domain, is identified to be our focus. Determining

whether a null ideal of a subring of Mn(R) is two-sided takes considerable

work as shown in [11]. Here we focus on the left null ideals as left ideals of

T (D). The methodology used is more direct analysis of the product of two

members of T (D). In contrast, the ground ring under study in this research

is an integral domain, whereas in [11],[12], the ground ring is a field. The

difference is significant as some assumptions cannot be made from the outset

when determining the null ideal of a particular subset. It may be of interest to

discuss subsets of these matrices which are not necessarily subrings of Mn(D),

but here we will focus on subrings of Mn(D). First we will show a few basic

definitions .

1.1. Ring Theory Basics.

Definition 1.2 ([1, p. 96]). A set R with two binary operations (typically

denoted · and +) and a corresponding identity for each operation (1 and 0

here respectively) is called a ring if it satisfies the following properties. Let

x, y, z ∈ R.

(1) x+ (y + z) = (x+ y) + z
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(2) x+ y = y + x

(3) 0 + x = x+ 0 = x

(4) x+ (−x) = (−x) + x = 0

(5) x(yz) = (xy)z

(6) x · 1 = 1 · x = x

(7) (x+ y)z = xz + yz

(8) x(y + z) = xy + xz

If xy = yx we say that R is commutative ring.

One of the most important defining properties of a ring is that certain

subsets of a ring exist called ideals defined in the following way.

Definition 1.3. An ideal I is a subset of a ring R if for any element x ∈ I

and y ∈ R, xy ∈ I. In a noncommutative ring, if xy ∈ I and yx ∈ I, then I is

called a two-sided ideal.

Given some element x ∈ R,R a ring, we call the ideal (x) = xR a principal

ideal that is generated by A zero divisor of a ring R is an element x ∈ R, x ̸= 0,

if there exists a y ∈ R such that xy = 0. We use this occurrence in some rings

to define a particular type of ring for which this property does not hold.

Definition 1.4. A ring D is called an integral domain if it has no zero divisors.

A field is an integral domain where every element has a multiplicative inverse,

i.e. an element x ∈ F where F is a field and x ̸= 0, there is some y ∈ F, y ̸= 0

such that xy = 1.

Z is an integral domain since 0 is the only zero divisor, but not a field since

we have that the only invertible element is 1. In order to show that Q is a

field over Z, we introduce the notion of a map between two rings which is well

defined and structure preserving called a ring homomorphism. When we use

the term homomorphism in the context of this paper it is implied that it is a

ring homomorphism unless otherwise explicitly stated. These maps define a

relationship between two different rings, though they may define a relationship

from a ring to itself.
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Definition 1.5. Let R1 and R2 be rings. If x, y ∈ R1, then a map T which

is denoted by T : R1 → R2 is called a homomorphism if it has the following

properties:

(1) T (xy) = T (x)T (y).

(2) T (x+ y) = T (x) + T (y).

The preimage of T is denoted as T−1(x), x an element of R2. The kernel of

a homomorphism Ker(T )={y ∈ T−1(0) | y ∈ R1}. In other words, the kernel

of a homomorphism is all elements y ∈ R1 for which T (y) = 0.

If for all x ∈ R1 there is some unique element y ∈ R2 such that T (x) = y,

the homomorphism T is considered to have an injective relationship. If for

every unique y ∈ R2 there is some unique x ∈ R1 such that T (x) = y then T

is considered surjective.

Definition 1.6. If T is both injective and surjective then T is called bijective.

A bijective homomorphism is called an isomorphism.

1.2. Localization of a Ring.

In addition to the basic ring definitions, we want to define a special structure

which can be constructed over every integral domain called its field of fractions.

We require this structures definition to further define the rings of polynomials

we will use to discuss the problem at hand. A multiplicative set S is a subset

of a ring which includes the unit element and is multiplicatively closed, i.e., for

any elements r, s in the set, rs ∈ S. We use the general form from Definition

1.7 (3) and disregard a multiplicative set which includes 0. This is the case

because when 0 ∈ S then for any r
s
, r ∈ R, s ∈ S, r

s
= r

0
since 0(r0 − rs) = 0,

hence, the entire ring is equal to 0. Then we define S to be a multiplicative

set excluding 0.

If R is a ring and S = R \ {0}, then let S−1R = { r
s
| r ∈ R, s ∈ S}

which is the total ring of fractions of R. If R is an integral domain then this

is an equivalent definition for the field of fractions over R. Let ϕ : R → S−1R

be the canonical map defined r 7→ r
1
. This homomorphism is quite obviously

injective due to there being no zero divisors in S. We may generate S−1R from

S−1 and ϕ if we take the product of elements of S−1 and every element in

ϕ(R). Now every element of S−1R has an inverse and since there are no zero
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divisors, S−1R is a field. We have in a sense filled out R and extended it to

a ring which ”completes” it in the sense of transforming it into a field. More

generally, S−1R is called the localization of R at S if S is any multiplicative

subset of R. When we consider R to be any ring, then it is possible our choice

of S will render S−1R to not be a field. More formally:

Definition 1.7. Let D be an integral domain and q, r, s, t,∈ D, q
r
, s
t
∈ K. The

following are true of K.

(1) q
r
+ s

t
= qt+rs

rt

(2) q
r
· s
t
= qs

rt

(3) q
r
= s

t
⇐⇒ qt = rs.

More generally for (3) we say that q
r
= s

t
⇐⇒ ∃v ∈ D such that v(qt−rs) = 0.

Example 1.8. Q is the field of fractions over Z by letting the elements in the

numerator be Z and the elements in Z \ {0} be in the denominator.

Throughout, for two non-negative integers m and n with m < n, Jn,mK =

{m,m + 1, . . . , n}. We denote the nilradical of a ring R to be N = {x ∈ R |
xn = 0}.

1.3. Polynomial Rings and Integer-valued Polynomial Rings.

For our treatment of the algebraic structures we discuss in this paper we

require the definition of rings formed over indeterminates.

Definition 1.9. Let R be a ring. Then we call the ring denoted R[x] the

polynomial ring over a ring R with indeterminate x.

The above definition may also be expanded to define polynomials of a mul-

tivariate type which is denoted R[x1, . . . , xn] up to n indeterminates. The

coefficients of a polynomial ring are typically from the same ground ring that

the indeterminates cover, but in some cases we may define a set of polynomials

with indeterminate x ∈ R but with coefficients in A where, R ⊆ A. In fact

the motivation for the study of null ideals in this paper originates from the

following definition.

Definition 1.10. Let R be an integral domain and K its field of fractions.

Then,

Int(R) = {f(x) ∈ K[x] | f(R) ⊆ R}
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is the set of integer-valued polynomials over R.

There is a variety of notation we will use to mean integer-valued polynomials

given subsets of the polynomial ring in question.

Definition 1.11 ([5]). Let D be an integral domain with quotient field K and

A is an ideal of D or T (D). Then

Int(D) = {f(x) ∈ K[x] | f(D) ⊆ D };

IntD(T (D)) = {f(x) ∈ K[x] | f(T (D)) ⊆ T (D) };

IntD(A) = {f(x) ∈ K[x] | f(A) ⊆ A};

IntD[T (D)] = {f(x) ∈ T (D)[x] | f(T (D)) ⊆ T (D) }.

The polynomials we will be discussing in this research are polynomials of

which their indeterminates, as well as their coefficients, are members of a

matrix ring defined over an integral domain.

1.4. Matrix Rings.

A matrix is an arrangement of elements from a ring that are arranged in an

m× n grid, m,n ∈ N. We will restrict our discussion to matrices of n× n size

in this paper. The ring of n× n size square matrices is denoted Mn(R) where

the elements that populate each matrix are from R. We give the following

operations for matrices. We use lowercase letter corresponding to the named

matrix with two natural numbers as their index to indicate the ij-th element of

some matrix, i.e., given some matrix A ∈ Mn(R), the ij-th element is denoted

as aij. We also use the notation [A]ij interchangeably. Mn(R) is a ring under

special operations of addition and multiplication.

Definition 1.12. Let A,B ∈ Mn(R) and R a ring. Then for every element

aij ∈ A and bij ∈ B,

(1) A+B is defined such that [A+B]ij = aij + bij.

(2) AB is defined such that [AB]ij =
∑n

k=1 aikbkj.

The zero element is the matrix contained in the set of matrices where every

element is zero, which we will denote by a bold 0 without further explanation

when context is clear. The identity element in Mn(R) is denoted I where
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every diagonal element is 1 and every other element is 0. For any matrix

A ∈ Mn(R), IA = AI = A.

Example 1.13. The identity matrix for M3(R), R a ring, is

I =

 1 0 0

0 1 0

0 0 1

 .

Example 1.14. M3(K) is the ring of 3× 3 matrices over a field K.

The identity element, zero element, and operations of multiplication and

addition have the same properties as they do in any noncommutative ring. A

subset S ⊂ Mn(R) may also be a ring if it includes I. An important aspect of

the problem given here is that we must choose a subset of matrices in Mn(R)

which are also rings so that they may fit the requirements by the definition

of an integer-valued polynomial. We will now define a subset of Mn(R) which

has been studied previously by the researchers, and fits the requirements for

a matrix subring quite nicely.

1.5. The Matrix Ring T (R).

Definition 1.15. Let R be a ring. We define a subset T (R) ∈ Mn(R) to have

the following form. For any A ∈ T (R),

A =

 a11 0 0

a21 a22 a23

0 0 a33


Given this definition we now show that T (R) is a ring when R is commuta-

tive.

Lemma 1.16. Let R be a commutative ring. T (R) is a ring.
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Proof. Let A,B ∈ T (R). Addition is obviously closed. Multiplication is as

well:  a11 0 0

a21 a22 a23

0 0 a33


 b11 0 0

b21 b22 b23

0 0 b33



=

 a11b11 0 0

a21b11 + b21a22 a22b22 a22b23 + a23b33

0 0 a33b33


□

A simple fact is that the determinant of a matrix A in T (R), |A| = a11a22a33.

The set T (R) forms a (noncommutative) matrix ring.

Let R be a commutative ring and set S = R and I = (0).. Consider the

subring Un(R)[x] of the n×n upper-triangular matrices ofMn(R)[x]. Two kinds

of “null-polynomial functions” on upper triangular matrices are investigated

in [3], those induced by polynomials with matrix coefficients on the one hand,

and those induced by polynomials with scalar coefficients on the other. They

are defined below:

IntR(Un(R), 0) = NR(Un(R)),

IntUn(R)(Tn(R), 0) = NUn(R)(Un(R)).

Here 0 = {0n×n} is the set of one member, the n× n zero matrix. In general,

for any given ring R′ and a subring S ′ of R′, the set N ′
S(R

′) = {f(x) ∈
S ′[x] | f(a) = 0 for all a ∈ R′} is the set of all polynomials with coefficients

in S ′ that maps every element in R′ to 0, or it is called the set of “null-

polynomials” on R′. One of the results of [3] is the claim that the subrings

NR(Un(R)) and NUn(R)(Un(R)) are ideals of the polynomial rings R[x] and

Un(R)[x] respectively.

The aim of this paper is to generalize these results of the work in [3] to other

subrings of Mn(R). In particular, we aim to identify subring T of Mn(R) such

that NT [x](T [x]) is an ideal of T [x]. One consideration is to start with the

following setting: select some fixed subset S of transformations {1, 2, . . . , n}×
{1, 2, . . . , n} and let T be the set of matrices in the form of (aij) with aij = 0

for all (i, j) in S and the other entries being arbitrary. This selected set S
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should make the resulting set T to be a subring of Mn(R). We will examine

different settings for S and the resulting T , and study properties of T and the

null polynomials of T .

The ring T (R) defined in Definition 1.15 is such a ring that meets this

criteria. It is easy to see if we let S = {(1, 2), (1, 3), (3, 1), (3, 2)}, then for

every (i, j) ∈ S and A ∈ T (R), [A]ij = 0.

Definition 1.17. Let R be an integral domain with quotient field K. Assume

S ⊆ R. The null ideal of S in R is given by

NR(S) = {f(x) ∈ R[x] | ∀s ∈ S, f(s) = 0}.

Special attention is given to NR(R), the case when S = R, called the null

ideal of R. Regarding to the matrix ring T (R) defined above, two related

ideals are also to be discussed in this paper.

2. Current Research and Goals

The topic of null ideals is well related to that of integer-valued polynomials

by a residue class ring of a domain [12]. There is a body of growing liter-

ature with an aim to examine integer-valued polynomials over rings which

are noncommutative, and more specifically, matrices of varying sizes and type

[2][3][6][8][9][10][7][11][12]. Strong results for upper triangular matrices exist

[3], from which this paper is motivated initially. An important question for

which current research intends to develop an answer is: given some integral

domain D, for which subsets S ⊆ Mn(D) does Int(S,Mn(D)) a ring?. It is

known that if I ⊂ D is an ideal, then Int(Mn(I),Mn(D)) is a ring [4]. However,

for the general case of any subset of a matrix ring, the conditions for which its

integer-valued polynomials form a ring is not clear. One way of approaching

the problem is to determine the null ideal of a subset of a ring. The reason

why can be shown by formulating the integer valued polynomials as a residue

class of polynomials in D[x] over domain D.

This relationship is shown in [11]. Given some f ∈ Mn(D), we may rewrite

f = g(x)/d, which belongs to some residue class ring in Mn(D)[x]. Let (d)

be the principal ideal generated by dD, and g′ ∈ Mn(D/(d))[x]. Then for all

A ∈ S ⊂ Mn(D), f(A) ∈ Mn(D) if and only if g(A) ∈ Mn(dD) if and only
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if g′(A′) = 0 in Mn(D/(d)). The set of polynomials for which g′(A′) = 0 is

exactly the null ideal of S, thus determining the set of polynomials in the null

ideal gives a complete description of Int(S,Mn(D)). We now have motivation

for the study of these particular types of rings and their null ideals.

We have already introduced the special type of ring T (D) above. Here we

look at NT (D)(T (D)) and this notation is shortened to N(T (D)) when S = D,

in the definition. Then N(T (D) = {f ∈ T (D)[x] | f(X) = 0 for all X ∈
T (D)}. It has already been determined that the subset T (D) ⊂ Mn(D) is

a ring. The aim is to now determine what criteria must be met by some

polynomial in T (D)[x] to be included in the null ideal NT (D)(T (D)). As it

turns out, determining this relationship is not simple or obvious. In section

3 we provide verification that such an ideal exists, section 4 contains some

examples, section 5 discusses what other types of rings could be studied, and

section 6 concludes with some possible directions for future research.

3. Basic Operations

We prefer first to start by determining the powers of a matrix in T (D) by

functions which generate the elements at each position in the resulting matrix.

Lemma 3.1. Let R be an integral domain and T (D) as defined above. Con-

sider X = [xij] ∈ T (D). Then for any integer n ≥ 1,

Xn =

 xn
11 0 0

x21

∑n−1
i=0 xi

11x
n−1−i
22 xn

22 x23

∑n−1
i=0 xi

22x
n−1−i
33

0 0 xn
33

 .

Proof. Obviously, the formula is true for n = 1. For n > 1, it can be shown

by mathematical induction on n with the following calculation:
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X ·Xn−1 = x11 0 0

x21 x22 x23

0 0 x33


 xn−1

11 0 0

x21

∑n−2
i=0 xi

11x
n−2−i
22 xn−1

22 x23

∑n−2
i=0 xi

22x
n−2−i
33

0 0 xn−1
33


 xn

11 0 0

x21

∑n−1
i=0 xi

11x
n−1−i
22 xn

22 x23

∑n−1
i=0 x22ixn−1−i

33

0 0 xn
33

 .

□

Given a polynomial in T (D)[x], by Lemma 3.1 and matrix operations, we

can evaluate it at any matrix in T (D). The formula is shown below:

Lemma 3.2. Let f(x) = Anx
n + · · · + A1x + A0 ∈ T (D)[x], the polynomial

ring in one variable over the ring T (D), where Ak = [a
(k)
ij ] ∈ T (D). For any

matrix X = [xij] ∈ T (D),

f(X) =


∑n

k=0 a
(k)
11 x

k
11 0 0

g1(x11, x21, x22)
∑n

k=0 a
(k)
22 x

k
22 g2(x22, x23, x33)

0 0
∑n

k=0 a
(k)
33 x

k
33

 ,

where

g1(x11, x21, x22) =
n∑

k=1

[
a
(k)
21 x

k
11 + x21a

(k)
22

k−1∑
i=0

xi
11x

k−1−i
22

]
, and

g2(x22, x23, x33) =
n∑

k=1

[
a
(k)
23 x

k
33 + x23a

(k)
22

k−1∑
i=0

xi
22x

k−1−i
33

]
.

Equipped with

Theorem 3.3. Let f(x) = Anx
n + · · ·+ A1x+ A0 ∈ T (D)[x], the polynomial

ring in one variable over the ring T (D), where Ak = [a
(k)
ij ] ∈ T (D). Then

f(X) ∈ NT (D)(T (D)) if and only if

∀(i, j) = (1, 1), (2, 1), (2, 2), (2, 3), (3, 3),
n∑

k=1

a
(k)
ij xk ∈ ND(D).
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Proof. Denote x⃗ = (x11, x21, x22, x23, x33), the vector of the five involved vari-

ables over D. By Lemma 3.2, We further write

f(X) =

 f11(x⃗) 0 0

f21(x⃗) f22(x⃗) f23(x⃗)

0 0 f33(x⃗)



=

 f11(x11) 0 0

g1(x11, x21, x22) f22(x22) g2(x22, x23, x33)

0 0 f33(x33)

 .

Then for i = 1, 2, 3, fii(xii) =
∑n

k=1 a
(k)
ii xk

ii ∈ D[xii] (constant must be 0).

Note that xii is treated as an indeterminate over R.

Now assume f ∈ NT (D)(T (D)). Then f(X) = 0 for all X ∈ T (D). It implies

for each i = 1, 2, 3, fii(a) = 0 for all xii := a ∈ D, that is, f(D) = 0. Thus,

fii ∈ ND(D). By lemma 3.2,

f21(x⃗) = g1(x11, x21, x22) =
n∑

k=1

[
a
(k)
21 x

k
11 + x21a

(k)
22

k−1∑
i=0

xi
11x

k−1−i
22

]
.

Because f(X) = 0 for all X ∈ T (D), g1(a, b, c) = 0 for all a, b, c ∈ D. By

substituting x21 = 0, we have h1(x11) =
∑n

k=1 a
(k)
21 x

k
11 = 0 for all values x11 ∈

D. Thus, h1 ∈ NR(D). It further requires that g1(x11, x21, x22) − h1(x11) = 0

for all values of x11, x21, and x22 in D. That is,

∀x11, x21, x22 ∈ T (D), x21

n∑
k=1

a
(k)
22

[
k−1∑
i=0

xi
11x

k−1−i
22

]
= 0.

It is sufficient to examine the above for all nonzero values of x11, x21, x22. Then

we need

n∑
k=1

a
(k)
22

[
k−1∑
i=0

xi
11x

k−1−i
22

]
= 0 for all values of x21, x22 in D \ {0}.

In case x11 = 1 = x22, we obtain

n∑
k=1

a
(k)
22

[
k−1∑
i=0

xi
11x

k−1−i
22

]
=

n∑
k=1

a
(k)
22 · k = f ′

22(1).
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In case one of the x11 and x22 is 1 but the other is neither 0 nor 1, say,

x11 ̸= 0, 1 but x22 = 1, we have

n∑
k=1

a
(k)
22

[
k−1∑
i=0

xi
11

]
=

1

x11 − 1

n∑
k=1

a
(k)
22

(
xk
11 − 1

)
=

1

x11 − 1

n∑
k=1

a
(k)
22 x

k
11 −

1

x11 − 1

n∑
k=1

a
(k)
22 .

Since f22(x) =
∑n

k=1 a
(k)
22 x

k ∈ ND(K) ⊆ ND(D), we have both
∑n

k=1 a
(k)
22 x

k
11 =

0 and
∑n

k=1 a
(k)
22 = f22(1) = 0.

Finally, we consider the case when x21, x22 ̸= 0, 1. In the field K of fractions

of D, with

n∑
k=1

a
(k)
22

[
k−1∑
i=0

xi
11x

k−1−i
22

]
=

n∑
k=1

a
(k)
22

[
1

x11 − x22

(xk
11 − xk

22)

]

=
1

x11 − x22

n∑
k=1

a
(k)
22 x

k
11 −

1

x11 − x22

n∑
k=1

a
(k)
22 x

k
22 = 0.

With the same reason, f22(x) =
∑n

k=1 a
(k)
22 x

k ∈ ND(D), thus,
∑n

k=1 a
(k)
22 x

k
11 = 0

and
∑n

k=1 a
(k)
22 x

k
22 = 0. Similar properties hold for the (2,3)-entry of f(X),

g2(x22, x23, x33).

In summary, f(X) ∈ NT (D)(T (D)) if and only if all the five polynomials as

the entries of f(X) must be in the null ideals ND(D). That is, ∀x11, x21, x22 ∈
T (D), x21

∑n
k=1 a

(k)
22

[∑k−1
i=0 x

i
11x

k−1−i
22

]
= 0. □

Corollary 3.4. Let D be any integral domain. The null ideal NT (D)(T (D) is

given by

NT (D)(T (D)) =

 ND(D) 0 0

ND(D) ND(D) ND(D)

0 0 ND(D)

 .

Trivially, the null ideal of a ring is two-sided. Null ideals of subsets of a ring,

however, are not guaranteed, and finding them is the topic explored in [11].

We will briefly observe this in the special matrices T (D) later in the paper.

Since we restrict our set of polynomials by the entire ring, we get the following

corollary for free.
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Corollary 3.5. The null ideal NT (D)(T (D)) is two-sided.

4. Properties of Null Polynomials

In this section, we give specific properties of polynomials in the null ideal

NT (D)(T (D)). We may also examine situations when R is a finite field like

R = Zp, where p is a prime. For small prime numbers, we can give a complete

picture of the null ideal (list all the elements). Let the reader remind them-

selves that the units of a polynomial ring D[x] where D is an integral domain,

is D ⊂ D[x]. This informs the exclusion of polynomials which have a constant

term in the following propositions.

Lemma 4.1. Let R = Z3 and f(x) = anx
n + · · ·+ a1x ∈ Z3[x], n > 0. Then

(1) if n is even, f(x) ∈ NR(R) if and only if

n/2∑
i=1

a2i = 0 =

n/2∑
i=1

a2i−1.

(2) If n is odd, then f(x) ∈ NR(R) if and only if

(n−1)/2∑
i=1

a2i = 0 =

(n+1)/2∑
i=1

a2i−1.

Lemma 4.1 also holds for the case of Z2, though the case for Z2 is trivial.

Corollary 4.2. Let R = Z2. Then, f(x) ∈ NR(R) if and only if f(x) =

anx
n + · · · a1x ∈ Z2, n > 0, and has an even number of terms.

Proof. The only case to consider is x = 1. If the number of terms with nonzero

coefficient is even, then 2 | f(1) and f(1) = 0.

Conversely, assume f(x) ∈ NR(R). If x = 0 and f(x) = anx
n+ . . .+a1x+1,

then f(1) ̸= 0, so f(x) must be of the form anx
n + . . . + a1x. Also, if x = 1

then 2 ∤ f(1) and f /∈ NR(R). □

5. Characterization of Subrings of Mn(R)

Let R be a commutative ring and ∅ ≠ S ⊆ Mn(R). The big question to

answer in this section is that is S a subsring of Mn(R)? It is known that

the two trivial subsets, Mn(R) and {0}, are subrings. The set of all upper
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triangular matrices and the set of all diagonal matrices are both subrings. We

look for other subrings. When n = 3, the set T (R) introduced before is a

subring of M3(R) (Lemma 1.16), where 6 of the entries in any matrix in T (R)

must be always 0. Another subset also forms a which posses a minimum of 4

zero in the entries. We format these two subsets in the following example.

Example 5.1. Let R be a commutative ring. The two subsets, T (R),W (R)

of M3(R) are subrings:

T (R) =

 R 0 0

R R R

0 0 R

 and W (R) =

 R 0 R

R R R

R 0 R

 .

Here an entry with R means any number from R are allowed in the position.

It indicates that the number of 0’s and the positions of the 0’s may contribute

for the subset to be a subring. We next define a zero-index set and a zero-index

for a subset of matrices.

Definition 5.2. Let R be a commutative ring and Sn(R) ⊆ Mn(R). The

zero-index set of Sn(R) is defined as

Id0(Sn(R)) = {(i, j) | 0 ≤ i, j ≤ n, the (i, j)-entry of A is 0 ∀A ∈ Sn(R)}.

The cardinality |Id0(Sn(R))| is called the zero-index of Sn(R) and is denoted

as ind(Sn(R)).

Immediately from the above definition, we have

Example 5.3. Consider the two sets T (R) and W (R) discussed above.

Id0(T (R)) = {(1, 2), (1, 3), (3, 1), (3, 2)} and Id0(W (R)) = {(1, 2), (3, 2)}.

The two zero-indices are 4 and 2 respectively.

Proposition 5.4. Let R be a commutative ring and n be a positive integer.

If we denote the set of all n × n upper triangular matrices over R by Un(R),

then

Id0(Un(R)) = {(i, j) | 0 ≤ i, j ≤ n and i > j} and ind(Un)R)) =
n(n− 1)

2
.
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The arrangement of zero’s determines whether a set of matrices is a ring,

along with the normal criteria for a ring. Next we define a subset of matrices

and later prove that it forms a ring.

Definition 5.5.

Ln(R) := {A ∈ Mn(R) | aij = 0, i odd and j even}.

Note that when n = 3 the set in L3(R) = W (R). What remains to show is

that this subset Ln(R) of Mn(R) is a ring itself.

Proposition 5.6. Ln(R) is a ring.

Proof. All conditions for Ln(R) to be a subring barring the multiplicative

property follow from being a subset of Mn(R). Let A = [aij], B = [bij] ∈ Ln(R)

and AB = [cij]. Then when i is odd and j is even,

cij =
n∑

k=1

aikbkj =
∑

k≥2 and k is even

aikbkj +
∑

k≥1 and k is odd

aikbkj = 0

because in the first summasion, aik = 0 and in the second summasion, akj = 0.

Thus, AB ∈ Ln. □

The result in Proposition 5.6 produces an easily verifiable consequence with

regard to subrings of Ln(R).

Corollary 5.7. T (R) is a subring of L3(R).

The zero ring has the maximal zero-index (n2). The set of all diagonal

matrices, a non-trivial subring of Mn(R), has the zero-index n2−n. The zero-

index of Ln(R) can be calculated using combinatorial methods and we hope it

can be used as a springboard to characterize all the subrings of Mn(R).

Proposition 5.8. The zero-index of Ln(R) is ind(Ln(R)) =
⌊
n2

4

⌋
. That is,

ind(Ln(R)) = n2/4 if n is even and (n2 − 1)/4 when n is odd.

Proof. When n is even, there are n/2 rows with the first index odd (rows

1, 3, . . . , n−1) and n/2 columns with the second index even (columns 2, 4, . . . , n).

These positions have 0 entries and there are (n/2)2 = n2/4 many such posi-

tions. Similarly, when n is odd, there are (n + 1)/2 odd rows and (n − 1)/2
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even columns, which result in ((n+ 1)/2)(n− 1)/2 = (n2 − 1)/4 positions for

0 entries. □

As an example, let p be a prime number and Fp be a finite field with p

elements. For each matrix in A ∈ Ln(Fp), it must have at least
⌊
n2

4

⌋
zero

entries and each of the other entries can be chosen from the p elements of Fp.

Thus, the size of Ln(Fp) is

|Ln(Fp)| = pn
2−ind(Ln(R)) = p

n2−
⌊

n2

4

⌋
.

When n = 3, L3(R) = W (R), so |L3(Fp)| = p9−2 = p7. Finally, the product

of two matrices in L3(R) has the form

AB =

 a11b11 + a13b31 0 a11b13 + a13b33

a21b11 + a22b21 + a23b31 a22b22 a21b13 + a22b23 + a23b33

a31b11 + a33b31 0 a31b13 + a33b33

 .

We now have a similar case to T (R) but with a more complicated structure.

6. Conclusions and Future Directions

In Section 3, the groundwork is laid to determine the null ideal of T (D)

for the specially defined matrix ring T (D) where D is an integral domain.

We investigated the set of polynomials in the null ideal NT (D)(T (D)) and

showed that it can be determined by taking some algebraic manipulations. A

consequence is that the null set is a 2-sided ideal of the matrix ring Mn(D)

and the structure is described. In section 4, additional properties of the null

polynomials are provided. In section 5, we identify some subsets which also

form subrings of Mn(R). Such subrings are described by the newly defined

zero-indecies of matrices.

Section 5 is intended to give motivation for further exploration into subrings

of different forms. The ring T (R) being a subring of L3(R) does not imply that

the null ideal of T (R) is an ideal of L3(R). In a similar fashion to Lemma 3.2

we construct functions to populate the elements of a matrix with the resulting

polynomials after reducing the operations of addition and multiplication for

each polynomial in Ln(R)[x] with coefficients in Ln(R).
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