
Decomposition and Refinement in
Verification-Driven Engineering of

Cyber-Physical Systems

Research Report for the Marshall Plan Scholarship funded stay

at Carnegie Mellon University, Pittsburgh

Andreas Mueller
Johannes Kepler University, Linz

Department of Cooperative Information Systems

February 17, 2014

1

Abstract

This report summarizes the work of Andreas Mueller during his Mar-
shall Plan scholarship funded research stay at Carnegie Mellon Univer-
sity, Pittsburgh. Overall, the addressed research is anchored in the area
of verification-driven engineering of cyber-physical systems. Computers that
control physical processes become more and more pervasively embed-
ded into our everyday lives and are called cyber-physical systems (CPS). At
first—derived from the original proposal—the overall vision created dur-
ing the research stay is presented. This vision encompasses the develop-
ment of a verification-driven engineering framework, including verified
component-based modeling of CPS, model refactorings and verified CPS
model transformations. Before going into further details, we present a
conceptual reference model based on a comprehensive literature study, to
categorize CPS. After a brief presentation of related work, the research fo-
cus on modeling and verification of modular traffic nets and is presented.
The concept of a modular and verified traffic network is, to divide a traffic
network into small thus simple parts, that can be verified and then con-
nected to form a larger network of blocks. Finally, we conclude with pos-
sible future work on verified modular traffic nets and the overall vision.

2

Contents
1 Introduction 5

1.1 Acknowledgments . 5
1.2 Structure of the Report . 5

2 Original Proposal 5
2.1 Motivation and Problem Statement 5
2.2 Synergies With Carnegie Mellon University 6
2.3 Research Goals and Method 7
2.4 Background . 7
2.5 Application Scenario . 8

3 Overall Vision 8

4 The Conceptual Reference Model 10
4.1 Introduction . 10
4.2 Related Work . 11
4.3 Hybrid Systems Interchange 12
4.4 Exchange of Models . 12

4.4.1 Exchange of Results 14
4.4.2 Tool support . 15

4.5 Conceptual Reference Model 15
4.5.1 Systems . 16
4.5.2 Modeling . 17
4.5.3 Verification . 18
4.5.4 Tool Support . 19

4.6 Micro Survey . 21
4.6.1 Comparison Criteria 21
4.6.2 Lessons Learned . 21

4.7 Conclusion and Future Work 24

5 Related Work 27
5.1 Hybrid Component Frameworks 27
5.2 Domain Specific Languages (DSL) 28
5.3 Hybrid System Verification 28
5.4 Component-Based Software Engineering 29

6 Research Focus 29
6.1 Modeling and Verification of Modular Traffic Nets 29

6.1.1 A Modular and Verified Traffic Network 29
6.1.2 A generic Block . 30
6.1.3 Well-formed Blocks 31
6.1.4 Connecting Blocks . 32
6.1.5 Traffic Components - Traffic Light Block 34
6.1.6 Forming the network 35
6.1.7 Conclusion . 35

6.2 Model Transformation . 36

3

6.2.1 The Translation . 36
6.2.2 CIF Simulation . 36

7 Future Work 37
7.1 Overall Vision . 38
7.2 Modular Traffic Nets . 38
7.3 Further Plans . 40

A Appendix 47
A.1 Traffic Light - KeYmaera Model 47
A.2 Transformer Example - KeYmaera Model 48
A.3 Transformer Example - CIF Model 49

4

1 Introduction
This report summarizes my research conducted during a stay at Carnegie
Mellon University (CMU), Pittsburgh. The research stay was funded by a
Marshall Plan Scholarship.

1.1 Acknowledgments
I would like to thank my advisers Prof. Werner Retschitzegger and Prof.
Wieland Schwinger, who support my work and were especially helpful
when applying for the Marshall Plan Scholarship. Furthermore, I wand
to thank Prof. Andre Platzer, who invited me to join his group at CMU
and who supported mywork at CMUwith valuable feedback and fruitful
discussions. Finally, I would like to thankmy colleague and friendDr. Ste-
fan Mitsch, for all the time he spared for questions, feedback, discussion
and support, before, after and during my research stay at CMU.

1.2 Structure of the Report
Section (Section 2) contains the original proposal, as submitted in advance
of my research at CMU. Although, the exact research focus slightly devi-
ates from the originally submitted one, all proposed research goals have
been targeted and furthermore extended to form the overall vision pre-
sented in Section 3. As a prerequisite for the work with hybrid systems,
at CMU we first attempted to formalize the nomenclature of the field of
hybrid system verification and tools by means of a conceptual reference
model, as presented in section Section 4. Section 5 summarizes relevant
related work, we found and studied during our research. Section 6 de-
scribes the exact research focus at CMU, and Section 7 presents possible
future research directions.

2 Original Proposal
2.1 Motivation and Problem Statement
Traffic management, emergency rescue, and military operations are do-
mains that naturally exhibit several control systems, operated by different
authorities in a distributed way, sharing an environment which is only
partially observable, information-intensive and constantly evolving. Cur-
rent insufficient system support induces huge communication efforts, po-
tential misunderstandings, information overload, and timely pressure on
the human system operators. This ultimately endangers their ability to re-
spond to critical situationswith serious real-world consequences by either
pro-actively preventing them or achieving their correct and timely resolu-
tion. To counteract information overload, collaborative situation aware-
ness aims at supporting human operators in assessing current situations

5

and in predicting possible future ones to take appropriate actions pro-
actively, preventing critical events.
Prior research. Recently, several ontology-based situation awareness sys-
tems have been proposed, including our prior work in the FFG FIT-IT Se-
mantic Systems project BeAware! [5]. In the course of this project, a quali-
tative approach to situation prediction has beendeveloped [6]. The follow-
up FIT-IT project CSI extends BeAware! to further deal with the issues
introduced by the mandatory collaboration between different authorities
monitoring a shared environment. CSI supports operators, to gain rele-
vant perspectives on mutually affecting situations and control measures,
allowing them to estimate the possible outcomes of situations based on
the selected control actions [1][3][4].
Open research issues. In this qualitative approach, the effects of control
actions of different authorities must be approximated by the system to
provide accurate information to the operators and support their decision
makingprocess. As a pre-requisite for reasoning about these effects, object
and event evolution and the induced behavioral impact of control actions
thereupon must be modeled in a fine-grained manner. For instance, the
potential impacts of rerouting traffic through an urban area as opposed to
accepting an ever growing traffic jam on a highway should be described
in detail in terms of domain specific languages, including also potential
tradeoffs such as an increased traffic volume in other areas. Such a detailed
model would represent the pre-requisite for more expressive predictions
of possible future critical situations and appropriate actions, ensuring as
ultimate visions, a safe and timely resolution of these critical situations.
As a pre-requisite for this, the validity of these actions must be verified,
guaranteeing certain invariants (e.g., the control actions must never result
in causing an accident).

2.2 Synergies With Carnegie Mellon University
Regarding the abovementioned open research issues of fine-grainedmod-
eling and verification of control actions in traffic control systems, the ex-
pertise on formal methods at Carnegie Mellon University (CMU) and its
School of Computer Science (SCS) as one of the world’s premier institu-
tions in this area would be highly beneficial. In particular, the focus is on
logic, formal verification and automated reasoning about cyber-physical
systems, with applications to automotive, train, and air traffic control.
Such cyber-physical systems combine continuousworldmodels (e.g., traf-
fic jams growing and shrinking in a continuousmanner)with discrete con-
trol (e.g., set the speed limit to a certain value) [8]. It has to be further
emphasized, that scientific synergies between CMU and the Department
of Collaborative Information Systems (CIS) at Johannes Kepler University
Linz (JKU) have been already exploited fruitfully in the past, resulting in a
successful three-monthMarshall Plan Scholarship of DI Dr. StefanMitsch
in 2011 and a subsequent successful Marie Curie International Outgoing
Fellowship and several joint scientific publications. This proposed project,

6

together with our ongoing research, as detailed below, further exploits the
synergies with the CMU by combining the knowledge gathered through-
out our research project CSI with the expertise on cyber-physical systems
at CMU.

2.3 Research Goals and Method
The researchmethod followed is based on thewell-knowndesign research
approach [2] focusing on three research goals:

1. Developing a domain specific language (DSL) for traffic network
modeling. In a traffic environment, situations occur at various lo-
cations throughout the network (e.g., crossroads or highway exits).
These locations, the corresponding situations and available control
actions must be modeled in order to allow verification of viable and
safe actions. In a first step we plan proposing a DSL to simplify the
modeling process.

2. DSL-driven modeling of reusable traffic building blocks. Based
on the traffic network DSL, recurring parts of a traffic network (e.g.,
traffic lights, highways) should be modeled, partly sharing a com-
mon behavior. These core building blocks can then be reused in or-
der to develop models of more sophisticated traffic situations.

3. Verification of traffic models. Finally, the validity of the composed
traffic models has to be verified, in order to ensure safe resolution
of critical situations. For this, the modeled continuous behavior and
the control actionswill be transformed into differential dynamic logic
[7], and complemented with a model of system invariants, which
altogether are verifiable by the KeYmaera prover developed by the
partner institution at CMU.

2.4 Background
Overall, the addressed research is anchored in the area of verification-driven
engineering of cyber-physical systems. Computers that control physical pro-
cesses become more and more pervasively embedded into our everyday
lives and are called cyber-physical systems (CPS). The importance and im-
pact of expertise in this field was highlighted in a recent study on CPS
engineering [22]. CPS—from an engineering point of view—can be de-
scribed in terms of hybrid systems. Such hybrid systems comprise discrete
control decisions (the cyber-part, e. g., setting the acceleration of a car)
and differential equations modeling the entailed physical continuous dy-
namics (the physical part, e. g., motion of the car gaining speed) and are
oftenmodeled as hybrid automata [27]. According to [47], the key challenge
in engineering hybrid systems is the question of how to ensure their cor-
rect functioning in order to avoid incorrect control decisions w.r.t. safety
requirements. This is especially important, asmany CPS operate in safety-
critical environments and their malfunctioning could entail severe conse-

7

quences. Whereas testing can only give an indication about safety, only
formal verification can provide a proof of correctness. Techniques from
the field ofmodel-driven engineering (MDE), used to incrementally develop
systems in awell-defined and traceablemanner, togetherwith formal veri-
ficationmethods seem to be verywell fitted, to ensure safety of CPS. These
techniques form the vision of verification-driven engineering (VDE) for CPS,
which has recently emerged as a new paradigm and is currently target of
intense ongoing research (e. g., [36, 47]).

2.5 Application Scenario
Examples of CPS where VDE is crucial can be found in various applica-
tion domains, such as electricity (i. e., smart grids), health care, road-, rail-
and air traffic. The application scenario for VDE targeted in this report
is the domain of road traffic management. This is since we are currently
pursuing the FFG FIT-IT project CSI1, aiming at supporting traffic opera-
tors in perceiving critical situations on Austrian roads and reacting in an
appropriate manner, where safety is key, in order to prevent accidents and
traffic injuries.

In road traffic control, models can describe a microscopic level of traf-
fic (e. g., a single autonomous cars, as mentioned above), or a macroscopic
level of traffic (e. g., the traffic flow as a whole) [26]. This way not only
single cars, but whole traffic control systems can be modeled as CPS us-
ing flowmodels to describe the continuous dynamics (i. e., the continuous
flow of cars along a road) and traffic operators making discrete decisions
in the form of actions (e. g., set detour, change speed limit) [46]. In the
context of our current project CSI2 at JKU, we identified that both views
(micro- and macroscopic) provide a major benefit for the traffic operators.

In CSI, to address this, we currently employMDE techniques to model
traffic objects (e. g., a "traffic jam" object) and to aggregate them into critical
situations (e. g., a "traffic jam" object, close to a "railroad crossing" object,
results in a critical "jam close to a railroad" situation). After identifying
these situations, the selection of appropriate actions that can be taken in
order to resolve these critical situations (e. g., reroute traffic in order to
avoid traffic jams on railway crossings) is a crucial task. However, for now,
there is little or no support for the traffic operators, to verify the safeness
of their control decisions.

3 Overall Vision
Based on the original proposal, through discussions with colleagues at
CMU and resting upon a comprehensive literature study, we developed

1http://cis.jku.at/index.php/projects/csi
2Work funded by the Austrian Federal Ministry of Transport, Innovation and Technology

(BMVIT) grant FFG FIT-IT 829598, FFG BRIDGE 838526 and FFG Basisprogramm 838181, and
by PIOF-GA-2012-328378.

8

an overall vision to support verified control systems with verified control ac-
tions, satisfying certain safety conditions. In detail, the aim is to achieve
this through verification-driven engineering comprising three concrete re-
search goals backed up by the experiences gained through our research
project CSI:
Component-based Modeling Framework. For achieving a verified con-
trol system with verified control actions, the different situations and ac-
tions, the control part, as well as the effects of the action an the situa-
tion, the physical part, need to be formalized in form of a model such
that verification can take place. It is a well-understood problem that veri-
fication becomes more complicated and complex as the size of the model
increases. This is aggravated by the fact that a plethora of different situ-
ations and actions are encountered in control systems as the one focused
on. Despite the size and differences of the various situations and actions
required, they however share recurring building blocks like semaphore
crossings, on/off-ramps, etc., each sharing common behaviorwith respect
to influencing the safety conditions. One research goal for to archive the
overall vision therefore is to come forward with a component-based mod-
eling framework for CPSwith allows to decompose the control system and
model verified components and compose verified larger models (i.e. traf-
fic models), that such allow to predict possible outcomes with respect to
their safety requirements.
Refactorings for Hybrid SystemModels. As the controlled environment
changes over time, so do the requirements on the CPS (e. g., adding lanes
to roads). This naturally implies thatCPS themselves, the overallmodel, as
well as the components they are composed of, need to be iteratively mod-
ified as well. Furthermore, also safety conditions need to be reassured.
Consequently, another research goal is to reduce complete re-verification
in case of modification on hybrid systemmodels through dedicated refac-
torings that maintain guaranteed safety conditions. This furthermore also
splendidly benefits the iterative process of CPS development and the pro-
duction of variants of verified components (e. g., two-, three-lane high-
way).
Verified Model Transformation. Ultimately, the modeled and verified
control decisions need to be put into actual operation through appropriate
control code in the system. However, incorrect implementation of those
may jeopardize and corrupt the safety conditions and thus lead to mal-
functions and entail severe consequences. To close the development loop,
thus, the final research goal is to come up with verified model transfor-
mations to bridge the development gap between the models and the code
and thus ensure to produce correct executable code.

Altogether, this targets the vision of a comprehensive verification-driven
engineering frameworkwhich allows to appropriatelymodel, evolve and im-
plement verified CPS.

9

4 The Conceptual Reference Model
As a first step towards development of a verification-driven engineering
framework, we took a closer look at hybrid systems and proposed a con-
ceptual reference model for the field.

4.1 Introduction
Cyber-Physical and Hybrid Systems. Computing devices that directly
interface and interactwith their real-world surroundings bymeans of their
sensors and actuators are commonly knownas cyber-physical systems (CPS).
CPS leverage the construction of increasingly autonomous systems (e. g.,
autonomous cars). Consequently, significant demands are imposed on the
safety of such a CPS. Therefore, the field of formal verification, i. e., math-
ematically proving that a CPS behaves as intended, is key to engineer-
ing CPS for safety-critical application domains. In order to specify (i. e.,
model) a CPS and verify the desired behavior, its complex real-world in-
teractions need to be considered as well, which introduces unprecedented
complexity into the verification problem. The behavior of a CPS can be
described by means of a hybrid system model, which allows to simultane-
ously specify both the continuously evolving real-world interactions and
the discrete control decisions of the CPS within one model.
Diversity of Modeling and Verification Tools. Users face diverse model-
ing and verification tools, which employ a wide range of modeling forma-
lisms (e. g., hybrid automata, hybrid programs), aim at distinct verifica-
tion goals (e. g., safety, liveness) and incorporate heterogeneous verifica-
tion techniques (e. g., theorem proving, reachability analysis). Often, the
use of multiple tools in combination is beneficial because their capabilities
differ strongly. The downside of this diversity are compatibility and model
exchange issues. An approach of dealing with this problem is the intro-
duction of hybrid systems interchange formats, which tackle the problem of
model exchange between otherwise syntactically incompatible tools. Nat-
urally, these interchange formats support a much larger range of concepts
than any single tool. This allows translation of almost any modeling for-
malism to the interchange format. However, translation back might entail
issues, if the formats connected by the interchange format do not share
all concepts. Team verification efforts are even more aggravated, since in-
terchange formats do not yet focus on exchanging verification results and
supporting refactorings, components and other practices that are common
in other engineering disciplines.
Contributions. To fill this gap, we introduce a conceptual reference model
(CRM) of hybrid system modeling and verification tools, with a focus on
concepts currently neglected by interchange formats. We identify relevant
core parts, the interrelations and dependencies between them and unify
the terminology. Furthermore, we illustrate how the CRM can assist in
the use of hybrid system interchange formats by classifying the capabil-
ities of modeling formalisms and tools. Additionally, we depict future

10

extensions and enhancements for hybrid systems interchange formats on
the one hand, and for modeling and verification tools on the other hand.

4.2 Related Work
To the best of our knowledge, no otherCRMdepicting hybrid systemmod-
eling and verification tools has been proposed in literature so far. Never-
theless, several surveys on CPS and hybrid systemmodeling and verifica-
tion, partly aiming at providing some classification, have been conducted,
which will be discussed and compared to our work below.
Frameworks for Categorizing Hybrid Systems.. Broman et al. [10] pro-
vide a coarse-grainedmodel for categorizing hybrid systems. Their frame-
work comprises Viewpoints (depend on stakeholders and their concerns),
Formalisms (represent formalisms which are useful in modeling hybrid
systems) and Languages and Tools (implement formalisms). They conclude
that their framework serves as a basis for assisting CPS designers in the
modeling process. Their framework reviews tools primarily based on the
stakeholders’ requirements, while we focus on the engineering aspects of
hybrid systems.
Surveys OnVerification of Hybrid Systems.. Overall, only a few surveys
actually deal with the verification of hybrid systems: Alur [2] reviewed
formal verification approaches without focusing on modeling and tool
support. Carloni et al. [11] analyzed the syntax and semantics of vari-
ous languages and tools for hybrid system modeling with respect to veri-
fication and simulation, but in contrast to our work do neither extensively
discuss modeling nor general tool support.
Systematic Modeling and Specification.. A large body of research ad-
dresses solely the systematic modeling and specification of hybrid sys-
tems, but does not address verification: Giese et al. [23] survey visual
model-driven development of software-intensive systems. Shi et al. [61]
provide a short overview and further research challenges of CPS. Sanislav
et al. [60] focus their work on challenges, concepts and research goals in
the area of CPS. Wan et al. [65] investigate the applicability of different
composition mechanisms for cyber-physical applications. Kim et al. [34]
provide a broad overview of CPS research from a historical point of view
and Lee [41] examines the challenges in designing CPS.

In summary, this paper addresses CPS modeling and verification con-
cepts as follows.

• Unlike [10], who provide a coarse-grained framework relating view-
points, formalisms, languages and tools, we focus on engineering
aspects of hybrid systems as a basis for our CRM.

• Unlike [2], who briefly review selected hybrid system verification
approaches, and [11], who survey syntax and semantics of hybrid
system verification and simulation tools, we extensively consider as-
pects of modeling, verification and tool support alike in our CRM.

11

• Unlike [23, 34, 41, 60, 61, 65], who focus on modeling and specifica-
tion of hybrid systems, we include verification and tool support into
our CRM.

4.3 Hybrid Systems Interchange
In this section we discuss hybrid systems interchange formats in order to fo-
cus our CRM on important concepts, which are not sufficiently detailed in
current interchange formats. Hybrid system interchange formats are an
approach to exchange models between different tools for hybrid system
modeling, as they tackle the problem of model exchange between other-
wise syntactically incompatible tools. The goal is to provide a common
intermediate format used by various (ideally all) available tools to sim-
plify the exchange of models between them. Instead of having to provide
a translator for each pair of formalisms, it suffices to provide a single trans-
lator per tool to and from the common interchange format. Due to the va-
riety of relatively novel and immature tools such an interchange format is
a way to allow mixing and matching of different tools optimized for dif-
ferent tasks [52] (e. g., KeYmaera for formal verification [57], SpaceEx for
reachability analysis [20], Modelica for simulation [21]).

Over the last few years, several different such interchange formats have
been proposed, each with a slightly different approach. Example inter-
change formats are the Hybrid System Interchange Format (HSIF) [48], the
Compositional Interchange Format (CIF) [6], and the Metropolis-based inter-
change format [53]. The formats support hybrid system model exchange
as follows: HSIF, defined as part of the DARPA MoBIES project, uses a
network of hybrid automata for model representation. CIF aims at be-
ing more general than the HSIF by not incorporating tool limitations and
avoiding further restrictions that were imposed by HSIF [6]. The Metro-
polis-based interchange format is designed to complementHSIF and other
formats with an abstract semantics for hybrid systems.

These interchange formats share several requirements, including (i)
support for all existing tools, modeling approaches and languages [53],
(ii) support of a wide range of concepts [6], and (iii) support of hierarchy,
modularity and object orientation [6]. These requirements and the pure
focus on model exchange result in several limitations that do not yet suf-
ficiently support verification teams, as discussed below.

4.4 Exchange of Models
Wide range ofmodeling concepts. Since an interchange formatmust sup-
port numerous available tools and formalisms, a support for a wide range
of modeling concepts is inevitable. Typically, interchange formats provide
the union of concepts found in different formalisms. As a result, only the
interchange format supports the whole range of modeling concepts, while
the different tools support only a subset thereof.

12

Consider, for example, a model for the hybrid theorem prover KeY-
maera [57], which supports hybrid programs and differential dynamic
logic (dL). Among others, dL supports non-linear differential equations,
which could in principle be translated, for instance, to CIF, because CIF
supports arbitrary differential equations (basically any well-formed for-
mula). It should then be possible to transform the resulting interchange
format model into any other format, given a respective translator. How-
ever, transforming the same model to any hybrid systems tool only sup-
porting linear DEs (e. g., SpaceEx) will fail. This semantic gap remains un-
noticed until the transformation is executed, because current interchange
formats lack a detailed classification of the unified concepts.

Nadales et al. [49] put the burden on the modeler to identify the com-
mon subset of two formalisms that can be used for transformation. The
Metropolis-based interchange format identifies this issue and proposes to
define the concrete semantics between any two tools [52]. We propose a
CRMwith concepts to detail the concrete semantics of hybrid systems, i. e.,
discrete behavior, continuous dynamics and specification formalisms. If
used as a type system, such a CRM could compare different kinds of hy-
brid system modeling concepts (e. g., kinds of differential equations) and
help to identify a common subset between different formalisms.
Support for all existing tools, modeling approaches and languages. The
support of most available tools, modeling approaches and languages is
crucial for the versatility of an interchange format. Even though (compos-
ite) hybrid automata are a widely spread formalism among hybrid system
tools and languages, and are furthermore used by many interchange for-
mats, several other formalisms (e. g., hybrid programs) exist. Although
those formalismsmight be transformable to hybrid automata, useful char-
acteristics that are helpful for verification (e. g., program structure) are
likely to be lost.

For example, KeYmaera uses hybrid programs as a modeling formal-
ism, whereas SpaceEx uses hybrid automata. Although hybrid automata
and hybrid programs can be mutually encoded without loss of expres-
sivity [54], the conversion of an automaton to a program usually results
in awkward program structure with additional variables and tests just to
identify the different states of the automaton in the program (or a huge
number of states in the opposite direction). Such programs are often hard-
er to verify than a well-formed equivalent hybrid program with proper
structure. As KeYmaera uses quantifier elimination for verification [57],
which is doubly exponential in the number of variables [17], the result-
ing model can be unnecessarily hard to prove. Often, more natural and
directly written programs are more useful.

We propose a CRM to help identifying the various modeling forma-
lisms used by different tools and, for example, be used to recognize com-
patible ones (e. g., hybrid automata are compatible with timed automata).
Composition by hierarchy, modularity, and object-orientation. Compo-
sitional models are supported by most of the interchange formats, as well
as by many formalisms used in tools and languages. However, most ver-

13

ification tools only support specific compositional concepts (e. g., paral-
lelism, synchronization, or urgency).

For example, most formalisms do not support specifying urgency and
synchronization constraints, which leads to models that cannot be trans-
lateddirectly [49]. In another example, SpaceEx bases onhybrid automata,
which support parallel composition, whereas KeYmaera uses hybrid pro-
grams, which do not yet directly support parallel composition.

We propose to anchor support for hierarchical models in the CRM.
Compositionality and subsequent concepts (e. g., synchronization, urgency
or parallelism) describe different ways of combining hierarchical models
and must be included in the CRM. Although the concepts vary between
the formalisms, a lossless translation might be possible, as long as some
kind of compositionality is revealed by the CRM. For example, urgent ac-
tions (i. e., actions that must execute if possible) can be implemented by
means of the time can progress predicates (i. e., time can only move forward
in a state, if the predicate holds), by not allowing the system to progress
in a state, if the execution of an action that should be urgent is possible.

After discussing limitations of current interchange formats with re-
spect to model exchange, in the following we illustrate requirements on
verification result exchange and tool support that we deem highly neces-
sary for verification teams.

4.4.1 Exchange of Results

Team-based verification environments, such as proposed in [47], not only
require model exchange but also exchange of verification results. How-
ever, different verification tools implement different kinds ofmethods and
algorithms for analyzing a model, which makes them often useful in dif-
ferent scenarios. While one tool reaches an impasse, others might be able
to perform further steps. The CRM includes concepts to represent verifi-
cation results for their inclusion into future exchange formats.

A concrete scenariowould be a hybrid theoremprover (e. g., KeYmaera),
that reaches a proof step where quantifier elimination does not finish in
reasonable time because of a large number of variables. Provided with
an interchange format for verification results, the tool could exchange the
partial proof with another tool, that is able to further analyze the current
status. This analysis might reveal inherent properties of this particular
branch, that allow removing some of the variables in KeYmaera, which in
turn leads to an easier quantifier elimination and thus allows closing of
the branch. Of course this works in both directions, as a SpaceEx model
could also be translated to a KeYmaera hybrid program to get results us-
ingKeYmaera and then apply SpaceEx reachability analysis to this results,
as suggested in [9].

14

4.4.2 Tool support

Since research on modeling and verification of hybrid systems is a rather
young and active research field, we outline tool support concepts for fu-
ture tools in the CRM.
Components. Amodeling tool should support users in specifying the dis-
crete control logic as well as the continuous dynamics of a model. A tool,
for instance, could include a library of predefined building blocks with
classical continuous dynamic phenomena (e. g., Newtonian rigid body dy-
namics). Furthermore, as it is good engineering practice to reusemodeling
components, a tool should support reuse of previously designed models.
Such tools reduce the effort of comprehensive manual specifications as
well as the risk of errors due to improper specification of these phenom-
ena.
Refactoring. Refactoring was established as a best-practice procedure to
systematically improve existing artifacts, such as models. Classical refac-
toring as known from programming is defined by Fowler [19] as a modifi-
cation technique that improves the internal structure of a model but does
not change the observed external behavior. When it comes to refactoring
of CPS in general the question of what is considered external behavior
arises [44].

In the CRM, we will propose a classification scheme for refactoring
techniques that makes it possible to distinguish refactoring operations ac-
cording to their effect onmodel structure, model behavior, and verification
complexity.
Artifacts. To support good engineering practice, such as division of labor
by separating a modeling and verification task into distributable units of
work, an interchange format should provide means for relating different
artifacts to each other. If models and proofs have been split into parts,
verified, exchanged and merged, an interchange format should allow re-
lating previously verified (partial) proofs to different model versions. For
example, a used proof rule could be related to a proof step to discover
suitable rules for similar proof steps later on (e. g., if a model was changed
by a refactoring, parts of the proof might still be applicable in the refined
version).

In the previous section, we revealed issues arising with the use of sev-
eral hybrid system interchange formats and their current limitations re-
garding to our vision of verification teams. In the next section, we intro-
duce a conceptual reference model, which provides classifications for the
aforementioned requirements and can be used to enhance interchange for-
mats.

4.5 Conceptual Reference Model
Although in detail current hybrid systems interchange formats have sev-
eral limitations as highlighted above, overall they are extensive with sup-
port for many tools. Hence, to improve on these limitations we propose

15

a conceptual reference model, which not only can be used to enhance
current interchange formats, but may also serve as a basis for surveys
of hybrid systems modeling and verification tools. A major difficulty for
systematically analyzing interchange formats, modeling and verification
tools for hybrid systems is a lack of a common classification of the ba-
sic ingredients of hybrid system modeling and hybrid system verification. Al-
though the term “verification” means to ensure the behavior of a system
as intended by its constructor [37], it is used for a range of different tech-
niques.

To overcome this lack of a common classification, we unify different
terminologies and concepts of a variety of modeling and verification tools
in a conceptual reference model (CRM), methodologically adhering to our
previous work (e. g., [66]). The CRM we present in this paper (cf. Fig. 2)
comprises the modeling and verification of hybrid systems and the cor-
responding tool support. We expose the basic components of hybrid sys-
tems and the interrelations between them. We express the CRMasUnified
Modeling Language (UML) classes, since UML is the prevailing standard
in object-oriented modeling3. Naturally, the CRM thus serves also as a
framework, which can be extended by means of sub-classing if further hy-
brid system concepts need to be captured.

The rationale behind constructing the CRM is as follows: In princi-
ple we followed a top-down approach, meaning that several concepts of
the CRM have been adopted from existing other surveys in this area as
referred to in Section 4.2. We supplemented our CRM in a bottom-up
way with complementary concepts prevalent in existing tools. Finally,
we structured our CRM into four packages: (i) the Systems package de-
scribes the real world systems; (ii) the Modeling package abstracts from
real-world systems to models of their behavior and specifications of im-
portant properties; (iii) the Verification package aims at verifying the
modeled systems; (iv) the ToolSupport package contains tool related as-
pects. In the following sections, the concepts of the CRM are described
along these four packages.

4.5.1 Systems

The classes in the Systems package describe a high-level systems being
perspective to anchor modeling and verification tools, which, according
to Klir [35], can be classified diversely. We follow Teschl [63], and dis-
tinguish DynamicalSystems into DiscreteDynamicalSystems (state space
N/Z) and ContinuousDynamicalSystems (state spaceR); systems that have
both characteristics are HybridSystems [27], focused on in this paper. Spe-
cifically, the dimensions of space and time are important characteristics
for many systems. A difference in handling those in a discrete or continu-
ous manner indicates a potentially fundamental conflict between model-
ing concepts and tools on a high-level.

3UML meta-model as included in the OMG “Unified Modeling Language: Superstructure”
version 2.4.1, available at http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/.

16

4.5.2 Modeling

Model. A dynamic system is described by a Model capturing its relevant
features. A model is expressed in a ModelingFormalism and can be con-
strained by arbitrary Conditions.
Verification Specification. A models expected behavior is described by
a VerificationSpecification utilizing a SpecificationFormalism [14,
24]. A verification specification consists of a StartCondition that speci-
fies the initial conditions under which wewant a system to be safe to start,
and a CorrectnessCriterion that we want a system to fulfill (e. g., thro-
ughout, after all, or after one of its executions). Furthermore, it is often
possible to annotate models with Hints/Strategies, that support a veri-
fication tool in its workings, but do not directly influence the behavior of
a model (e. g., inductive invariants holding throughout system execution).
Formalism. A major part of the Modeling package is the Formalism sub-
package, which is divided into modeling formalisms for creating models
and specification formalisms for creating verification specifications (these
may reference the created models). The included formalisms are the most
commonly used in literature, namely Automata and Programs [24] formod-
eling of discrete systems, Differential Equation formodeling of contin-
uous systems [12], as well as HybridAutomata/HybridPrograms as their
combination [27, 54]. In order to constrain a model to realistic behavior
(e. g., the “bouncing ball” can never fall through the floor), the CRM intro-
duces conditions. Following Meyer [45], these conditions are further sub-
divided into PreConditions, PostConditions and Invariants. More-
over, a modeling formalism can have multiple characteristics further de-
scribing its capabilities. We include subclasses of themain Characteristic
class in the CRM to handle Compositionality (support of compositional
models through, e. g., Parallelism, Urgency, Synchronization or sequenc-
es) and Non-Determinism (e. g., support of non-deterministic choices).
Automaton and Program. An automaton comprises a set of States and
a set of Transitions, and can be visualized as a directed graph [28]. A
condition, when attached to an AutomatonElement, restricts or details the
behavior of the automaton. Another modeling formalism are programs,
representing a sequence of instructions. Although they are often inter-
changeable we separate these formalisms, because their structural differ-
ences can be utilized by verification tools.
Differential Equations. There are many different types of differential
equations (DE) and also multiple ways to classify them [68]. For our CRM
we chose a classification into PartialDE (PDE) and OrdinaryDE (ODE).
Both can have special restricted linear forms (i. e., LinearPDE, LinearODE).
In accordance with [55], we allow conditions to restrict a differential equa-
tion to remain within a particular region, transforming differential equa-
tions into differential-algebraic equations. Differential-algebraic equations
can further be equivalently transformed into differential inequalities, which
is useful to express disturbance in continuous dynamics.
HybridAutomaton and HybridProgram. The generic concept of hybrid

17

automata is the basis for numerous hybrid formalisms with different lev-
els of expressiveness and detail, such asHybridUML [7] orHybrid Petri Nets
[51, 18]. For hybrid automata, we introduce a ContinuousState that refer-
ences a set of differential equations. These differential equations represent
the continuous behavior of a system while their respective state is active.
TimedAutomata, which are a prominent, special kind of hybrid automata
are also used for modeling of (simple) hybrid systems [4]. Like above, we
introduce Hybrid Programs [54, 56] as sub-class of programs which allows
differential equations as instruction. As already mentioned, although hy-
brid automata can be encoded as hybrid programs [54], theydiffer in struc-
tural aspects that can be exploited by hybrid system verification tools.
Logic. A verification specification is expressed in terms of a Logic [24],
such as Temporal Logic (TL) [58] or differential dynamic logic (dL) [54].
These logics differ in terms of capabilities and expressiveness, and support
various kinds of quantifiers andmodalities (e. g., [] or<>modalities in dL,
A or E path quantifiers in CTL). Logics currently included in the CRM are
CTL, LTL, their common superset CTL*, dL and TCTL.

4.5.3 Verification

Verification Goal. As already mentioned, most definitions of verification
are concerned with the behavior of a system that was intended by its cre-
ator [37]. Kern et al. [33] conceptually distinguish between property- and
implementation verification. Property verification is concernedwith specify-
ing properties that are desired for a design (equivalent to what we term as
verification in our CRM), while implementation verification deals with the
relationship between high-level models and the implementation. In the
CRM we focus on property verification. For ensuring such an intended
behavior, several verification methods like Model Checking or Verification
by Deduction [37] exist. These and similar methods prove that a specifi-
cation, which aims at a particular VerificationGoal, is correct. Com-
mon verification goals include Safety (i. e., something will not happen)
or Liveness (i. e., that something must happen) [39], Controllability,
Reactivity [56], Fairness [64] or Deadlock Freedom [8].
Verification Result. During the process of verifying the correctness of
a model w.r.t. a verification specification, various VerificationResults
can be produced. Regardless of the employed technique, verifiers usually
attempt to reveal certain witnesses of the correctness of a model (e. g., the
set of reachable states or a formal proof).
Proof. A Proof consists of arbitrary many ProofSteps and aims at verify-
ing that the model is correct w.r.t. the specification. Initially, all the steps
are OpenProofSteps until they can be verified using certain ProofRules,
making them ClosedProofSteps. Ideally, a proof is a SuccessfulProof,
meaning that it consists of closed proof steps only. If some steps remain
unverified (i. e., open proof steps), the proof is a PartialProof. Note that
a partial proof does not necessarily imply refutation of the specification,
as it might still be verified with a different proof attempt.

18

Proofs, respectively the remaining openproof steps,might be decomposed
into separately treatable sub-proofs. The resulting proof branches can
have the same formalism (e. g., split a proof of a hybrid system along the
system’s branches intomultiple proofs) or even different formalisms (e. g.,
ship off the arithmetic leaf of a hybrid proof).
Entire proofs or the resulting proof parts might be transferred to other
users using the same tool or even other tools. There, some open proof
steps might be closed or the entire proof might be finished and returned
to the sender. An implementation of the CRM should support the com-
positions/decomposition of proofs, as well as the exchange of proofs and
partial proofs, and furthermore deal with problems arising from this ex-
change, like verification of correctness of exchanged proofs (e. g., through
certificates or by providing an exact listing of all proof steps).
CounterExample. A specification for a selected technique can be refuted
by a CounterExample, which is mutually exclusive to a successful proof.
Multiple counter examples might be found for each open proof step. As
soon as one is found, the refutation of the entire verification specification
is inferred.
ReachableStates. Another possible output is the set of ReachableStates,
if a reachability analysis was performed.

4.5.4 Tool Support

Tool. The ToolSupport package includes Tools and additional informa-
tion regarding usage and configuration. Generically speaking, a tool (e. g.,
a specification tool) works with various Artifacts; it uses some input
(e. g., a model) to produce a corresponding output (e. g., a verification
specification). Toolsmight require UserInput at run-time (e. g., user-guid-
ance during verification), and additional prior Configuration (i. e., meta
information required to run the tool, e. g., library paths). Furthermore,
tools might interact with each other to enable Collaboration between in-
stances of a single tool (e. g., multiple users might collaboratively produce
a complex model) or different kinds of tools (e. g., different verification
tools can be used to verify a single specification). Our CRM includes three
kinds of tools: (i) a ModelingTool supports users in creating amodel using
one of the respective formalism, (ii) a VerificationSpecificationTool

allows formulation of a verification specification about a model, and (iii)
the VerificationTool takes themodel and its specification and produces
a verification result.
Refactorings. Artifacts can influence an arbitrary number of other arti-
facts (e. g., a discovered counter example might be a valuable input for a
revision of the initial model). These mutual influencing leads to an evolu-
tion of artifacts prevalent in modeling and verification of hybrid systems.
Hybrid systems are typically developed in an iterative manner by model
refinement, i. e., initially coarse-grainedmodels are iteratively revised and
detailed. Refactorings simplify this refinement by providing support for
restructuring the different artifacts.

19

To support re-engineering and iterative development of arbitrary artifacts,
wedistinguish between Behavior- and Specification Preserving refac-
torings. Behavior Preserving refactorings are classical refactorings as
known from programming and defined by Fowler [19] as a modification
that improves the internal structure of a model but does not change the
observed external behavior. When it comes to refactoring of models in
general, things — especially regarding the behavior preservation prop-
erty — become more difficult [44]. The common definition of “behavior”
is a crucial first step prior to defining a refactoring that does not change
this behavior. We propose to use the specifications, which are needed for
formal verification anyway, as an indicator of preserving behavior: a refac-
toring preserves behavior if the refactored model still provably satisfies
the same correctness properties as the original one. But the complexity of
verification can differ vigorously depending on the selected models (e. g.,
concurrent transition systems are exponentially harder to verify than se-
quential ones [25]). Specification preserving refactorings are intended to
minimize verification effort (e. g., components that are modeled in a par-
allel manner in reality, but are independent in their read-write variables,
can be executed sequentially in arbitrary order to reduce verification com-
plexity) or to improve the model’s semantics (e. g., introduction of sensor
uncertainty).
As a model is always an abstraction of a real-world system, it is only a
more or less detailed approximation of reality. The complexity of verifi-
cation can differ vigorously depending on the selected models (e. g., con-
current transition systems are exponentially harder to verify than sequen-
tial ones [25]). We therefore distinguish specification preserving refac-
torings into those that improve the semantics of the model at hand (i. e.,
Refinement Refactorings) and those that decrease the semantics of the
model (i. e., Abstraction Refactorings). The former is useful if a sim-
ple model should be enhanced to become more realistic, while the latter
simplifies a model that is too complex for verification.
Verification Tools. In our CRM we deduce two popular types of verifica-
tion tools from two important verification techniques, being formal verifi-
cation and model checking [50].
Concerning formal verification, we introduce the class DeductiveVeri-
ficationTool. These tools are based on a certain logic and use inference
rules (i. e., proof rules) to transform formulas until they can be verified.
Kern et al. [33] refer to these techniques asDeductiveMethods, while Clarke
et al. [14] call them Theorem Proving.
Model checkers calculate the states that can be reached by a model and
check if all are desirable. Since the term model checking, however, refers
to a technique mainly used for verification of purely discrete systems, we
choose reachability analysis as the equivalent of model checking for hybrid
systems. A ReachabilityAnalyzer calculates reachable states either in an
exact manner by limiting the continuous dynamics to simple abstractions
or in an approximate manner by over-approximating the set of reachable
states [3].

20

Many of the techniques that workwith (over-)approximations have to deal
with floating point issues. The exactness of a verification technique (e. g.,
floating point variables do not store exact real valued numbers, but might
result in rounding errors) has to be exchanged when different tools inter-
act. It can be roughly distinguished between exact verification and ap-
proximation (i. e., how far away is the result from the actual behavior).
Collaborating tools should exchange information about the trustworthi-
ness of a result.

4.6 Micro Survey
In this section we use the CRM for a short survey of hybrid systems veri-
fication tools connected through a hybrid system interchange format.

4.6.1 Comparison Criteria

In order to simplify comparison of verification and modeling tools with
the help of our CRM, we deduce a set of criteria that allow to classify and
evaluate hybrid systems modeling and verification tools. We focus on the
modeling package as it contains the main aspects covered by currently
available interchange formats and collect the criteria into three groups,
namelyModeling Formalism, Specification Formalism andVerification Formal-
ism. For modeling formalisms, we further distinguish the discrete behavior,
the continuous dynamics and their characteristics. For verification specifi-
cations, we analyze the types of conditions, correctness criteria and strate-
gies/hints supported by the tools. Detailed criteria are analogous to the
concepts of the CRM.

4.6.2 Lessons Learned

The three groups of criteria introduced above already reveal serious dif-
ferences between the hybrid systems modeling and verification tools that
cannot be overcome by current interchange formats as discussed below.
We choose CIF as interchange format, since there already exist translators
between CIF and various popular hybrid systems tools (e. g., SpaceEx [20],
Modelica [21]), including tools for hybrid system verification. Further-
more, CIF is actively developed and its current version (CIF3 r6117) was
released on September 20, 2013. As exemplary tools, we choose SpaceEx
[20], UPPAAL [40], and KeYmaera [57], which are well known hybrid
system verification tools. SpaceEx and UPPAAL are both supported by
CIF, whereas KeYmaera is not yet connected to any hybrid systems inter-
change format. Fig. 1a compares the tools according to criteria derived
from the CRM (which would not be possible with only interchange for-
mats at hand). The tools have different capabilities, as SpaceEx is a veri-
fication platform for hybrid systems by performing reachability analysis,
UPPAAL is an environment for verification of timed automata through
model-checking and reachability analysis, and KeYmaera is a theorem

21

(a) Comparison by criteria

(b) Comparison in the CRM (snippet)

Figure 1: Comparison of SpaceEx, UPPAAL and KeYmaera.

prover for hybrid systems. Fig. 1b highlights the differences in the CRM
accordingly.
Modeling Formalism.. Each of the tools uses a slightly differentmodeling
formalism. SpaceEx and UPPAAL both work with networks of automata,
where SpaceEx accepts hybrid automata andUPPAAL is restricted to timed
automata. KeYmaera chooses a different approach and uses hybrid pro-
grams. As for continuous dynamics, UPPAAL is restricted to the use of syn-
chronous clocks, while the other tools can handle differential equations.
However, SpaceEx is limited to affine dynamics while KeYmaera can han-
dle all kinds of non-linear ODE, as well as algebraic DEs and differential
inequalities. Further characteristics show, that SpaceEx and UPPAAL—as
they use networks of automata—support compositionality (e. g., by paral-
lel composition). All of the tools support non-determinism in some way.

From looking at the CRM it becomes obvious, that timed automata
are a subclass of hybrid automata thus, allowing conversion of timed- to

22

hybrid automata, but not necessarily the other way around. This in turn
means, that transformations from SpaceEx models containing differential
equations will fail when translated to UPPAAL. Similarly, specifications
provided in UPPAAL (e. g., safety properties) in terms of TCTL, will be
lost when translating a model to SpaceEx. Furthermore, both SpaceEx
and UPPAAL support guards and invariants (highlighted in the CRM by
means of the marked Condition class), allowing loss-less translation of
conditions.

The example shows, that naive conversion via an interchange format
between SpaceEx and UPPAAL is not sufficient. Instead, a detailed look
into the capabilities of the target formats is required. Our CRM provides
details for key aspects of hybrid systems that are not yet included in inter-
change formats. Additionally, the CRM can be implemented as an object-
oriented type-system to provide automated support for model selection
and compatibility checks. For example, the modeling formalism for UP-
PAAL is timed automaton while it is hybrid automaton for SpaceEx, and
hybrid program for KeYmaera. Consider a user having a concrete model
using a timed automaton as modeling formalism and requesting the sys-
tem to return all tools capable of analyzing this model. The systemwould
look up all tools, that can handle timed automata, i. e., thosemodelswhose
modeling formalism allows assignment of a timed automaton. Eventually,
the system would return UPPAAL as well as SpaceEx, as timed automata
can be assigned to both classes’modeling formalism, since hybrid automa-
ton is a super-class of timed automaton. When comparing SpaceEx and
UPPAAL, the type-systemwould also know, that an instance of a SpaceEx
model (containing a hybrid automaton) cannot necessarily be assigned to
UPPAAL, as the modeling formalism of UPPAAL cannot handle hybrid
automata.
As KeYmaera uses hybrid programs which are not directly compatible, it
would not be considered. Nevertheless, the notion of hybrid programs,
can be translated to hybrid automata and vice-versa. However, the result-
ingmodelsmight become very unhandy resulting in verification issues. In
general, KeYmaera is very different compared to UPPAAL and SpaceEx.
For example, no other tool supports non-linearODE as used byKeYmaera.
Specification Formalism. KeYmaera and UPPAAL use logical statements
to define desired properties about a system, whereas SpaceEx computes
a set of reachable states that either can be compared for intersection with
the set of unsafe states (safety) or goal states (liveness).

Similar as with modeling formalisms, the CRM also supports compar-
ison of specification formalisms, as a similar class hierarchy as described
above, also exists for logics. While UPPAAL uses a subset of TCTL for
its specifications, Keymaera uses dL. As neither of these two logics is a
subclass of the other in the CRM, a direct conversion in either direction is
not possible, but a translation for equivalent statements has to be imple-
mented.
Verification Specification. For conditions, all tools support guards and
invariants to restrict the behavior of the models. While SpaceEx returns

23

a set of reachable states which has then to be analyzed for intersections
with desirable or undesirable sets of states, UPPAAL supports the use of
path formulae (further classified into reachability, safety and liveness) and
KeYmaera allows arbitrary dL fomulae to specify any kind of property
(e. g., safety and liveness). KeYmaera furthermore allows annotating its
models with further conditions (e. g., variants and invariants), to support
the tool during verification of the models.

On the one hand, the CRM supports the comparison of the available
kinds of correctness criteria specifiable within the different tools. When
translating a SpaceExmodel toUPPAAL, correctness criteriamust be spec-
ified in UPPAAL after the translation, that can be verified using the target
tool. When further translating theUPPAALmodel to KeYmaera, the CRM
furthermore reveals, that an enrichment of the model by means of adding
annotations might be necessary to successfully verify the provided model
in the target tool.

4.7 Conclusion and Future Work
In this paper, we introduced a conceptual reference model that can be
used to analyze the properties of hybrid system modeling and verifica-
tion tools and classify them accordingly. We motivated the need for a ref-
erence model based on the shortcomings of current hybrid system inter-
change formats and used the resulting CRM to (i) compare the capabilities
of formalisms supported by hybrid systems interchange formats, (ii) pro-
pose extension of these formats to include interchange of results, and (iii)
highlight possible future directions for hybrid systems modeling and ver-
ification tools.

However, our CRMrepresents only a first step towards a complete clas-
sification framework for hybrid system modeling and verification tools
and can be extended with further details in order to allow a comprehen-
sive analysis of verification andmodeling tools. Nevertheless, we are sure,
that a CRM is an important step towards unification of terms and towards
creating a common understanding of the parts of cyber-physical systems
and hybrid system models.

For future work, the CRM must be extended in various directions to
keep track with the quickly evolving world of hybrid systems engineer-
ing. A possible extension is the incorporation of stochastic or probabilistic
hybrid systems. Different researchers have proposed various models and
approaches for safety verification and reachability analysis of stochastic
hybrid systems (e. g., [1, 5, 29, 67]), that differ most in where to intro-
duce randomness [29]. For most approaches, the discrete states remain
untouched, while the jumps between them are governed by probabilistic
laws, thus extending the notion of hybrid automata resulting in the intro-
duction of a new kind of edge in the CRM. Another way of introducing
randomness is the introduction of stochastic differential equations, lead-
ing to a new kind of differential equation in the CRM. However, to fully
integrate the concept of stochastic hybrid systems into the CRM, further

24

considerations regarding additionally required classes are neccessary.
Finally, we plan to conduct a comprehensive survey of hybrid system

modeling and verification approaches based on the CRM, respectively on
a sophisticated and extensive criteria catalogue derived from it.

25

*

DynamicalSystem

DiscreteDynamical
System

Continuous
DynamicalSystem

HybridSystem

Formalism

Automaton
Differential

Equation

Verification
Specification

StartCondition

Correctness
Criterion

 t
 e

ns
u

re
s

VerificationGoal

ai
m

s
at

 u

Proof

t verifies

e
xp

ec
ta

ti
o

n
s

on
 u

Tool

ModelingTool Verification
SpecificationTool

t produces

VerificationTool

ProofRule

t
 im

p
le

m
en

ts

Deductive
VerificationTool

Model

Configuration

t utilizes

ReachableStates

Reachability
Analyzer

ProofStep

t
 c

om
p

ri
se

s

*

OpenProofStep

ClosedProofStepwas applied u

can be applied u

Safety

Liveness

Hybrid
Automaton

Timed
Automaton

t
 d

e
scrib

e
s

Transition

PartialDE

OrdinaryDE

LinearPDE

LinearODE

Stateconnect u

t
 c

om
p

ri
se

s

Continuous
State

co
n

ta
in

s
u

t
 c

o
m

p
ri

se
s

PreCondition

PostCondition

Condition

Invariant

t constrains

constrains u

t
 p

ro
d

u
ce

s

CounterExample

t refutes

t
 s

ta
rt

s
at

t implements

{disjoint}

SuccessfulProof

PartialProof

consists only of u

uses u

VerificationResult

t
 p

ro
d

uc
es

t uses

Logic

t
 describes

*

*

*

*

t modelsdescribes u

interacts

UserInput
Artifact

allows u

t uses

influences

** *
*

*

*

*

ut
ili

ze
s
u

Automaton
Element

*

*

*

*

*

*

*

* *

*

*

*

*

*

t
 r

e
fu

te
s

*

ModelingFormalism Specification
Formalismt references

Fairness

Reactivity

Controllability

DeadlockFreedom

Refactoring

Behavior
Preserving

Specification
Preserving

Collaboration

dL

CTL*

LTL

CTL

Non-DeterminismCompositionality

Characteristics

t has
*

Parallelism Urgency Synchronization

Hint/Strategy

t
 s

u
p

po
rt

ed
 b

y

Program

Hybrid
Program

Refinement
Refactoring

Abstraction
Refactoring

t
 con

strains

*contains u *

TCTL

Figure 2: The Conceptual ReferenceModel - The included (sub-)classes do not claim to be comprehensive, but represent
a careful selection of popular concepts.

26

5 Related Work
In the following, a brief selection of related work is presented, starting
with closely related hybrid component frameworks. Further valuable in-
put for the work addressed in this proposal can be found in the field of
hybrid system verification and in component-based software engineering.

5.1 Hybrid Component Frameworks
Hybrid component frameworks are closely related to the proposed work,
althoughmost of the presented frameworks have a slightly different focus.
Towards Component Based Design of Hybrid Systems: Safety and Sta-
bility (Damm et al. [16]). The key achievement Damm et al. is the de-
velopment of a compositional framework for component based design of
hybrid controllers taking into account realistic assumptions about reaction
times. They introduce the notion of alarms, which alert the environment of
possible stability or safety issues that might arise after an escape interval,
during which safety and stability are still guaranteed. This is necessary
because of the decentralized setting—as relevant for Autosar4 based au-
tomotive development—where modes are responsible for creating aware-
ness for the need of possible mode-switching and no centralized control
structure is available.

The behavior of the component is given in terms of runs of especially
defined hybrid automata with inputs (i. e., a hybrid automaton is admissible
for a basic component interface). These automata consist of sets of vari-
ables (local, input, output), modes and transitions, initial states, local in-
variants and differential inclusions, restricting the evolution of the inputs
and continuous transitions. To describe the model of a plant, a single-
mode hybrid automaton extended with safety and stability conditions (in
the form of open first-order predicates) is used. Input variables model the
set of actuators and additional variables are used tomodel was is typically
called disturbances.

Before interconnecting components, connecting outports (propagating
an alarm) to inports (which can handle incoming alarms), the validity of
the connection has to be tested (i. e., check if the second component can
handle the alarm raised by the first one). Resulting components them-
selves are handled as simple components again, which in turn allows for
arbitrary hierarchical combinations of components.

To verify the stability of a system Lyapunov functions—functions that
map each system state onto a non-negative energy value, under the restric-
tion that the function must decrease along along every trajectory until it
reaches its minimum—are used.

One of the major differences of this approach to our approach is, that
we focus on centralized controllers, whileDammet al. consider distributed
systems and thus require the introduction of additional concepts, such as

4http://www.autosar.org

27

alarms. Furthermore, their framework was designed for use in automo-
tive control environments, which relates closely solely to our microscopic
models as described in Section 2.5.

5.2 Domain Specific Languages (DSL)
DSLs are languages specialized to a specific application domain. They can
be used to simplify creation of models by supporting easy combination of
domain elements (i. e., components) to form larger models.
A Framework for Unambigious and Extensible Specification of DSMLs
for Cyber-Physical Systems (Simko et al. [62]). Simko et al. state, that
due to the heterogeneity of physical behavior and the diversity of models
describing computational behavior employing heterogeneous languages,
precise structural and behavioral specifications are necessary, in order to
enable co-design, reusability and integrity of components. They further
state, that this calls forModel-Based Engineering paradigms for CPS, which
in turn rely onDomain-Specific Modeling Languages (DSMLs). Accordingly,
they propose a formal framework based on mathematical logic, to sup-
port unambiguous specification and formal reasoning, that furthermore
naturally supports reusability and extensibility.

For this purpose, they make use of a logic programming language
called FORMULA (i. e., a constraint logic programming tool, based on
fixed-point logic [30]) and illustrate their framework with the bond graph
language (i. e., a multi-domain graphical representation of physical sys-
tems, describing the structure of energy flow in the system [32]). Fur-
thermore, extensibility of the approach is demonstrated, by extending the
bond graph language with physical domains, resulting in hybrid bond
graphs.

Summing up, they introduce a framework for formal specification and
simulation. Although they show the extensibility of the approach, the
presented framework does not really represent a component framework.
Furthermore, there is no focus on verification of the behavior of the un-
derlying models.
Modeling Cyper-Physical Systems: Model-Driven Specification of En-
ergy Efficient Buildings (Kurpick et al. [38]). In their paper, Kurpick et
al. describe an approach to model buildings from an energy perspective
using hybrid system models. They introduce a DSL for modeling build-
ings and technical facilities with focus on improving the energy efficiency.
They demonstrate, that it is possible to use standard modeling techniques
(e. g., UML) and adapt them as DSLs for CPS.

5.3 Hybrid System Verification
Especially on verification of microscopic models of single autonomous
cars several related publications exists. A closely related approach is de-
scribed in [42], where the verification of a distributed car control system

28

is presented in a modular hierarchical way. However, the approach is spe-
cifically fitted to the car control issue. Mitsch et al. [46] use formal verifi-
cation techniques in order to verify properties for intelligent speed adap-
tation of autonomous cars on highways. Loos et al. [43] concentrate on
efficiency analysis of formally verified cruise controllers. However, these
approaches are not based on components, but model entire CPS at once.

5.4 Component-Based Software Engineering
Chen et al. [13] propose verification of component-based systems. Even
though their approach does not dealwith hybrid systems, it could provide
valuable input for our proposed approach. Classical component-based
software engineering has already been the focus of a considerable amount
of research, like for example [15, 31]. However, the topics of verification
or hybrid systems have not been the focus so far.

6 Research Focus
Pursuing the overall vision of a verification-driven engineering framework
for CPS as presented above is in line with ongoing current research ef-
forts at the involved institutions in a series of research projects. The CMU
Pittsburgh and the JKU Linz already have established an intensive and
successful cooperation in that area.

This report—in accordance with our research at CMU—focuses on the
first goal discussed before, serving as an essential building block of the
overall vision, whereas the other two are going to be focused by research
of cooperating fellow researchers at both institutions, namely Prof. André
Platzer and Dr. Stefan Mitsch. In particular, the research focus was on
modeling and verification of modular traffic nets, as described in Section 6.1.
Furthermore, first approaches for model transformations were implemen-
ted, namely in the form of a translation of KeYmaera models to the hybrid
system interchange format CIF, as described in Section 6.2.

6.1 Modeling andVerification ofModular TrafficNets
In accordance to the initial proposal, a component language for modeling
of traffic situations was developed. This is a first step towards a generic
component language for hybrid systems, as it shows its feasibility through
application to the field of traffic control.

6.1.1 A Modular and Verified Traffic Network

The concept of a modular and verified traffic network is, to divide a traffic
network into small thus simple parts, that can be verified and then con-
nected to form a larger network of blocks. At first we define a generic
block (Section 6.1.2) and its properties (Section 6.1.3). Then we define how

29

to connect two arbitrary blocks in a way that the resulting construct is
again a (larger) block (Section 6.1.4). Finally, we introduce concrete traf-
fic blocks (i. e., exemplary we introduce a traffic light) (Section 6.1.5) and
show how to build larger traffic networks using them (Section 6.1.6). Sec-
tion 6.1.7 concludes this section.

6.1.2 A generic Block

Definition 6.1 (Block) A BlockB is defined as a tuple consisting of the follow-
ing elements:

B = (I,O, in, cap,maxout, otime, pre, load, out, oflow)

Two sets representing the in- and outflows of the block (I ,O), functions assigning
values to the basic properties of these flows (in, capacity, maxout,overtime),
preconditions that have to hold for them (pre) and functions returning calcula-
tion rules for advanced properties that depended on the basic ones (load, out,
overflow).

Fig. 3 shows an overview of a generic block. A detailed description of
the elements can be found below.
• I is a finite, ordered set {I1, ..., In} of n inflows into the block B.

An inflow represents any kind of road a vehicle can use to enter the
current block.

• O is a finite, ordered set {O1, ..., Om} of m outflows from the block
B. Similar as with inflows, an outflow can be any kind of road,
through which a vehicle can leave the current block.

• in is a function over the set of inflows I , assigning an actual in-
flow rate to each inflow: I → R+. The resulting value represents
the number of vehicles that pass through the inflow in a given time
(number of vehicles per unit time).

• cap is a function over the set of inflows I , assigning amaximal capac-
ity to each inflow: I → R+. The capacity is the number of vehicles,
that can be on an inflow at any point in time (number of vehicles).
The value usually depends on environmental characteristics (e. g., a
long straight road with many lanes can contain a lot of cars).

• maxout is a function over the set of outflowsO, assigning amaximal
outflow rate to each outflow: O → R+. The values represent the flow
capacity of the outflow, i. e., the respective road. Themaximum flow
usually depends on the characteristics of the road (e. g., more lanes
usually means more capacity and thus a higher maximum outflow).

• otime is a function over the set of outflowsO, assigning a maximum
time span forwhich the outflowmay produce an overflow: O → R+.

• pre is a set of predicates over B setting conditions, that have to hold
initially.

30

• load is a function over the set of inflows I , returning a calculation
rule for the actual capacity used as a function of the inflows in: I →((
I → R+

)n → R+
)
. The calculated value represents the maximum

number of cars, that might be present on the corresponding inflow
at any one point in time (number of vehicles).

• out is a function over the set of outflows O, returning a calculation
rule for the average outflow rates as a function of the inflows in:
O →

((
I → R+

)n → R+
)
. The calculated value represents the av-

erage number of cars, that will actually leave the block over the re-
spective outflow in a given time (number of vehicles per unit time).

• oflow is a function over the set of outflows O, returning a calcula-
tion rule for the maximum overflow produced by each outflow as a
function of the inflows in and the outflows out:
O →

(((
I → R+

)n
,
(
O → R+

)n)→ R+
)
. While the functions re-

turned by out calculate the average flow through an outflow, average
means that higher and lower flows might occur over shorter periods
of time. The maximum overflow functions as returned by overflow,
calculates the upper bound of vehicles that can be released through
an outflow, which can be way above the value calculated by out.

Furthermore, we define the number of vehicles actually produced as
overflow from an output as the product of the number of vehicles per units
of time, times the duration of the overflow (cf. (1)).

∀j ∈ {1, ...,m} over (Oj) = oflow (Oj) ∗ otime (Oj) (1)

6.1.3 Well-formed Blocks

Before we can talk about safe traffic networks, we have to define what we
mean by safety for our model. For our model, we define that the safety
of a system is guaranteed, as long as no traffic breakdown occurs at any
point in time. In literature, a breakdown is often defined as a traffic den-
sity larger than some predefined border. As we do not consider densi-
ties, but simple flow models, we consider a slightly different definition of
a traffic breakdown. We define a breakdown, as any kind of congestion
that is not restricted to a single part of the road network, but propagates
through it. This means that, as soon as the load at any input to any block is
greater than the capacity of this input, a breakdown occurs, since the block
is not able to handle his loadwhich againwouldmean, that the congestion
would propagate to the next block and so on.

Definition 6.2 (Safe) A Block B is said to be safe, if and only if its actual load
is never greater than the capacity:

∀i ∈ {1, ..., n} : load (Ii) ≤ capacity (Ii) (2)

31

Besides the definition of safety, it is also important for the model to
workwith respect to the physical boundaries as enforced by the real-world
environment. While values like capacity or maxout can be inferred from
the properties of a road, parameters like inflow or load depend on other
blocks andmust be calculated using the provided functions. Nevertheless,
these parameters have to obey the real-world boundaries.

Definition 6.3 (Valid) A Block B is said to be safe, if and only if the actual
outflow never exceeds the maximum outflow:

∀j ∈ {1, ...,m} : out (Oj) + oflow (Oj) ≤ maxout (Oj) (3)

Def. 6.3 states, that the all actual outflows must always be less or equal
than the respective maximum outflow. This includes the regular outflow
and the additional overflow that might be created by the block. This con-
dition is necessary to ensure that the model does not violate the physical
bounds that restrict the real world road.

Ultimately, we want to have blocks which comply to the real-world
environment and are safe. We call these kind of blocks well-formed (cf.
Def. 6.4).

Definition 6.4 (Well-formed) A Block B is said to be well-formed, if and
only if it is safe and valid.

Figure 3: Visualization of a Generic Block

6.1.4 Connecting Blocks

Connecting two traffic blocks means linking one output of the predeces-
sor block with one input of the successor block. In real-world term, this

32

would mean that the two blocks represent consecutive parts of the traffic
network and are connected by an actual road. This of course means, that
the cars leaving the first block move on as inputs to the second block. Fi-
nally, we want the construct resulting from connecting two blocks to be
again a block. Accordingly, we define the connection of two blocks as fol-
lows:

Definition 6.5 (Connection) Let B1 =(
I1, O1, in1, cap1,maxout1, otime1, pre1, load1, out1, oflow1

)
andB2 =

(
I2, O2, in2, cap2,maxout2, otime2, pre2, load2, out2, oflow2

)
be blocks. We define B3 = B1 i,j−→ B2 as the connection of the output i
of block B1 (i. e., O1

i) to the input j of block B2 (i. e., I2j), defined as B3 =(
I3, O3, in3, cap3,maxout3, otime3, pre3, load3, out3, oflow3

)
, with

• I3 = (I1\I1j) ∪ I2,
• O3 = O1 ∪ (O2\O2

i),
• in3 : I3 → R+, with in3(I1) = in1(I1) and in3(I2) = in2(I2),
• cap3 : I3 → R+, with cap3(I1) = cap1(I1) and cap3(I2) = cap2(I2),
• maxout3 : O3 → R+, withmaxout3(O1) = maxout1(O1) and

maxout3(OI2) = maxout2(O2),
• otime3 : I3 → R+, with otime3(I1) = otime1(I1) and otime3(I2) =

otime2(I2),
• pre3 = pre1 ∪ pre2,
• load3 : I3 →

((
I3 → R+

)n → R+
)
, with load3(I1) = load1(I1) and

load3(I2) = load2(I2),
• out3 : O3 →

((
I3 → R+

)n → R+
)
, with out3(I1) = out1(I1) and

out3(I2) = out2(I2),
• oflow3 : O3 →

(((
I3 → R+

)n
,
(
O3 → R+

)n)→ R+
)
, with

oflow3(I1) = oflow1(I1) and oflow3(I2) = oflow2(I2).

Theorem 6.6 If B1 and B2 are blocks, their connection B3 = B1 i,j−→ B2 is
again a block.

According to Def. 6.5 and following Theorem6.6, the block resulting
from connection of two other blocks contains the union of the inputs of
the first block and the inputs of the second block, except the one used
for the connection. Furthermore, the outputs of the resulting block are
the union of the outputs of the second block and the outputs of the first
block, again except the one used for the connection. An example for the
connection of two block with three inputs and outputs each, is shown in
Fig. 4. The green and yellow arrows show the inputs and outputs of the
resulting block. The two blocks are connected through the red arrow.

Theorem 6.7 Let B1, B2 and B3 be blocks, and B3 = B1 i,j−→ B2. Then, if
B1 and B2 are well-formed, B3 is also well-formed.

33

Figure 4: Connection of two blocks

6.1.5 Traffic Components - Traffic Light Block

In order to reach our goal of building a modular and verified traffic net-
works, we need to define what components this networks should be built
of. The implementation of the traffic network will make use of our previ-
ously defined Blocks, which need to be instantiated with actual models.
We define what is required of an actual KeYmaera model in order to be a
valid traffic component.

Definition 6.8 (Traffic Component) Let B be a well-formed Block and K a
KeYmaera model. A tuple

TC = (B,K)

is a Traffic Component, if K at least defines all properties of B (i. e., in, cap,
maxout, otime, load, out and oflow) according to their definition and follow-
ing the conditions in pre, and ifK fulfills the well-formedness property ofB (i. e.,
load and outflow are restricted by the according bounds, cf. Def. 6.4).

Traffic Light Block. We define a traffic light as a straight piece of road,
having two states, namely red and green. If the traffic light is red, no flow
along the road is possible and vehicles start to pile up in front of the traffic
light. As soon as the traffic light is green, the vehicles start flow away from
the traffic light with a constant rate. This represents a simplification of the
actual behavior of vehicles in front of a traffic light, which usually brake
and accelerate slowly, resulting in so called shock-waves [59]. However,
this abstraction it is necessary in order to ensure a hybrid systems model
that can be verified using KeYmaera.
The KeYmaera Model. A KeYmaera model of a traffic light can be found
in the appendix in A.1 and is in the following referred to as TLK. The
controller switches the traffic light from red to green and vice versa in a
fixed interval. The continuous part of the model adapts the load in front of
the traffic light according to the current in- and outflows on the one hand,
and calculates the number of vehicles actually leaving the traffic light. The
safety condition states, that the load will never exceed a certain value and
the average flow through the traffic light is limited by an upper bound.

34

The Block. A traffic light block has a single inflow (n = 1) and a single
outflow (m = 1) which are separated through a traffic light and is in the
following refereed to as TLB. We consider a simple traffic light, that has
equally long red and green cycles and refer to this cycle length as Trg ∈
R+. The functions for calculating load, out and overflow are defined in
(4).

load (I1) = Trg ∗ in (I1)

out (I1) = in (I1)

over (I1) = otime (I1) ∗ oflow (I1) = Trg ∗ in (I1)

(4)

If the traffic light is red, vehicles start to accumulate in front of it. As the
traffic light is red for exactly Trg units of time and cars arrive at a rate of
in (I1) vehicles per time unit the maximum amount of cars that might be
in front of the traffic light (i. e., on the single inflow) is the product of these
two values. As we assume, that no vehicles can disappear at a traffic light,
the average outflow (out) equals the actual inflow. However, as the traffic
light is red half of the time, resulting in no outflow, the outflow in the
green phase has to be significantly higher than average. In fact, an inflow
of in (I1) (overflow) over a time Trg (overtime) must be compensated,
thus resulting in an overflow as defined by overflow.

Corollary 6.9 The block TLB iswell-formed, if and only if
1. Trg ∗ in (I1) ≤ cap (I1)

2. 2 ∗ in (I1) ≤ maxout (Oj)

The Traffic Component. As the KeYmaera model TLK defines all prop-
erties of TLB according to Corollary 6.9, the tuple TLTC = (TLB, TLK)
is a traffic component, since the model actually behaves as defined in (4).
We prove this behavior with the help of KeYmaera.

6.1.6 Forming the network

Thus far, we have defined single traffic blocks and how to connect them.
Provided with a library of generic traffic blocks, this knowledge can now
be used to build arbitrary traffic networks from these blocks. For each
block, several properties, such as maximum flow, have to be defined. For
the blocks at the beginning of the network, the initial values, such as in-
flow, have to be fixed. Everything else can be calculated using the rules
defined above and the well-formedness can be checked accordingly.

6.1.7 Conclusion

We have presented a method to model smaller parts of a traffic network as
generic flowmodels, whose behavior can be verified using the hybrid sys-
tem verification tool KeYmaera. Furthermore, we introduced a method
to connect these blocks in order to form larger networks, which are then

35

again verified because each of their parts and the connection relation is
verified. These method can be used to easily verify the behavior of ar-
bitrary traffic networks and is a first step towards a generic component
language for hybrid systems.

6.2 Model Transformation

Figure 5: Interchange Formats

As described in Section 4.3, hybrid system interchange formats can be
used, to transfer hybrid system models between various tools and forma-
lisms. Fig. 5 shows the advantage of using interchange formats in contrast
to direct pairwise translation. The Compositional Interchange Format (CIF),
which was also introduced in Section 4.3, is one of these formats. CIF is
supported by numerous tools and formalisms, comes with an integrated
development environment (by means of an Eclipse plug-in) and supports
simulation of models. As a first step towards a bi-directional translation
to and from CIF, we implemented a translator from KeYmaera to the in-
terchange format. This of course entails the possibility, to transform the
resulting CIF model to all connected formalisms, as shown in Fig. 6.

6.2.1 The Translation

The transformation of KeYmaera models to CIF works in several steps. At
first a KeYmaera model is translated to a hybrid automaton [27]. This au-
tomaton is only kept inworkingmemory andused as an intermediate step.
An external tool (i. e., Wolfram Mathematica) is then used, to determine
initial values for the variables defined in the model. This step is necessary
in order to allow simulation of the resulting CIF models in the integrated
simulation environment. Finally, the hybrid automaton together with its
initial values is translated to CIF syntax and stored as a file. The entire
export process is visualized in Fig. 7. The graphic also shows that due to
the very generic hybrid automata memory representation of the model,
translations to further automata based syntaxes would be possible.

6.2.2 CIF Simulation

As mentioned above, the implemented translator from KeYmaera to CIF
finds valid initial values for all fields defined in themodel and thus, allows
simulation of the model. The CIF simulator takes a simple vector graphic
file (SVG) and animates it according to a so called hook-file. This hook-file

36

Figure 6: Compositional Interchange Format

describes how the model elements of the SVG should be animated, i. e., it
links variable of theCIFmodel to graphical elements in the SVG. If amodel
describes a robot that moves along an x and y axis, the animation would
move the robot in SVG according to the values of the modeled variables. 8
shows a screenshot of the simulation. A robot (green) moves around in a
2D space and should never hit the apple. The original model was created
and verified using KeYmaera, then translated to CIF and simulated using
the integrated simulator.

In AppendixA.2 the original KeYmaera model of the example can be
found. Furthermore, AppendixA.3 contains the translated CIF model.

7 Future Work
In this section we first give a short overview of the ongoing research re-
garding our overall vision (cf. Section 7.1), before we describe possible
future research directions regarding the work conducted as focus of the
Marshall Plan funded research at CMU (cf. Section 7.2). Finally, the last
section contains the envisioned future plans of the applicant (cf. 7.3).

37

Figure 7: CIF Export

7.1 Overall Vision
Regarding the overall vision, presented in Section 3, the work will be con-
tinued towards design, development and implementation of a compre-
hensive framework for verification-driven engineering. A first step to-
wards the realization of the first part of our proposed framework onMod-
ular Traffic Nets, has been targeted as described in Section 6. Still this work
has to be further improved as described in Section 7.2. While Refactorings
for Hybrid System Models is currently target of the research of Dr. Stefan
Mitsch, the last part on Verified Model Transformation is currently still at a
very early stage.

7.2 Modular Traffic Nets
The initial approach was employing flow models that could be decom-
posed into specifically restricted components with fixed structure for ad-
dressing the macroscopic view on traffic models. Although, these first

38

Figure 8: Simulation in CIF

results give a strong indication of the feasibility of the pursued approach,
further improvements are of course necessary in order to allow modeling
of more general components. Thus, a further research directions is to ex-
tend beyond flowmodels, as in the field of road traffic control, actions are
not necessarily bound to themacroscopic view. Although, a bulk of cars as
a whole may bemodeled as flow, the actions of each car (e. g., considering
an autonomous car) and its interactions with other cars (e. g., consider-
ing car-to-car communication) result in smaller scale microscopic models
of single cars. These views allow analysis of different aspects of traffic
control, like analyzing impacts of a speed limit on traffic flow (i. e., macro-
scopic) to see how the entire traffic network is affected and on single cars
(i. e., microscopic), to verify that each car can safely abide to the limit. An
example for decomposition of macroscopic traffic models is cutting a traf-
fic net into smaller pieces, like crossroads or traffic lights. Decomposition
of microscopic traffic models deals with isolating the various actions of a
car or driver, like braking or accelerating. In both cases the decomposed
parts of the traffic model should be as minimal as possible, in order to al-
low for elevated reuse in a large number of combinations when building
further and larger models from them.

Ultimately, the goal of this proposal is to create concepts for a generic
framework to decompose CPS into minimal verified components, which
can then be verified in isolation and (re-)used to (re-)build the entire veri-
fiedmodel. For this, the architecture and properties of an abstract compo-
nent have to be specified along with the safety conditions that must hold.
The definition of such a component thereby shall be generic in order to
support a wide range of concrete application scenarios. The architecture

39

allowing to compose components into largermodelsmust include an exact
specification of the interfaces used to connect the different components to
a network alongwith explicating the safety conditions inter-relationships,
in order to avoid further inherent dependencies. If the behavior, i.e. the
satisfaction of the safety condition of an abstract component, can be veri-
fied, an actual component configured within the limits of the safely con-
dition is guaranteed to posses verified behavior. Given an appropriate
method to connect components along their safety condition to a network
for the CPS and provided that each component’s model is verified, it is
then possible to draw conclusion the safeness of the overall behavior of
the CPS.

7.3 Further Plans
In the future, the applicant strives to enhance the CSI expertise of hybrid
systems modeling and verification in Linz. With the help of an Austrian
colleague from CMU (Dr. Stefan Mitsch), who will return to JKU in 2015,
the work will help to establish a model-driven CPS research group at JKU,
based on the EU Marie Curie funded project SPHINX5. In the course of
this Marie Curie grant and overall twoMarshall Plan scholarships, a close
cooperation between JKU and CMU has been established.

References
[1] Altman, E., Gaitsgory, V.: Asymptotic Optimization of a Nonlinear

Hybrid System Governed by a Markov Decision Process. SIAM J.
Control Optim. 35(6), 2070–2085 (1997), \url{http://dx.doi.org/
10.1137/S0363012995279985}

[2] Alur, R.: Formal verification of hybrid systems. In: Proceedings of
the ninth ACM international conference on Embedded software. pp.
273–278. EMSOFT ’11, ACM, New York and NY and USA (2011),
\url{http://doi.acm.org/10.1145/2038642.2038685}

[3] Alur, R., Dang, T., Ivančić, F.: Reachability Analysis of Hybrid Sys-
tems via Predicate Abstraction. In: Tomlin, C., Greenstreet, M. (eds.)
Hybrid Systems: Computation and Control, Lecture Notes in Com-
puter Science, vol. 2289, pp. 35–48. Springer Berlin Heidelberg (2002)

[4] Alur, R., Dill, D.: The theory of timed automata. In: Bakker, J.,
Huizing, C., Roever, W., Rozenberg, G. (eds.) Real-Time: Theory
in Practice, Lecture Notes in Computer Science, vol. 600, pp. 45–
73. Springer Berlin Heidelberg (1992), \url{http://dx.doi.org/
10.1007/BFb0031987}

5Sphinx is an extensible verification-driven engineering toolkit based on the Eclipse platform.
(cf. http://www.cs.cmu.edu/afs/cs/Web/People/smitsch/tools.html)

40

[5] Amin, S., Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Reacha-
bility Analysis for Controlled Discrete Time Stochastic Hybrid Sys-
tems. In: Hespanha, J.P., Tiwari, A. (eds.) Hybrid Systems: Compu-
tation and Control, Lecture Notes in Computer Science, vol. 3927,
pp. 49–63. Springer Berlin Heidelberg (2006), \url{http://dx.doi.
org/10.1007/11730637_7}

[6] van Beek, D.A., Reniers, M., Schiffelers, R., Rooda, J.: Foundations of
a Compositional Interchange Format forHybrid Systems. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) Hybrid Systems: Computation
and Control, Lecture Notes in Computer Science, vol. 4416, pp. 587–
600. Springer Berlin Heidelberg (2007)

[7] Berkenkötter, K., Bisanz, S., Hannemann, U., Peleska, J.: The
HybridUML profile for UML 2.0. International Journal on Soft-
ware Tools for Technology Transfer (STTT) 8(2), 167–176 (2006),
\url{http://dx.doi.org/10.1007/s10009-005-0211-z}

[8] Bingham, B.D., Greenstreet, M.R., Bingham, J.D.: Parameterized ver-
ification of deadlock freedom in symmetric cache coherence proto-
cols. In: FormalMethods inComputer-AidedDesign (FMCAD2011).
pp. 186–195 (2011)

[9] Brillout, R.: Using Theorem Provers as Preprocessors for Hybrid
Systems Model Checking. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh and PA (2012)

[10] Broman, D., Lee, E.A., Tripakis, S., Törngren,M.: Viewpoints, Forma-
lisms, Languages, and Tools for Cyber-Physical Systems (preprint).
In: Proceedings of the 6th International Workshop on Multi-
Paradigm Modeling (MPM 2012) (2012)

[11] Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.:
Languages and Tools for Hybrid Systems Design. Foundations and
Trends in Electronic Design Automation 1(1), 1–193 (2006)

[12] Cellier, F.: Continuous System Modeling. Springer (1991),
\url{http://books.google.at/books?id=c8pODAtyEUAC}

[13] Chen, Z., Liu, Z., Ravn, A.P., Stolz, V., Zhan, N.: Refinement and
Verification inComponent-basedModel-drivenDesign. Sci. Comput.
Program. 74(4), 168–196 (2009), \url{http://dx.doi.org/10.1016/
j.scico.2008.08.003}

[14] Clarke, E.M., Wing, J.M.: Formal Methods: State of the Art
and Future Directions. ACM Comput. Surv. 28(4), 626–643 (1996),
\url{http://doi.acm.org/10.1145/242223.242257}

[15] Crnkovic, I.: Component-based software engineering — new chal-
lenges in software development. Software Focus 2(4), 127–133 (2001),
\url{http://dx.doi.org/10.1002/swf.45}

[16] Damm, W., Dierks, H., Oehlerking, J., Pnueli, A.: Towards
Component Based Design of Hybrid Systems: Safety and Sta-
bility. In: Manna, Z., Peled, D. (eds.) Time for Verification,

41

Lecture Notes in Computer Science, vol. 6200, pp. 96–143.
Springer Berlin Heidelberg (2010), \url{http://dx.doi.org/10.

1007/978-3-642-13754-9_6}

[17] Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly ex-
ponential. J. Symb. Comput. 5(1-2), 29–35 (1988)

[18] David, R., Alla, H.: On Hybrid Petri Nets. Discrete Event Dynamic
Systems 11(1-2), 9–40 (2001), \url{http://dx.doi.org/10.1023/A:
1008330914786}

[19] Fowler, M., Beck, K.: Refactoring: improving the design of exist-
ing code. Object Technology Series, Addison-Wesley, 8 edn. (1999),
\url{http://books.google.at/books?id=1MsETFPD3I0C}

[20] Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O.,
Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable Ver-
ification of Hybrid Systems. In: Ganesh Gopalakrishnan, S.Q. (ed.)
Proc. 23rd International Conference on Computer Aided Verification
(CAV). LNCS, Springer (2011)

[21] Fritzson, P., Engelson, V.: Modelica — A unified object-oriented
language for system modeling and simulation. In: Jul, E. (ed.)
ECOOP’98—Object-Oriented Programming, Lecture Notes in Com-
puter Science, vol. 1445, pp. 67–90. Springer BerlinHeidelberg (1998),
\url{http://dx.doi.org/10.1007/BFb0054087}

[22] Geisberger, E., Broy, M.: Integrierte Forschungsagenda Cyber-
Physical Systems (2012)

[23] Giese, H., Henkler, S.: A survey of approaches for the visual
model-driven development of next generation software-intensive
systems. Journal of Visual Languages & Computing 17(6), 528–550
(2006), \url{http://www.sciencedirect.com/science/article/

pii/S1045926X06000589}

[24] Gupta, A.: Formal Hardware Verification Methods: A Sur-
vey. In: Kurshan, R. (ed.) Computer-Aided Verification, pp.
5–92. Springer US (1993), \url{http://dx.doi.org/10.1007/

978-1-4615-3556-0_2}

[25] Harel, D., Kupferman, O., Vardi, M.: On the complexity of verifying
concurrent transition systems. In: Mazurkiewicz, A., Winkowski, J.
(eds.) CONCUR ’97: Concurrency Theory, Lecture Notes in Com-
puter Science, vol. 1243, pp. 258–272. Springer Berlin Heidelberg
(1997), \url{http://dx.doi.org/10.1007/3-540-63141-0_18}

[26] Helbing, D.: From microscopic to macroscopic traffic models. In:
Parisi, J., Müller, S., Zimmermann, W. (eds.) A Perspective Look
at Nonlinear Media, Lecture Notes in Physics, vol. 503, pp. 122–
139. Springer Berlin Heidelberg (1998), \url{http://dx.doi.org/
10.1007/BFb0104959}

[27] Henzinger, T.A.: The Theory of Hybrid Automata. In: Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science
(LICS ’96). pp. 278–292. IEEE Computer Society Press (1996)

42

[28] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Longman
Publishing Co., Inc., Boston and MA and USA, 3 edn. (2006)

[29] Hu, J., Lygeros, J., Sastry, S.: Towards a Theory of Stochastic Hybrid
Systems. In: Lynch, N., Krogh, B. (eds.) Hybrid Systems: Computa-
tion and Control, Lecture Notes in Computer Science, vol. 1790, pp.
160–173. Springer Berlin Heidelberg (2000), \url{http://dx.doi.
org/10.1007/3-540-46430-1_16}

[30] Jackson, E.K., Kang, E., Dahlweid, M., Seifert, D., Santen, T.: Com-
ponents, Platforms and Possibilities: Towards Generic Automation
for MDA. In: Proceedings of the Tenth ACM International Confer-
ence on Embedded Software. pp. 39–48. EMSOFT ’10, ACM, New
York and NY and USA (2010), \url{http://doi.acm.org/10.1145/
1879021.1879027}

[31] Jifeng, H., Li, X., Liu, Z.: Component-Based Software Engineering.
In: Hung, D., Wirsing, M. (eds.) Theoretical Aspects of Comput-
ing – ICTAC 2005, Lecture Notes in Computer Science, vol. 3722,
pp. 70–95. Springer Berlin Heidelberg (2005), \url{http://dx.doi.
org/10.1007/11560647_5}

[32] Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: System Dynam-
ics: Modeling and Simulation of Mechatronic Systems. John Wiley
& Sons, Inc, New York and NY and USA (2006)

[33] Kern, C., Greenstreet, M.R.: Formal Verification in Hardware De-
sign: A Survey. ACMTrans. Des. Autom. Electron. Syst. 4(2), 123–193
(1999), \url{http://doi.acm.org/10.1145/307988.307989}

[34] Kim, K.D., Kumar, P.: Cyber-Physical Systems: A Perspective at the
Centennial. Proceedings of the IEEE 100(Special Centennial Issue),
1287–1308 (2012)

[35] Klir, G.J.: An Approach to General Systems Theory. Van Nostrand
Reinhold Co (1969)

[36] Kordon, F., Hugues, J., Renault, X.: FromModel Driven Engineering
to Verification Driven Engineering. In: Proceedings of the 6th IFIP
WG 10.2 international workshop on Software Technologies for Em-
bedded and Ubiquitous Systems. pp. 381–393. SEUS ’08, Springer-
Verlag, Berlin and Heidelberg (2008)

[37] Kreiker, J., Tarlecki, A., Vardi, M.Y., Reinhard Wilhelm: Modeling,
Analysis, and Verification - The Formal Methods Manifesto 2010
(Dagstuhl Perspectives Workshop 10482). Dagstuhl Manifestos 1(1),
21–40 (2011), \url{http://drops.dagstuhl.de/opus/volltexte/
2011/3212}

[38] Kurpick, T., Pinkernell, C., Look, M., Rumpe, B.: Modeling
Cyber-physical Systems: Model-driven Specification of Energy Ef-
ficient Buildings. In: Proceedings of the Modelling of the Physical
World Workshop. pp. 2:1–2:6. MOTPW ’12, ACM, New York and

43

NY andUSA (2012), \url{http://doi.acm.org/10.1145/2491617.
2491619}

[39] Lamport, L.: Proving the Correctness of Multiprocess Programs.
Software Engineering, IEEE Transactions on Proving the Correctness
of Multiprocess Programs 3(2), 125–143 (1977)

[40] Larsen, K.G., Pettersson, P., Yi,W.: Uppaal in a nutshell. International
Journal on Software Tools for Technology Transfer 1(1-2), 134–152
(1997), \url{http://dx.doi.org/10.1007/s100090050010}

[41] Lee, E.: Cyber Physical Systems: Design Challenges. In: 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC 2008). pp. 363–369 (2008)

[42] Loos, S.M., Platzer, A., Nistor, L.: Adaptive Cruise Control: Hybrid,
Distributed, and Now Formally Verified. In: Butler, M., Schulte, W.
(eds.) FM : FM. LNCS, vol. 6664, pp. 42–56. Springer (2011)

[43] Loos, S.M., Witmer, D., Steenkiste, P., Platzer, A.: Efficiency Analysis
of Formally Verified Adaptive Cruise Controllers. In: 16th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC
2013) (2013)

[44] Mens, T., Taentzer, G.: Model-driven Software Refactoring. In: Dig,
D. (ed.) 1st Workshop on Refactoring Tools, WRT 2007, in conjunc-
tion with 21st European Conference on Object-Oriented Program-
ming, July 30 - August 03, 2007, Berlin, Proceedings. pp. 25–27 (2007)

[45] Meyer, B.: Applying Design by Contract. Computer 25(10), 40–51
(1992), \url{http://dx.doi.org/10.1109/2.161279}

[46] Mitsch, S., Loos, S.M., Platzer, A.: Towards Formal Verification of
Freeway Traffic Control. In: Proceedings of the 2012 IEEE/ACM
Third International Conference on Cyber-Physical Systems. pp. 171–
180. ICCPS ’12, IEEE Computer Society, Washington and DC and
USA (2012), \url{http://dx.doi.org/10.1109/ICCPS.2012.25}

[47] Mitsch, S., Passmore, G.O., Platzer, A.: A Vision of Collaborative
Verification-Driven Engineering of Hybrid Systems. In: Proceedings
of Enabling Domain Experts to use Formalised Reasoning - Sympo-
sium AISB, Do-Form. pp. 8–17 (2013)

[48] MoBIES team: HSIF semantics (version 3, synchronous edition):
Technical Report (2002)

[49] Nadales Agut, D. E., van Beek, D.A., Rooda, J.E.: Syntax and seman-
tics of the compositional interchange format for hybrid systems. The
Journal of Logic and Algebraic Programming 82(1), 1–52 (2013)

[50] Ouimet, M., Lundqvist, K.: Formal Software Verification: Model
Checking and Theorem Proving (2007), \url{http://www.mrtc.

mdh.se/index.php?choice=publications\&id=1436}

[51] Pettersson, S., Lennartson, B.: Hybrid Modelling focused on Hybrid
Petri Nets. In: 2nd European Workshop on Real-time and Hybrid
systems. pp. 303–309 (1995)

44

[52] Pinto, A., Carloni, L.P., Passerone, R., Sangiovanni-Vincentelli, A.: In-
terchange Format for Hybrid Systems: Abstract Semantics. In: Hes-
panha, J.P., Tiwari, A. (eds.) Hybrid Systems: Computation and Con-
trol, Lecture Notes in Computer Science, vol. 3927, pp. 491–506.
Springer Berlin Heidelberg (2006)

[53] Pinto, A., Sangiovanni-Vincentelli, A.L., Carloni, L.P., Passerone, R.:
Interchange formats for hybrid systems: review and proposal. In:
Proceedings of the 8th international conference on Hybrid Systems:
computation and control. pp. 526–541. HSCC’05, Springer-Verlag,
Berlin and Heidelberg (2005)

[54] Platzer, A.: Differential Dynamic Logic for Hybrid Systems. Jour-
nal of Automated Reasoning 41(2), 143–189 (2008), \url{http://dx.
doi.org/10.1007/s10817-008-9103-8}

[55] Platzer, A.: Differential-algebraic Dynamic Logic for Differential-
algebraic Programs. J. Log. Comput. 20(1), 309–352 (2010)

[56] Platzer, A.: Logic and Compositional Verification of Hybrid Systems
(Invited Tutorial). In: Gopalakrishnan, G., Qadeer, S. (eds.) Com-
puter AidedVerification - 23rd International Conference (CAV 2011).
LNCS, vol. 6806, pp. 28–43. Springer (2011)

[57] Platzer, A., Quesel, J.D.: KeYmaera: A Hybrid Theorem Prover for
Hybrid Systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR. LNCS, vol. 5195, pp. 171–178. Springer (2008)

[58] Pnueli, A.: The temporal logic of programs. In: Proceedings of the
18th Annual Symposium on Foundations of Computer Science. pp.
46–57. SFCS ’77, IEEE Computer Society, Washington and DC and
USA (1977), \url{http://dx.doi.org/10.1109/SFCS.1977.32}

[59] Richards, P.I.: Shock Waves on the Highway. Operations Research
4(1), 42–51 (1956)

[60] Sanislav, T., Miclea, L.: Cyber-Physical Systems - Concept, Chal-
lenges and Research Areas. Journal of Control Engineering and Ap-
plied Informatics 14(2) (2012)

[61] Shi, J., Wan, J., Yan, H., Suo, H.: A survey of Cyber-Physical Systems.
In: International Conference on Wireless Communications and Sig-
nal Processing (WCSP 2011). pp. 1–6 (2011)

[62] Simko, G., Lindecker, D., Levendovszky, T., Jackson, E.K., Neema,
S., Sztipanovits, J.: A Framework for Unambiguous and Extensible
Specification of DSMLs for Cyber-Physical Systems. In: Engineer-
ing of Computer Based Systems (ECBS), 2013 20th IEEE International
Conference and Workshops on the. pp. 30–39 (2013)

[63] Teschl, G.: Ordinary differential equations and dynamical systems,
Graduate studies inmathematics, vol. v. 140.AmericanMathematical
Society, Providence and R.I (2012)

45

[64] Völzer, H., Varacca, D.: Defining Fairness in Reactive and Concur-
rent Systems. Journal of the ACM (JACM) 59(3), 13:1–13:37 (2012),
\url{http://doi.acm.org/10.1145/2220357.2220360}

[65] Wan, K., Hughes, D., Man, K.L., Krilavicius, T., Zou, S.: Investigation
on Composition Mechanisms for Cyber Physical Systems. Interna-
tional Journal of Design, Analysis and Tools for Integrated Circuits
and Systems 2(1), 30–40 (2011)

[66] Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger,
W., Schwinger, W., Kapsammer, E.: A survey on UML-based
aspect-oriented design modeling. ACM Computing Surveys 43(4),
28:1–28:33 (2011), \url{http://doi.acm.org/10.1145/1978802.

1978807}

[67] Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.:
Safety Verification for Probabilistic Hybrid Systems. In: Touili,
T., Cook, B., Jackson, P. (eds.) Computer Aided Verification,
Lecture Notes in Computer Science, vol. 6174, pp. 196–211.
Springer Berlin Heidelberg (2010), \url{http://dx.doi.org/10.

1007/978-3-642-14295-6_21}

[68] Zwillinger, D.: Handbook of differential equations. ACADEMIC
PressINC (1998), \url{http://books.google.at/books?id=

YD4PL0GZgOcC}

46

A Appendix
A.1 Traffic Light - KeYmaera Model

\func t ions {
}

\programVariables {
R t ; //system time
R t t ; // t r a f f i c l i g h t change time
R Trg ; //red−green i n t e r v a l
R rg ; // t r a f f i c l i g h t s ta tus , r =0 ,g=1
R in ; //in (I_1) . . . a c tua l inflow
R capac i ty ; //capac i ty (I_1) . . . capac i ty of inflow
R load ; //load (I_1) . . . used load of inflow
R out ; //out (O_1) . . . a c tua l outflow
R l ; //current load
}

\problem {
// −− i n i t i a l s t a t e desc r ip t i on −−
//times
t =0 & t t =0 & Trg>0
//ac tua l load
& l =0
//rg can only be 0 or 1
& rg=0 // l e t t r a f f i c l i g h t be red i n i t i a l l y
//value ranges (R+)
& in >=0 & capaci ty >=0 & load>=0 & out>=0 //& over>=0 & maxout>=0
//advanced proper t i e s
& load=Trg∗ in

//pre
& load<=capac i ty & out >=2∗ in
−> \[

(
/∗ i f the t r a f f i c l i g h t has not changed for Trg ,
change from red to green or vice−versa ∗/
i f (t t =Trg) then
t t : = 0 ;
/∗ i f the t r a f f i c l i g h t i s red , rg=0 implying no flow ,
i f i t s green rg=1 implying flow∗/
i f (rg =1) then
rg :=0

e l s e
rg :=1
f i

f i ;

47

{ l ’= in−rg∗out , t ’=1 , t t ’=1 , t t <=Trg }
)∗
@invariant (t >=0 & t t >=0 & t t <= t & t t <=Trg
& rg ∗ (rg−1) = 0
& l <=load
& ((rg =0) −> l + (Trg−t t) ∗ (in) + (Trg) ∗ (in−out) <= load)
& ((rg =1) −> l + (Trg−t t) ∗ (in−out) <= load)
)

\]
(l <=load)

}

A.2 Transformer Example - KeYmaera Model

\func t ions {
R A;// @func ("MAX_ACCELERATION") ; /∗robot ’ s maximum ac c e l e r a t i on ∗/;
R B;// @func ("MAX_BRAKING") ; /∗robot ’ s maximum braking∗/
R T;// @func ("MAX_REACTION_TIME ") ; /∗ Time−t r i g g e r l im i t on evolut ion ∗/
R r ; /∗ Radius of the robot ∗/
R obsr ; /∗ Radius of the obs t a c l e ∗/
R buf fe r ; /∗ Required dis tance between cente r of robot and obs t a c l e ∗/

}
\programVariables {

R t ; /∗ time ∗/
R t r a ck r ; /∗ Radius of t rack ∗/
R x @sensor ("MY_POS_D1 ") ; /∗ Pos i t i on of robot in x d i r e c t i on ∗/
R y @sensor ("MY_POS_D2 ") ; /∗ Pos i t i on of robot in y d i r e c t i on ∗/
R v @sensor ("MY_LVEL ") ; /∗ Linear ve l o c i t y of robot ∗/
R a @actuator ("MY_LACC") ; /∗ Linear a c c e l e r a t i on of robot ∗/
R dirx ; /∗ Unit vec tor in d i r e c t i on of t rave l , x d i r e c t i on ∗/
R diry ; /∗ Unit vec tor in d i r e c t i on of t rave l , y d i r e c t i on ∗/
R obsx @sensor ("OBS_POS_D1 ") ; /∗ x Pos i t i on of obs t a c l e ∗/
R obsy @sensor ("OBS_POS_D2 ") ; /∗ y Pos i t i on of obs t a c l e ∗/

}

\problem {
(

v >= 0
& (

Abs (x − obsx) > v^2 / (2∗B) + buf fe r
|
Abs (y − obsy) > v^2 / (2∗B) + buf fe r
)

& dirx^2 + diry^2 = 1
& t ra ck r != 0
& A >= 0
& B > 0

48

& T > 0
& r > 0
& obsr > 0
& buf fe r >= r + obsr
)
−>
\[(

(a := −B)
++ (? v = 0 ; a := 0)
++ (
? (Abs (x − obsx) > v^2/(2∗B) + (A/B + 1) ∗ (A/2 ∗ T^2 + T∗v) + buf fe r
| Abs (y − obsy) > v^2/(2∗B) + (A/B + 1) ∗ (A/2 ∗ T^2 + T∗v) + buf fe r) ;

/∗ con t ro l a c c e l e r a t i on a ∗/
a := ∗ ; ?−B <= a & a <= A;
/∗ guarded non−de t e rm in i s t i c assignment of radius (" s t e e r ") ∗/
t r a ck r := ∗ ; ? t r a ck r != 0

) ;
t := 0 ;
{ x ’=v∗dirx , y ’=v∗diry , dirx ’=−a/ t r a ck r ∗diry , diry ’= a/ t r a ck r ∗dirx ,
v ’=a , t ’ = 1 , t <= T , v >= 0}
@invariant (t >= 0 ,

dirx^2 + diry^2 = 1
) /∗ D i f f e r e n t i a l Invar i an t Proof Annnoation ∗/

)∗ @invariant (
v >= 0

& t ra ck r != 0
& dirx^2 + diry^2 = 1
& (

Abs (x − obsx) > v^2 / (2∗B) + buf fe r
|
Abs (y − obsy) > v^2 / (2∗B) + buf fe r
)

) /∗ Loop Invar i an t Proof Annotation ∗/
\] ((x−obsx)^2 + (y−obsy)^2 > buf fe r ^2) /∗ Safe ty Condition∗/
}

A.3 Transformer Example - CIF Model

model Test () =
|[
d i sc con t ro l r e a l obsy = 0 . 0
cont con t ro l r e a l y = 0 . 0
d i sc con t ro l r e a l obsx = 0 . 0
const r e a l r = 0 .25
const r e a l B = 2 . 0
cont con t ro l r e a l diry = 0 . 0
cont con t ro l r e a l x = −1.0

49

const r e a l buf fe r = 0 . 5
cont con t ro l r e a l t = 0 . 0
const r e a l A = 0 . 0
cont con t ro l r e a l d irx = 1 . 0
const r e a l T = 1 . 0
cont con t ro l r e a l v = 1 . 0
const r e a l obsr = 0 .25
d i sc con t ro l r e a l a = 0 . 0
d i sc con t ro l r e a l t r a ck r = 1 . 0
: :
TestAutomaton :
|(
mode V21 =
i n i t i a l ;
tcp f a l s e ;
when true do a := −B goto V2 ;
when (v = 0 . 0) goto V4 ;
when (((abs ((x − obsx)) > ((((v ^ 2 . 0) /

((2 . 0 ∗ B))) + ((((A / B) + 1 . 0)) ∗ ((((A / 2 . 0) ∗
(T ^ 2 . 0)) + (T ∗ v))))) + buf fe r))

or (abs ((y − obsy)) > ((((v ^ 2 . 0) /
((2 . 0 ∗ B))) + ((((A / B) + 1 . 0)) ∗ ((((A / 2 . 0) ∗
(T ^ 2 . 0)) + (T ∗ v))))) + buf fe r))))

goto V8

mode V2 =
tcp f a l s e ;
when true goto V18

mode V4 =
tcp f a l s e ;
when true do a := 0 . 0 goto V6

mode V8 =
tcp f a l s e ;
when true do a := goto V10

mode V18 =
tcp f a l s e ;
when true do t := 0 . 0 goto V19

mode V6 =
tcp f a l s e ;
when true goto V18

mode V10 =
tcp f a l s e ;

50

when ((−B <= a) and (a <= A)) goto V12

mode V19 =
tcp f a l s e ;
when true goto V20

mode V12 =
tcp f a l s e ;
when true do t r a ck r := goto V14

mode V20 =
tcp (t <= T) , (v >= 0 . 0) ;
inv (x ’ = (v ∗ dirx)) , (y ’ = (v ∗ diry)) ,
(dirx ’ = ((−a / t r a ck r) ∗ diry)) ,
(diry ’ = ((a / t r a ck r) ∗ dirx)) ,
(v ’ = a) , (t ’ = 1 . 0) ;

when true goto V21

mode V14 =
tcp f a l s e ;
when (t r a ck r /= 0 . 0) goto V16

mode V16 =
tcp f a l s e ;
when true goto V18

)|
]|

51

