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Van der Waals interactions between single atoms and solids are discussed for the regime of
large separation. A commonly employed approximation is to evaluate this interaction as a
sum of two–body interactions between the adatom and the constituent atoms of the solid.
The resulting potentials are here compared with known results in various geometries and
it is shown that many–body effects play an important role. We further demonstrate that
screening, which is a geometrical effect, cannot be included in a simple pairwise sum model.

A new linear response density functional method entirely formulated without unoccupied
Kohn–Sham orbitals is introduced. The numerical methods used to calculate the density
response is discussed and applications are given. One of those applications is to compute
the dispersion interaction between clusters and atoms. This is used in the simple interaction
model for clusters and atoms which is derived using perturbation theory. We compare our
results to the literature in two cases: the Mg–He potential and the Na–He potential.
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1 Introduction

In recent years, cluster physics has become a highly active research field. Nanoscale clusters
form the bridge between the microscopic world of atoms and molecules and the macroscopic
world of solids. For this reason, they have turned out to be an ideal system for studying
properties of small many–body systems.

A specific technique to prepare clusters in their ground–state is by embedding them into
superfluid helium nanodroplets. Techniques to agglomerate atoms and small molecules
in a quantum fluid matrix — specifically, in superfluid 4He — have opened a new and
versatile way to study the structural, electronic and spectroscopic properties of nanopar-
ticles. The droplets can be viewed as ultracold nanoscopic reactors, which isolate single
molecules, clusters, or even single reactive encounters at very low temperatures. Clusters of
well–defined composition can be formed inside the droplets, and their examination in the
millikelvin regime has already given important clues on magnetism and superconductivity
on the nanometer scale.

Over the past decade, a large amount of work on helium nanodroplets has concentrated on
spectroscopic properties of single atoms and molecules in the superfluid environment. Ex-
perimental work on free metal clusters has been accompanied by corresponding theoretical
studies, and whole physics Journals are devoted to the subject. Work towards a quanti-
tative theoretical understanding of clusters and molecules within the helium environment

is, on the other hand, much more limited: The embedded cluster is usually treated as a
static perturbation to the quantum liquid matrix. In addition, only very small clusters
and molecules have been treated so far. One of the reasons for this imbalance might be
that established simulation techniques exist for both quantum liquids and clusters alone,
but further methodological developments are needed to perform accurate simulations of the
combined quantum fluid/cluster system.

Considering the embedded cluster as a static entity has a number of problems: First,
according to Newton’s third law, the influence of the helium matrix on the cluster is equal
and of opposite sign than the influence of the cluster on the helium matrix. Second, the
interaction between the cluster and individual helium atoms depends on the electronic
structure of the cluster which is, in turn, affected by the helium matrix. So far, these effects
were not taken into account.

The goal of my visit to Milton Cole at the Pennsylvania State University was to develop
robust models for the cluster–helium interaction which take the above–mentioned effects
into account. We anticipate that this work will have far–reaching applications beyond
cluster physics and quantum fluids: A very active and timely field is research is the study of
adsorption phenomena that are important in, for example, hydrogen storage applications.

My research report is structured as follows: In Chapter 2 the importance of many–body
effects in physical adsorption and the flaw in pairwise sum models are discussed and several
analytic examples are given. This chapter follows two publications, Liebrecht et al. [1]
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(in press) and Cole et al. [2] (to be published in the Journal of Chemical Physics). In
the following chapter, Chapter 3, a new linear response time–dependent density functional
method is introduced. This new method overcomes the problem of calculating a huge
number of unoccupied states because it is entirely formulated in terms of occupied Kohn–
Sham orbitals and will be published soon. Chapter 4 discusses our model for the cluster–
atom interaction. Results for two simple examples, the Mg–He potential and the Na–He
potential, is presented and compared to the literature. In the last chapter, Chapter 5, I
conclude and propose some further improvements and ideas.
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2 Many–body effects in physical

adsorption

2.1 The concept and method of pairwise summation

Van der Waals (VDW) interactions are associated with the electromagnetic interactions
between fluctuating charges in matter [3, 4]. At temperature T = 0, these fluctuations arise
from quantum–mechanical zero–point motion. This concept became understood soon after
the development of quantum–mechanics, beginning with calculations [5, 6, 7] of the inter-
action V (r12) between two atoms, 1 and 2, separated by distance r12, by Wang, Eigenschitz
and London. The exact result for the long–range limit can be written in terms of the atomic
polarizability α(iω) of the atoms at imaginary frequency iω. This monotonically decreasing
function of ω can be derived through a Kramers–Kronig transform of absorption data at
real frequencies. The relevant relations are

V (r12) = −
C6

r612
(2.1)

and

C6 =
3h̄

π

∫ ∞

0

dω α1(iω)α2(iω) . (2.2)

This integration is over all positive frequency ω, but the dominant contributions to the
integral come from energies h̄ω less than, or of order of, the atomic ionization energies.

A similar VDW interaction can be calculated between an atom and a semi–infinite surface,
bounded by a plane, which are separated by distance z:

U(z) = −
C3

z3
(2.3)

C3 =
h̄

4π

∫ ∞

0

dω αa(iω)gs(iω) (2.4)

gs(iω) ≡
ǫs(iω)− 1

ǫs(iω) + 1
(2.5)

Here ǫs(iω) is the dielectric function of the solid medium, which is assumed to be isotropic,
and C3 is the relevant coefficient [8]. These various VDW interactions are variously called
dispersion forces, London forces, Lifshitz forces, and/or Casimir forces. Eqs. (2.1) and (2.3)
are derived by assuming that the separation is large compared to atomic sizes, but small
compared to a characteristic distance (≈ 10 nm) beyond which retardation plays a role.
That non–retarded regime will be the focus of this paper, apart from a brief discussion of
one example of retarded interactions (between an atom and a diatomic molecule). The fully
retarded regime corresponds to separations greater than several hundred nanometers.
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The preceding relations (2.2) and (2.4) are easy to evaluate if one is given the input quantities
α(iω) and g(iω), values of which are derived from experiments and/or ab initio calculations
[9, 10]. The resulting coefficients have been tabulated extensively. The question we discuss
here is how to exploit these results when dealing with other geometries, i. e. what interaction
is appropriate in such a case? Some 75 years ago, Hamaker answered this question with an
ansatz [11] which has been widely adopted subsequently. For the case of an atom near a
solid confined within a volume Ω and constant number density ns, he applied the form of
Eq. (2.1) to the given geometry, integrating the pair interaction over the volume Ω,

U (2)(r) = −

∫

Ω

d3r′
C

(2)
6 ns

|r− r′|6
, (2.6)

where r is the position of the adatom. The superscript 2 denotes the fact that 2–body
interactions are assumed to accurately represent the net interaction. Hamaker desired to

choose an appropriate effective value for the gas atom–solid atom VDW coefficient C
(2)
6 . He

did so by requiring that Eq. (2.6) yield the known result, Eq. (2.3), in the case of a half–
space solid with constant number density ns. This approach is plausible insofar as it takes
into account “environmental effects” of the atoms within the solid, but one must investigate
whether other effects (surface curvature, screening,. . . ) have adverse consequences for it.
In the benchmark case of a half–space bounded by a plane, the integral in Eq. (2.6) has to
yield U(z) of Eq. (2.3). Therefore, we get the relation

C3 =
nsπ

6
C

(2)
6 . (2.7)

Here C
(2)
6 is the effective VDW coefficient of the atom–solid atom interaction used by

Hamaker. This leads to a general relation for the Hamaker potential,

UHamaker(r) = −
6

π

∫

Ω

d3r′
C3

|r− r′|6
. (2.8)

By construction, this relation is exact for the case of a semi–infinite solid. By extension, it
is valid at distances from the nearest surface which are small compared to the smaller of
the two radii of curvature of that surface. How accurate is it for atoms in other situations?
This report addresses this question for several geometries for which exact results can be
calculated.

In the next section, we describe a formal expansion of the Hamaker coefficient, showing
that, in general, the correction to the Hamaker 2–body approach is significant. Section 2.3
presents explicit results for the accuracy of the 2–body method in the case of atoms near
free electron metals in three geometries: a semi–infinite solid, a spherical particle and a
spherical cavity.

2.2 The C3 expansion

The dielectric function ǫs(iω) of the medium, considering here a material made of just one
element, can be approximated by the Clausius–Mossotti relation [12, 13]

ǫ
(CM)
s (iω)− 1

ǫ
(CM)
s (iω) + 2

=
4π

3
ns αs(iω) ≡ y(CM)

s (iω) . (2.9)
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He Ne Ar Kr Xe

α(0) (Å3) 0.205 0.396 1.64 2.49 4.05
h̄ω (eV) 28.0 32.0 19.2 16.8 13.1

Table 2.1: Parameters of the rare gas atoms used in the Unsöld approximation [16], Eq.
(2.14) and the Clausius–Mossotti approximation [12, 13], Eq. (2.20). Values for
the static polarizabilities α(0) and the effective energies h̄ω are taken from [17]
and [18], respectively.

Here ǫ
(CM)
s (iω) is the approximated dielectric function of the medium and αs(iω) is the dy-

namic polarizability of an isolated substrate–atom. The Clausius–Mossotti approximation
is exact if the chemical environment does not influence the constituents. Therefore, it takes
into account classical electromagnetic screening, which is a geometrical effect, but cannot
describe many–body effects related to changes in electronic structure.

If we insert ǫ
(CM)
s (iω) into Eq. (2.4) we get

C
(CM)
3 =

3h̄

4π

∫ ∞

0

dω αa(iω)
y
(CM)
s (iω)

2 + y
(CM)
s (iω)

. (2.10)

This leads to an expansion in the parameter y
(CM)
s (iω), of which the first term is given by

the 2–body sum, used by Hamaker, and subsequent terms are many–body corrections,

C
(CM)
3 = C

(2)
3 + C

(3)
3 + . . . (2.11)

with

C
(2+j)
3 ≡

h̄

2

(

−
2π

3

)j

nj+1
s

∫ ∞

0

dω αa(iω)α
j+1
s (iω) . (2.12)

Here we used

g(CM)
s (iω) =

3 y
(CM)
s (iω)

2 + y
(CM)
s (iω)

= 2πnsαs(iω)
∞∑

n=0

[

−
2π

3
nsαs(iω)

]n

. (2.13)

Indeed, the first correction term C
(3)
3 arises from the sum of triple dipole interactions of the

form described by Axilrod, Teller and Muto [14, 15], for which the proportionality coefficient
is the frequency integral in Eq. (2.12). The three atoms involved in the interaction are the
external atom and two substrate atoms. The ratio of the two leading terms is of order

y
(CM)
s (0), the value of which depends on the material. Note that the sign of the C

(3)
3 term

is negative, while that of C
(2)
3 is positive. This difference reflects the fact that the many

body contribution to C3 is repulsive, corresponding to a screening of the 2–body interaction,
i. e., a reduction in the magnitude of the VDW energy, as follows mathematically from Eq.

(2.13), since g
(CM)
s (iω) < 3

2y
(CM)
s (iω), the quantity entering the 2–body Hamaker approach.

Those many–body effects become negligible in the limit of small substrate polarizability
density, 2π

3 nsαs(0) ≪ 1.

Let us consider for specificity a commonly used approximation, involving 2–parameter fits
to the polarizabilities of atoms and the dielectric responses of solid media, expressed in
terms of characteristic frequencies and static values [16]:

αa(iω) =
αa(0)

1 + ω2

ω2
a

(2.14)
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C Cu Ag Mg Li Na K Rb

α(0) (Å3) 1.76 6.11 7.21 10.6 24.3 24.1 43.4 47.3
h̄ω (eV) 10.8 6.10 6.28 4.54 1.91 2.22 1.85 1.91

ns (mÅ−3) 113 84.6 58.5 42.8 46.9 26.5 14.0 11.5

Table 2.2: Parameters of the substrate atoms used in the Unsöld approximation [16], Eq.
(2.14). Values for the static polarizabilities α(0) are taken from Ref. [17] and all
values for the atomic substrate density ns, except graphite, can be found in the
book of Ashcroft and Mermin [19]; for graphite we use Ref. [20]. The values of
the effective energies h̄ω were estimated as described in the text.

He Ne Ar Kr Xe

graphite
C6 (eV · Å6) 4.21 8.42 29.9 43.1 63.2

C
(MB)
3 (meV · Å3) 178 [8] 348 [8] 1230 [8] 1710 [8] 2470 [8]

Cu
C6 (eV · Å6) 9.71 [21] 19.7 [21] 68.4 [21] 98.8 [21] 150 [21]

C
(MB)
3 (meV · Å3) 222 [8] 450 [8] 1510 [8] 2140 [8] 3050 [8]

Ag
C6 (eV · Å6) 11.8 [21] 23.9 [21] 82.4 [21] 119 [21] 179 [21]

C
(MB)
3 (meV · Å3) 246 [8] 500 [8] 1640 [8] 2300 [8] 3240 [8]

Mg
C6 (eV · Å6) 12.8 [22] 25.2 [22] 95.5 [22] 140 [22] 218 [22]

C
(MB)
3 (meV · Å3) 160 [23] 316 [23] 1141 [23] 1642 [23] 2475 [23]

Li
C6 (eV · Å6) 13.5 [24] 26.2 [25] 104 [25] 155 [25] 245 [25]

C
(MB)
3 (meV · Å3) 123 [23] 241 [23] 902 [23] 1312 [23] 2006 [23]

Na
C6 (eV · Å6) 15.4 [24] 30.1 [25] 118 [25] 175 [25] 275 [25]

C
(MB)
3 (meV · Å3) 103 [23] 203 [23] 770 [23] 1105 [23] 1695 [23]

K
C6 (eV · Å6) 23.6 [24] 46.3 [25] 179 [25] 265 [25] 417 [25]

C
(MB)
3 (meV · Å3) 90.1 [23] 178 [23] 658 [23] 956 [23] 1463 [23]

Rb
C6 (eV · Å6) 26.7 [24] 52.6 [25] 201 [25] 298 [25] 466 [25]

C
(MB)
3 (meV · Å3) 88.6 [23] 175 [23] 643 [23] 933 [23] 1424 [23]

Table 2.3: Values of C6 and C
(MB)
3 , the exact C3 coefficient including all many–body effects,

for all gas–substrate combinations discussed in this work and their references.
The C6 values for combinations involving carbon are obtained as discussed in the
text.
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C Cu Ag Mg Li Na K Rb
He 0.266 0.542 0.638 0.522 1.272 0.719 0.678 0.604
Ne 0.261 0.535 0.628 0.514 1.263 0.713 0.673 0.600
Ar 0.283 0.566 0.672 0.550 1.304 0.739 0.694 0.620
Kr 0.290 0.577 0.685 0.562 1.318 0.748 0.702 0.626
Xe 0.302 0.598 0.713 0.585 1.348 0.767 0.717 0.640

Table 2.4: Values of the ratio −C
(3)
3 /C

(2)
3 of the first many–body correction to the 2–body

result for the VDW interactions involving various gas–surface combinations. Pa-
rameter values taken from Bruch, Cole and Zaremba, Appendix E [26] and
Liebrecht et al. [1].

gs(iω) =
gs(0)

1 + ω2

ν2
s

(2.15)

Then, one finds these analytical results for the atom–atom and atom–surface VDW inter-
action coefficients:

Ca−s
6 =

3h̄

2
α1(0)α2(0)

ω1ω2

ω1 + ω2
(2.16)

C3 =
h̄

8
gs(0)αa(0)

νsωa

νs + ωa
(2.17)

C
(2)
3 =

h̄π

4
nsαs(0)αa(0)

ωsωa

ωs + ωa
(2.18)

Please note that C
(2)
3 coincides with C3 in the limit of small substrate polarizability density,

as expected. The ratio of the 3–body and 2–body contributions is

C
(3)
3

C
(2)
3

= −
π

3
nsαs(0)

[

1 +
ωs

ωa + ωs

]

. (2.19)

The last expression also shows that the 3–body contributions become negligible in the limit
of small substrate polarizability density. Table 2.4 presents values of this ratio for a series
of simple gases and various surfaces. As can be seen, the ratio is significant for most of
the materials presented, indicating that many–body corrections to the 2–body sum are
important, indeed.

The values used for the static polarizabilities α(0), the effective energies h̄ω and the atomic
substrate densities ns together with their references are listed in Table 2.1 and Table 2.2.

The values and references for C6 and C
(MB)
3 can be found in Table 2.3. These C6 coefficients

were supplemented by a recently calculated C6 coefficient for carbon–carbon interaction [27]
and combined with Eq. (2.14) to obtain h̄ω of the substrate atoms. The van der Waals
coefficients for carbon–rare gas combinations were determined with Eq. (2.14).

2.3 Qualitative results for atoms near metal surfaces

In the case of metallic surfaces, exact results have been derived for the VDW interaction for
a number of simple geometries (e. g. atom interacting with a half–space metal , a spherical
particle or inside a spherical or cylindrical cavity). The method and its results are summa-
rized in the review of Schmeits and Lucas [28, 29], as well as the monograph of Parsegian
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[3]. In such cases, we can compare these results with those obtained with the approximate
Hamaker approach described above. We focus here on VDW interactions derived for three
situations: an atom near a half–space metal, a spherical particle and an atom inside a
spherical cavity.

2.3.1 Atom interacting with a half–space metal

Using the Clausius–Mossotti relation [12, 13], Eq. (2.9), and the Unsöld approximation
[16], Eq. (2.14), we can evaluate Eq. (2.10) directly and obtain following relation between

C
(CM)
3 and C

(2)
3 ,

C
(2)
3

C
(CM)
3

=
ωs

ωs + ωa
η2 +

ωa

ωs + ωa
η (2.20)

with the screening parameter

η ≡

√

1 +
2π

3
nsαs(0) . (2.21)

Eq. (2.20) expresses the many–body effects explicitly as a function of η and the two relevant
frequencies, ωa and ωs. One can evaluate this general expression without specifying these
individual energies in three simple limits, depending on the ratio ωa/ωs. Fig. 2.1 presents

values of the ratio C
(2)
3 /C

(MB)
3 , where C

(MB)
3 represents the correct C3 coefficient including

all many–body effects, as three curves corresponding to these limits, which are specified in
the caption. One observes an overall consistency between the trend of all three curves and
the data for specific systems. The many–body effects are significant. Fig. 2.2 depicts the

dependence of the screening–corrected ratio C
(CM)
3 /C

(MB)
3 on η. The deviation of the data

points from 1 is significantly reduced. The same is true for the variation among the rare
gas atoms for a fixed substrate; note that the values for He and Ne are the lowest among
the various gases while those for Xe are the highest. The figure shows a general trend,
except for Ag, that the deviation increases with the screening parameter η. This suggests
that many–body effects of the substrate become more important as the substrate becomes
more polarizable and the substrate’s electrons more delocalized. A linear fit of the form
k (η − 1)+ d to all data points yields k = 0.506± 0.096 and d = 1.007± 0.048 and is shown
in Fig 2.2. Please note that the value for d is consistent with the low–density limit of 1.
To explain the discrepancy for Ag we refer to experimental and theoretical studies of low
energy ion scattering (LEIS) of He+ at noble metal surfaces [30, 31]: A jellium model for
the substrate can describe the experimental results for Cu, whereas the same model fails for
Ag. To explain the experimental results for Ag, the model has to be extended to include
the 4d–electrons of Ag. In our work we only account for the outermost s–electrons of Cu

and Ag to obtain the coefficients C
(2)
3 and C

(CM)
3 and we get, in agreement with the LEIS

experiments, a discrepancy for Ag.

2.3.2 Atom interacting with a spherical particle

In this case, the potential energy takes the following form, for the case of an atom at radial
distance D from the center of a spherical particle of radius a:

Vsp(D) = −
h̄

2πD3

∞∑

l=1

(l + 1) (2l + 1)
( a

D

)2l+1
∫ ∞

0

dω αa(iω)
ǫs(iω)− 1

ǫs(iω) +
l+1
l

(2.22)
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Figure 2.1: Dependence on the screening parameter η, defined in Eq. (2.21), of the ra-

tio of the coefficient C
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3 computed with the additivity approximation to its

many–body (correct) value C
(MB)
3 , for various gas–substrate combinations. The

three curves show the ratio of C
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3 to its screening–corrected value C
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3 ,

for various gas–substrate combinations. The solid curve shows a linear fit of the
form k (η − 1)+ d to all data points (k = 0.506± 0.096, d = 1.007± 0.048). The
dashed curves depict the statistical standard deviation of the fit.
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This expression can be shown to yield the usual form (−C3

z3 ) in the limit of close approach,
i. e., D − a ≪ a, as it must. Let us consider the opposite limit, D ≫ a. In this limit
approaching infinite separation and using the Clausius–Mossotti relation, Eq. (2.9), the
leading term is l = 1 and the result is

V CM
sp (D → ∞) → −

3h̄a3

πD6
I (2.23)

where

I ≡

∫ ∞

0

dω αa(iω)
ǫs(iω)− 1

ǫs(iω) + 2
=

4π

3
ns

∫ ∞

0

dω αa(iω)αs(iω) =
4π2

9h̄
nsC

a−s
6 . (2.24)

The integral I is seen to be essentially that entering into the expression for the VDW
coefficient Ca−s

6 of the atom–solid atom interaction. Letting Ns =
4π
3 nsa

3, the number of
atoms in the solid particle, we arrive at the following limiting behavior:

V CM
sp (D → ∞) → −Ns

Ca−s
6

D6
(2.25)

This is a simple, but remarkable, result. It indicates that the interaction between a spherical
particle and a distant atom is equal to Ns times the interaction from a single solid atom
interacting with the distant atom. In other words, there are no geometrical many–body
effects. This behavior obtains because of the symmetry of the spherical particle (which
cancels screening effects) and the large distance from the atom. We contrast this behavior
with what would be the result in the Hamaker approach, V Hamaker

sp ; the ratio of interactions
is

V Hamaker
sp (D → ∞)

V CM
sp (D → ∞)

=
C

(2)
6

Ca−s
6

=
6

πns

C3

Ca−s
6

. (2.26)

This ratio can be evaluated for the same sets of gas–solid combinations as appear in Table
2.4. The deviation from unity is significant. The origin of this discrepancy is that the

coefficient C
(2)
6 was derived from a situation (atom near half–space) for which screening

plays an important role in reducing the interaction. Hence, its value is depressed below
the actual value, Ca−s

6 ; this screening is absent from the present geometry (atom far from
spherical particle), so the preceding ratio falls below one.

We note in passing that the present problem can be solved quite directly in the large D
limit without exploiting the general formula, Eq. (2.22), presented above. The reason is
that for D ≫ a, the problem becomes that of a point particle (the sphere) interacting with

the distant atom. In such a case, we can use the general expression (Vsp ∝ −
C

a−particle
6

D6 ),

inserting the appropriate VDW coefficient Ca−particle
6 . This requires that we know the

polarizability of the spherical particle of radius a, which is given by

αsphere(iω) =
ǫ(iω)− 1

ǫ(iω) + 1
a3 . (2.27)

Inserting this relation into the general expression for C6 and using the Clausius–Mossotti
relation, Eq. (2.9), yields

Ca−particle
6,CM = NsC

a−s
6 . (2.28)

This coincides with what was described above as the result manifesting the absence of
geometric many–body effects.

To include many–body effects related to the chemical environment in the sphere, we can try a
similar approach to Hamaker’s. The only difference is that we use the results obtained by the
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Clausius–Mossotti approximation as the starting point, rather than the pair summation. We
have seen that the Clausius–Mossotti approximation yields Ca−particle

6,CM , see Eq. (2.28). The
correct coefficient, which also includes many–body effects due to the chemical environment,
will be denoted by Ca−particle

6,MB . Please note that

lim
Ns→1

Ca−particle
6,CM = Ca−particle

6,MB . (2.29)

Therefore, the result obtained by the Clausius–Mossotti approximation might be a good
estimate for Ca−particle

6,MB in the case of small Ns. In the opposite limit, it is clear that changes
in the electronic structure become more and more important and lead to additional effects.
In previous work [1], we studied those effects in the case of atom–surface interactions for

various rare gas – substrate combinations. We had access to exact C3 coefficients, C
(MB)
3 ,

and used the Clausius–Mossotti approximation to calculate C
(CM)
3 . We can use them to

estimate Ca−particle
6,MB ,

Ca−particle
6,MB = Ca−particle

6,CM

Ca−particle
6,MB

Ca−particle
6,CM

≈ Ca−particle
6,CM

C
(MB)
3

C
(CM)
3

. (2.30)

This approximation should hold for large Ns, where the chemical environment is very bulk–
like, but breaks down for small Ns, as expected. Thus, VDW interactions involving small
particles behave very differently from those involving large particles.

2.3.3 Atom inside a spherical cavity

We turn now to the case of an atom inside a spherical cavity. In this case we use the general
relationship [28]

Vcav(D) = −
h̄ωaαa(0)

4D3

∞∑

l=1

l (2l+ 1)

(
D

a

)2l+1
[

1 +
ωa

ωP

(
2l + 1

l + 1

) 1
2

]−1

. (2.31)

Here ωP is the plasma frequency of the material surrounding the cavity. Let x = ωa

ωP
. We

focus on the value at the center of the cavity, i. e. the origin, D = 0. Then only the l = 1
term contributes and we find

Vcav(D → 0) → −
3

4

h̄ωaαa(0)

a3
(

1 +
√

3/2x
) . (2.32)

Now the Hamaker method yields (by integrating over the solid)

V Hamaker
cav (D) = −

h̄ωaαa(0)

1 + x

a3

(a2 −D2)3
. (2.33)

At the center, D = 0, this becomes

V Hamaker
cav (D → 0) → −

h̄ωaαa(0)

a3 (1 + x)
. (2.34)

The ratio of approximate to exact interactions is thus given by

V Hamaker
cav (D → 0)

Vcav(D → 0)
=

4

3

1 +
√

3/2x

1 + x
(2.35)
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Thus, the Hamaker method significantly overestimates the magnitude of the VDW inter-
action. The ratio is 0.75 for small x and ≈ 1.63 for very large values of x. Note that the
corresponding ratio was less than one for the previously considered case, an atom outside
of a particle. Thus, the correction to the Hamaker approach can be to either enhance or
weaken the VDW interaction, depending on the geometry. The behavior in the case of
an atom inside a cylindrical pore, incidentally, is similar to the spherical pore case — the
Hamaker method overestimates the interaction strength.
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3 Linear response time–dependent

density functional theory formulated

without unoccupied orbitals

3.1 The many–body problem

At microscopic scales, for systems comprised of up to several thousand atoms, physics is
to a large part governed by Schrödinger’s equation [32]. The full many–body problem for
such systems is very complicated and it is unavoidable to make approximations. One of
these possible approximations is well known and called Born–Oppenheimer approximation
[33]. In this approximation, the motion of the “fast” electrons can be separated from the
much slower motion of the nuclei because of the large ratio between their masses. This is
a tremendous simplification of the original problem: The electrons now move in a static,
external potential generated by the nuclei. While the electrons have to be treated quantum–
mechanically, the motion of the nuclei can, in most cases, be treated classically.

The electronic many–body Schrödinger equation resulting from the Born–Oppenheimer ap-
proximation for N electrons is

Ĥψ(r1, . . . , rN ) =
[

T̂ + Û + V̂
]

ψ(r1, . . . , rN ) = Eψ(r1, . . . , rN ). (3.1)

The kinetic energy operator is given by

T̂ = −
h̄2

2m

N∑

i=1

∇
2
i (3.2)

where h̄ is the reduced Planck constant and m is the electron mass. The electron–electron
interaction can be written as

Û =
∑

i<j

u(ri, rj) =
∑

i<j

e2

|ri − rj |
. (3.3)

For a molecule or a solid, the external potential has the form

V̂ = −
∑

i,k

zke
2

|ri −Rk|
(3.4)

where Rk and zk are the positions and charges of the nuclei, respectively. Note that T̂ and
Û are the same for all electronic systems. Such operators are called universal operators. So
the difference in the properties of electronic systems (whether it is an atom, a molecule or
a solid) enters solely in the definition of the external potential V̂.
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Unfortunately, equation (3.1) is even for small systems far too complicated to solve it in a
naive way. The main problem, besides long computing time, is a memory problem. If we
consider a system of N interacting particles, we need 3N spatial and N spin coordinates to
describe it. The many–body wave functions ψ then would be a function in 4N coordinates.
To solve Schrödinger’s equation on a computer we have to discretize these functions. This
can be very memory–consuming. Consider, for example, the very simple molecule C2H6

containing 30 electrons. If we assume a storage density of one byte per cubic Bohr a0
3, in

future storage media, we would need about one million times the volume of the universe to
store one wave function alone [34].

3.2 Static density functional theory

According to the first Hohenberg–Kohn theorem [35], the total energy E0 of an time–
independent system depends only on the ground state density n0. It is given by

E0 = E[n0] ≡ F [n0] + V [n0] , (3.5)

where
F [n] ≡ T [n] + U [n] (3.6)

is the sum of the kinetic energy functional T [n] and the electron–electron interaction func-
tional U [n], which are general functionals of the electronic density n(r).

V [n] ≡

∫

d3r v(r)n(r) (3.7)

is the external potential functional. The second Hohenberg–Kohn theorem [35] states that
one can find the ground state density n0(r) by minimizing E[n], E[n0] ≤ E[n]. These two
theorems build the fundamental basis for density functional theory (DFT).

A common way to minimize the energy functional was proposed by Kohn and Sham [36].
The interacting system of electrons is described by an auxiliary system of non–interacting
particles. The connection between the two systems is the electronic density n(r), which is
the same for both,

n(r) =
∑

σ

nσ(r) =
∑

i,σ

fi,σ
∣
∣ϕi,σ(r)

∣
∣
2
. (3.8)

Here the nσ(r) are spin densities and fi,σ is the occupation number of orbital ϕi,σ(r) with
orbital number i and spin σ. The total energy functional becomes

E[n↑, n↓] = Tks[n↑, n↓] + UH[n] + V [n] + Exc[n↑, n↓] (3.9)

where

Tks[n↑, n↓] ≡ −
h̄2

2m

∑

i,σ

∫

d3r ϕ∗
i,σ(r)∆ϕi,σ(r) (3.10)

is the kinetic energy of the non–interacting system,

UH[n] ≡
e2

2

∫

d3r

∫

d3r′
n(r)n(r′)

|r− r′|
(3.11)

is the direct term of the electron–electron interaction and

Exc[n↑, n↓] ≡ T [n↑, n↓]− Tks[n↑, n↓] + U [n]− UH[n] (3.12)
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is the so–called exchange–correlation functional. It represents the energy difference between
the interacting system to the non–interacting system.

To calculate the electronic ground state density one has to minimize Eq. (3.9) with the
additional constraint of particle conservation. The resulting equations are,

[

−
h̄2

2m
∆+ v

(σ)
ks [n↑, n↓](r)

]

ϕi,σ(r) = ǫi,σϕi,σ(r) (3.13)

and
n(r) =

∑

σ

nσ(r) =
∑

i,σ

fi,σ
∣
∣ϕi,σ(r)

∣
∣
2

(3.14)

with the effective potential v
(σ)
ks [n↑, n↓](r),

v
(σ)
ks [n↑, n↓](r) ≡ v(r) + vH[n](r) + v(σ)xc [n↑, n↓](r) . (3.15)

This effective potential consists of the external potential v(r), the Hartree potential

vH[n](r) ≡ e2
∫

d3r′
n(r′)

|r− r′|
(3.16)

and the exchange–correlation potential

v(σ)xc [n↑, n↓](r) ≡
δExc[n↑, n↓]

δnσ(r)
. (3.17)

To use Dirac’s notation, we introduce the operators t̂ks, v̂
(σ)
ks [n↑, n↓] and

ĥ
(σ)
ks [n↑, n↓] ≡ t̂ks + v̂

(σ)
ks [n↑, n↓] , (3.18)

which are defined by their application to a arbitrary state |ψ〉 in real–space,

t̂ks |ψ〉 ≡

∫

d3r′ t(r, r′)ψ(r′) ≡ −
h̄2

2m
∆ψ(r) , (3.19)

v̂
(σ)
ks [n↑, n↓] |ψ〉 ≡

∫

d3r′ v
(σ)
ks [n↑, n↓](r)δ(r− r′)ψ(r′) = v

(σ)
ks [n↑, n↓](r)ψ(r) (3.20)

and

ĥ
(σ)
ks [n↑, n↓] |ψ〉 ≡

∫

d3r′ h
(σ)
ks [n↑, n↓](r, r

′)ψ(r′)

≡

[

−
h̄2

2m
∆+ v

(σ)
ks [n↑, n↓](r)

]

ψ(r) .

(3.21)

The total ground state energy E0 of the interacting system is given by

E0 =
∑

i,σ

fi,σǫi,σ − UH[n]−

∫

d3r n(r) v(σ)xc [n↑, n↓](r) + Exc[n↑, n↓]

=
∑

i,σ

fi,σ

〈

ϕi,σ

∣
∣
∣ĥ

(σ)
ks [n↑, n↓]

∣
∣
∣ϕi,σ

〉

− UH[n]−

∫

d3r n(r) v(σ)xc [n↑, n↓](r) + Exc[n↑, n↓] .

(3.22)
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3.3 Time–dependent density functional theory

The time–dependent DFT is very similar to the time–independent version. The general-
ization of the Hohenberg–Kohn theorems [35] to time–dependent functionals is the Runge–
Gross theorem [37]. The Kohn–Sham equations for the time–dependent case are

[

−
h̄2

2m
∆+ v

(σ)
ks [n↑, n↓](r; t)

]

ϕi,σ(r; t) = ih̄
∂

∂t
ϕi,σ(r; t) (3.23)

and
n(r; t) =

∑

σ

nσ(r; t) =
∑

i,σ

fi,σ
∣
∣ϕi,σ(r; t)

∣
∣
2

(3.24)

with the effective potential v
(σ)
ks [n↑, n↓](r; t),

v
(σ)
ks [n↑, n↓](r; t) ≡ v(r; t) + vH[n](r; t) + v(σ)xc [n↑, n↓](r; t) . (3.25)

The different contributions to this effective potential are defined as for the static case.

One can derive these Kohn–Sham equations using the Lagrangian density

L(t) =
∑

i,σ

fi,σ

〈

ϕi,σ

∣
∣
∣
∣
ĥ
(σ)
ks [n↑, n↓](t) − ih̄

∂

∂t

∣
∣
∣
∣
ϕi,σ

〉

− UH[n](t)

−
∑

σ

∫

d3r nσ(r; t) v
(σ)
xc [n↑, n↓](r; t) + Exc[n↑, n↓](t)

(3.26)

and the corresponding action integral

S =

∫ t2

t1

dtL(t) . (3.27)

The equations of motion for ϕi,σ(r; t) and ϕ
∗
i,σ(r; t),

∂S

∂ϕ∗
i,σ(r; t)

−
d

dt

∂S

∂ϕ̇∗
i,σ(r; t)

= 0 and
∂S

∂ϕi,σ(r; t)
−
d

dt

∂S

∂ϕ̇i,σ(r; t)
= 0 (3.28)

are equivalent to Eq. (3.23) and its complex conjugate.

3.4 Linear response

If we add a small perturbation δv(r; t) to a static Hamiltonian in Eq. (3.23), we can use the
properties of the undisturbed system and try to approximate quantities in the perturbed
one. This procedure is relatively simple but can lead to unphysical divergences if not handled
correctly, for example in the case of a homogeneous electron gas.

The disturbed ground state density can be expressed as

n′(r; t) = n(r) + δn(r; t) =
∑

σ

nσ(r) +
∑

σ

δnσ(r; t) , (3.29)
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where n(r) represents the density of the undisturbed system and δn(r; t) the difference
between the disturbed and undisturbed system. The ground state of the undisturbed system
is characterized by the orbitals ϕi,σ(r) and fi,σ. Since δv(r; t) is assumed to be small, we
further assume that the occupation numbers of the disturbed system are identical to those
of the undisturbed one, f ′

i,σ = fi,σ, and that the disturbed and undisturbed Kohn–Sham
orbitals only differ by a small correction δϕi,σ(r; t),

ϕ′
i,σ(r; t) =

e−i
E0
N

t
h̄

Ni,σ(t)

[

ϕi,σ(r) + δϕi,σ(r; t)
]

. (3.30)

Here Ni,σ(t) ensures normalization. If we linearize Eq. (3.29) we get

n′(r; t) =
∑

h,σ

fh,σ
N 2

h,σ(t)

∣
∣ϕ′

h,σ(r; t)
∣
∣
2

= n(r) +
∑

h,σ

fh,σ

[

ϕ∗
h,σ(r) δϕh,σ(r; t) + ϕh,σ(r) δϕ

∗
h,σ(r; t)

]

+O(|δϕh,σ|
2
) ,

(3.31)

which allows us to identify

δnσ(r; t) =
∑

h

fh,σ

[

ϕ∗
h,σ(r) δϕh,σ(r; t) + ϕh,σ(r) δϕ

∗
h,σ(r; t)

]

. (3.32)

In linear response theory δnσ(r; t) is connected to δv(r; t) by

δnσ(r; t) =

∫ ∞

0

dτ

∫

d3r′ χ(σ)(r, r′; τ) δv(r′; t− τ) . (3.33)

The function χσ(r, r
′; t) is the so–called linear spin response function of the system under

consideration. Using Laplace transforms this can be written as

δn̄σ(r; s) =

∫

d3r′ χ̄(σ)(r, r′; s)δv̄(r′; s) , (3.34)

with

δv̄(r; s) =

∫ ∞

0

dt e−stδv(r′; t) , (3.35)

δn̄σ(r; s) =

∫ ∞

0

dt e−stδnσ(r
′; t) (3.36)

and

χ̄(σ)(r, r′; s) =

∫ ∞

0

dt e−stχ(σ)(r, r′; t) . (3.37)

3.4.1 Langrangian density

The Lagrangian density of the perturbed system is

L(t) =
∑

i,σ

fi,σ

〈

ϕ′
i,σ

∣
∣
∣
∣
ĥ
(σ)
ks [n′

↑, n
′
↓] + δv̂(t)− ih̄

∂

∂t

∣
∣
∣
∣
ϕ′
i,σ

〉

− UH[n
′](t)−

∑

σ

∫

d3r n′
σ(r; t) v

(σ)
xc [n′

↑, n
′
↓](r; t) + Exc[n

′
↑, n

′
↓](t) ,

(3.38)
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which leads to a different ground state specified by the Kohn–Sham orbitals ϕ′
i,σ(r; t) and

their corresponding occupation number f ′
i,σ. From now on we will denote all occupied states

for a specific spin σ using indices h and h′, whereas all unoccupied states for a specific spin
are denoted by p or p′. An occupied state fulfills the condition fi,σ > 0. According to the
theorem of Thouless [38] we can choose δϕh,σ(r; t) orthogonal to all occupied orbitals,

δϕh,σ(r; t) =
∑

p

δcph,σ(t)ϕp,σ(r) . (3.39)

and get

Nh,σ(t) =

√
∫

d3r
∣
∣
∣ϕ′

h,σ(r; t)
∣
∣
∣

2

=

√
∫

d3r
∣
∣
∣ϕh,σ(r)

∣
∣
∣

2

+

∫

d3r
∣
∣
∣δϕh,σ(r; t)

∣
∣
∣

2

=

√

1 +

∫

d3r
∣
∣
∣δϕh,σ(r; t)

∣
∣
∣

2

=

√

1 +
∑

p

|δcph,σ(t)|
2
.

(3.40)

3.4.2 Linear equations of motion

To get linear equations of motion we have to expand the perturbed Lagrangian density, Eq.
(3.38), to second order. After a several page long derivation, which is not included in this
document, we get

L(t) =
∑

h,σ

fh,σ

∫

d3r

∫

d3r′ δϕ∗
h,σ(r; t)

[

h
(σ)
ks [n↑, n↓](r, r

′)− ǫh,σδ(r− r′)
]

δϕh,σ(r
′; t)

+
1

2

∑

σ,σ′

∫

d3r

∫

d3r′ δnσ(r; t) v
(σ,σ′)
ph (r, r′) δnσ′(r′; t) +

∑

σ

∫

d3r δv(r; t) δnσ(r; t)

+
ih̄

2

∑

h,σ

fh,σ

∫

d3r
[

δϕ∗
h,σ(r; t) δϕ̇h,σ(r; t)− δϕ̇∗

h,σ(r; t) δϕh,σ(r; t)
]

.

(3.41)

Here v
(σ,σ′)
ph (r, r′) is the so called particle–hole potential,

v
(σ,σ′)
ph (r, r′) ≡

e2

|r− r′|
+

δ2Exc

δnσ(r; t)δnσ′ (r′; t)

∣
∣
∣
∣
t=0

, (3.42)

in adiabatic approximation.

To ensure the orthogonality condition for δϕh,σ(r; t) we introduce δψh,σ(r; t) so that its
projection on the unoccupied states gives δϕh,σ(r; t),

δϕh,σ(r; t) =

∫

d3r′ Pσ(r, r
′) δψh,σ(r

′; t) , (3.43)

where
Pσ(r, r

′) ≡ δ(r− r′)−
∑

h

ϕh,σ(r)ϕ
∗
h,σ(r

′) . (3.44)
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This allows us to derive the corresponding Euler–Lagrange equations by

0 =
∂L

∂δψ∗
h,σ

−
d

dt

∂L

∂δψ̇∗
h,σ

=

∫

d3r′ Pσ(r, r
′)

[
∫

d3r′′
[

h
(σ)
ks [n↑, n↓](r

′, r′′)− ǫh,σδ(r
′ − r′′)

]

δϕh,σ(r
′′; t)

+ ih̄ δϕ̇h,σ(r
′; t) + ϕh,σ(r

′) δv(r′; t) + ϕh,σ(r
′)
∑

σ′

∫

d3r′′ v
(σ,σ′)
ph (r′, r′′) δnσ′(r′′; t)

]

=

∫

d3r′
[

h
(σ)
ks [n↑, n↓](r, r

′)− ǫh,σδ(r− r′)
]

δϕh,σ(r
′; t) + ih̄ δϕ̇h,σ(r; t)

+

∫

d3r′ Pσ(r, r
′)ϕh,σ(r

′)

[

δv(r′; t) +
∑

σ′

∫

d3r′′ v
(σ,σ′)
ph (r′, r′′) δnσ′(r′′; t)

]

(3.45)

and its complex conjugate. In Laplace–space the previous expression reads

0 =

∫

d3r′

=:T̄h,σ(r,r
′;s)

︷ ︸︸ ︷
[

h
(σ)
ks [n↑, n↓](r, r

′)− (ǫh,σ − ih̄s) δ(r− r′)
]

δϕ̄h,σ(r
′; s)

+

∫

d3r′ Pσ(r, r
′)ϕh,σ(r

′) δv̄(r′; s)

+

∫

d3r′ Pσ(r, r
′)ϕh,σ(r

′)
∑

σ′

∫

d3r′′ v
(σ,σ′)
ph (r′, r′′) δn̄σ′(r′′; s) .

(3.46)

3.4.3 Linear response function formulated without unoccupied orbitals

Eq. (3.46) can be cast as

−

∫

d3r′ T̄−1
h,σ(r, r

′; s)

∫

d3r′′ Pσ(r
′, r′′)ϕh,σ(r

′′) δv̄(r′′; s) = δϕ̄h,σ(r; s)+

+

∫

d3r′ T̄−1
h,σ(r, r

′; s)

∫

d3r′′ Pσ(r
′, r′′)ϕh,σ(r

′′)
∑

σ′

∫

d3r′′ v
(σ,σ′)
ph (r′′, r′′′) δn̄σ′(r′′′; s) .

(3.47)

If we multiply with fh,σ ϕ
∗
h,σ(r), add the complex conjugate and sum over all occupied states

h we get

∫

d3r′ χ̄
(σ)
0 (r, r′; s) δv̄(r′; s) =

∫

d3r′ ǫσ(r, r
′) δn̄σ′(r′; s) , (3.48)

where

ǫσ(r, r
′) ≡ δ(r − r′)−

∫

d3r′′ χ̄
(σ)
0 (r, r′′; s)

∑

σ′

v
(σ,σ′)
ph (r′′, r′) (3.49)

represents the dielectric function of the interacting system and

χ̄
(σ)
0 (r, r′; s) ≡ −

∑

h

fh,σ

∫

d3r′′
[

ϕ∗
h,σ(r) T̄

−1
h,σ(r, r

′′; s)Pσ(r
′′, r′)ϕh,σ(r

′) + c.c.
]

. (3.50)
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denotes the linear spin response function of the non–interacting Kohn–Sham system. Please

note that χ̄
(σ)
0 (r, r′; s) is symmetric, because T̂h,σ and P̂σ commute.

We can extract the linear response function χ̄(r, r′; s) of the interacting system by comparing
Eq. (3.48) with Eq. (3.34) and identify

χ̄(r, r′; s) =
∑

σ

χ̄(σ)(r, r′; s) (3.51)

with

χ̄(σ)(r, r′; s) =

∫

d3r′′ ǫ−1
σ (r, r′′) χ̄

(σ)
0 (r′′, r′; s) . (3.52)

The most important property of χ̄(r, r′; s) is that it does not depend on any unoccupied
Kohn–Sham orbitals. Therefore, the extremely time consuming procedure of calculating an
immense number of eigenvectors can be skipped. Instead, one has to apply T−1

h,σ(r, r
′; s) and

ǫ−1
σ (r, r′) in real–space. It is not practicable or even possible (if the number of discretiza-
tion points is too big) to invert those functions directly. We use a inner/outer iteration
scheme to calculate the density response. In the outer iteration loop we solve Eq. (3.48)
using a biconjugate gradient stabilized (BiCGstab) method. In every iteration step one

has to apply χ̄
(σ)
0 (r, r′; s), which is not known explicitly. The inner iterative solver applies

T−1
h,σ(r, r

′; s) to an arbitrary function. This can be accomplished very efficiently by means
of a preconditioned conjugate residual (CR) method with a circulant preconditioner.
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4 Model for cluster–atom interactions

From a theoretical point of view we already know how to calculate intermolecular potentials
exactly; we have to solve the many–body Schrödinger equation. For very small systems this
can be done using quantum chemistry methods like Coupled Cluster and Configuration
Interaction, which are exact in principle. But already at that level, the numerics becomes
problematic. The typical energy of a bound electron (∼Ry) is a factor 105 larger than
the typical intermolecular interaction energy (∼K). Therefore, one has to have very small
numerical errors in the computations.

Those methods, of course, are not an option for systems with larger numbers of electrons;
larger means about 10 here. Therefore, we have to find a suitable model to describe the
interactions or we have to use more elaborate methods instead of brute–force numerics. In
the following sections we will discuss the important ingredients for a interaction model —
the short–range and the long–range correlations — and give first preliminary results for
Mg–He and Na–He potentials.

4.1 Ingredients for the interaction model

The fact that the interaction energies between neutral particles is very small compared to
the electronic energies is on the one hand very problematic concerning numerics. but on the
other hand it is helpful, because we can try to get good results using perturbative methods.

The only caveat is that a finite perturbation sum does not provide the correct short–range
behavior. We assume that this problem does not cause larger effects than other approxi-
mations we make.

4.1.1 Repulsive part of the potential

Due to the short–range correlation we encounter a phenomenon which is widely known as
Pauli repulsion. For small interparticle separations the repulsive Coulomb interaction be-
tween the electrons dominates the interparticle interaction and also exchange–effects become
important. To model this situation we follow the idea of Patil [39] and calculate the direct
Coulomb interaction energy between the two particles in the limit of slightly overlapping
wave functions. To account for the exchange we add a correction term which only includes
exchange between s–electrons. We get

V
(rep)
A−B =

4π

3
nA(RAB)

[

〈r2〉B +
148

90

〈r4〉B
b2A(ϑAB, ϕAB)

+
228

525

〈r6〉B
b4A(ϑAB, ϕAB)

+ . . .

]

. (4.1)

Here RAB = (RAB, ϑAB, ϕAB) is the position of the atom (indicated with B) relative to
the center of mass of the cluster (indicated with A) in spherical coordinates, nA(r) is the
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electronic density of the cluster (the center of mass of the cluster is at the origin) and
bA(ϑ, ϕ) is the decay coefficient of the cluster’s electronic density for large distances from
the center of mass, nA(r) = CA(ϑ, ϕ)e

−bA(ϑ,ϕ)r.

4.1.2 Attractive part of the potential

The attractive part of the interaction is usually split into two contributions. The first is the
induction interaction, which is simply the static Coulomb interaction between polarizable
particles and enters the perturbation sum as a second order term. In our model we assume
that the changes in the electronic structure of the spherical rare gas atom are small. There-
fore, we further assume that there is no external electric field caused by the atom which
could induce any changes in the cluster, only the rare gas atom gets polarized. This leads
to an induction potential of the form

V
(ind)
A−B (RAB) = −

1

2
αB(0)E

2(RAB) , (4.2)

where αB(0) is the static polarizability of atom B and E(r) is the electric field caused by
the cluster in its ground state.

The second contribution to the attractive part of the interaction is the so–called dispersion
interaction. It arises due to correlation effects between the electrons — their correlated
zero–point motion — and it contributes to the perturbation sum as second and higher order
terms. In the long–range limit one can describe this interaction van der Waals coefficients

C
(A−B)
n . A commonly used way [9] to calculate these coefficients is:

• multipole expansion of interparticle interaction WA−B

• assume non–overlapping electronic densities

⇒ divergence for small interparticle distance

• perturbation theory

In the long–range limit the dispersion interaction between neutral cluster A and neutral,
spherical atom B is

V
(disp)
A−B (RAB) = −

∞∑

n=6

C
(A−B)
n (ϑAB, ϕAB)

R6
AB

. (4.3)

The dynamic polarizabilities at imaginary frequency α(iω) can be used to express the leading
term as [40]

C
(A−B)
n (ϑAB, ϕAB)

R6
AB

=

∫ ∞

0

dω

2π
Tr {αA(iω) · Φ(RAB) · αB(iω) · Φ(RAB)} (4.4)

with

Φ(R) =
δµν
R3

−
3RµRν

R5
. (4.5)

In this formula, many–body properties of the cluster enter through α(iω). For spherical
clusters only even–numbered van der Waals coefficients contribute to the dispersion inter-
action. These coefficients can be calculated accordingly to the example above [41] using
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quadrupole, octopole, . . . dynamic polarizabilities in addition to the dipole dynamic po-
larizabilities. The odd–numbered coefficients involve quantities like the dipole–quadrupole
dynamic polarizability of the cluster.

The idea now is to use published dynamic polarizabilities for the rare gas atoms and calculate
the needed dynamic polarizabilities of the clusters using linear response. For example, the
formula for the dipole dynamic polarizability is

αµν(ω) =

∫

d3r

∫

d3r′ rµr
′
ν χ(r, r

′;ω) . (4.6)

In the expansion proposed by [41] it is more suitable to work in a spherical harmonics basis
and formulas for other dynamic polarizabilities have to be derived.

4.1.3 Combining repulsive and attractive part of the potential

The problem of simply adding V
(rep)
A−B , V

(ind)
A−B and V

(disp)
A−B is that we assumed non–overlapping

charge densities to derive V
(disp)
A−B . Therefore, we have to deal with unphysical divergences

for RAB → 0. This problem can be fixed by multiplying the terms in the van der Waals
sum with so–called damping functions fn(RAB) [42],

V
(damp)
A−B (RAB) = −

∞∑

n=6

fn(RAB)
C

(A−B)
n (ϑAB, ϕAB)

R6
AB

. (4.7)

These damping functions ensure the correct qualitative behavior of the dispersion interac-
tion. Finally, our model for the cluster–atom interaction is

VA−B(RAB) = V
(rep)
A−B + V

(ind)
A−B + V

(damp)
A−B (RAB) . (4.8)

At this point we want to emphasize that our potential model is not a pairwise sum model. It
uses electronic properties of the cluster rather than electronic properties of its constituents.

4.2 Preliminary results for Mg–He and Na–He potentials

Figures 4.1 and 4.2 show the potential curves for Mg–He and Na–He obtained with our
potential model, respectively, in comparison with results from the literature. The dispersion
interaction in our model was evaluated up to C10. We have chosen to present this two simple
examples, because they are the only way to test and verify our model. It can then be easily
applied to more complex systems.

The Mg–He interactions shown in Figure 4.1 are in good overall agreement. Please note
that our simple perturbative model (red solid) gives very similar results to potentials ob-
tained by CCSD(T) calculations, Ref. [43] (green dashed) and Ref. [44] (blue dotted). In
the case of the Na–He interactions, Figure 4.2, the agreement between the different pro-
posed energy curves is not good. The potentials calculated with multi–reference quantum
chemistry methods, Ref. [44] (blue dotted) and Ref. [45] (magenta short–dotted), show the
largest discrepancy, which is unexpected. Nevertheless, our potential (red solid) seems to
be reasonable.
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Figure 4.1: Different Mg–He potentials in comparison. The red solid curve shows the results
of this work, Eq. (4.8), the green dashed curve the results of [43], the blue dotted
curve the potential published in [44]. The three curves are in good agreement.
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Figure 4.2: Different Na–He potentials in comparison. The red solid curve shows the results
of this work, Eq. (4.8), the green dashed curve the results of [39], the blue dotted
curve the potential published in [44] and the magenta short–dotted curve the
results of [45]. Please note the large discrepancy between the last to references,
which are both obtained by multi–reference quantum chemistry methods.
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5 Conclusion and Outlook

In Chapter 2 we have presented some analytic examples which show the importance of
many–body effects in physical adsorption and the flaw in pairwise sum models like the
Hamaker model. This models is only applicable to surfaces which does not show curvature.
It has been demonstrated that it totally fails to describe the extreme case of a spherical
particle interacting with an atom at large distance. The problem is that the effective
C6 coefficients used in the Hamaker model contain information about the electromagnetic
screening caused by the flat surface. This is a geometrical effect which is absent in the case
of a spherical particle. We conclude that geometrical effects have to be included in any
simple pairwise sum model and have proposed a method similar to Hamaker’s to include
many–body effects due to the chemical environment. The content of Chapter 2 is and will
be published in Ref. [1] and Ref. [2], respectively.

A new linear response time–dependent density functional method has been introduced in
Chapter 3. The most important property of the density–density response function χ̄(r, r′; s)
is that it does not depend on any unoccupied Kohn–Sham orbitals. Therefore, it overcomes
the necessity of calculating a huge number of unoccupied states. The price one has to
pay for this advantage is that one has to solve a linear equation directly in real–space. A
very efficient inner/outer iteration scheme has been proposed to accomplish that. This new
method is very interesting because linear response functions are widely used for many dy-
namic problems in physics, for example transport problems. Another promising application
is the density update in density functional theory. Up to now approximate response func-
tions were used, because the computation of many unoccupied Kohn–Sham orbitals was
too expensive. With my method this is no longer a problem an the exact linear response
function can be used for the density update which should drastically reduce the number of
self–consistency iterations.

In Chapter 4 a simple model for cluster–atom interaction has been derived by means of
perturbation theory. It uses electronic properties of the cluster rather than electronic prop-
erties of its constituents and is therefore more elaborate than pairwise sum models. This
enables us to study many–body effects in van der Waals interaction and allows us to es-
timate when and if those effects become important. But the model also has its flaws, for
example the assumption of non–overlapping charge densities for the dispersion interaction
and the perturbative treatment of the short–range correlations. For a more detailed study,
improvements will be necessary. One idea is to use correlated basis functions instead of
a simple Kohn–Sham Slater determinant as Ansatz wave function. This will allow us to
describe to correctly describe the important short–range correlations.
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