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1  Introduction 

Nowadays knowledge about materials, their behavior and the underlying physical mechanisms 

governing them, allows the customizing of material properties for more or less every 

application. There are for example many different ways to improve or alter the mechanical 

properties of metals. This is often connected to at least a certain degree of using alloying 

elements such as it is the case for solid solution or dispersion hardening. Different to that, work 

hardening is not in need of any alloying system to work, but is otherwise well known to cause 

embrittlement of the material which is subjected to it. Therefore a subsequent annealing 

process is usually applied to increase the ductility. The only known technique to increase 

mechanical properties such as hardness and strength and not in general causing reduced 

ductility, is grain refinement [1]. This is usually achieved by either applying a fast cooling rate 

to solidifying melts, or by recrystallization through deformation and heat treatment. A more 

novel technique leading to a wider horizon in terms of accessible grain sizes and therefor 

properties and applications is severe plastic deformation (SPD). Before it came up in the early 

1990s [2], the only chance to produce ultra-fine grained (< 1000 nm), or even nanocrystalline 

materials (< 100 nm) was powder consolidation with all its drawbacks such as residual porosity, 

impurities from ball milling etc.  

Since then ultra-fine grained (ufg) and nanocrystalline (nc) materials have been subject to 

numerous scientific studies focused on revealing their unique properties. Besides the 

mentioned outstanding strength potential of ufg materials, diverse studies revealed also 

interesting properties in terms of conductivity, magnetic properties [2], radiation tolerance [3, 

4] etc. But one of the most interesting questions which arose was about the deformation 

mechanisms of such materials. While for face-centered cubic (fcc) materials a significant body 

of research is available, the knowledge about those of body-centered cubic (bcc) and 

hexagonal close-packed (hcp) materials is still modest [5]. However, it is currently believed that 

the well-known kink-pair nucleation mechanism for screw dislocations is, such as for coarse-

grained bcc metals as well, the dominant mechanisms of plastic deformation [6]. 

In order to determine the mechanisms governing the plastic deformation, material properties 

such as the strain rate sensitivity (SRS) or the activation volume (V*) are often considered. 

These are time-dependent and are thus well suited to obtain limiting steps in the process of 

plastic deformation. These quantities can be determined by different testing methods and 

especially nanoindentation became the most popular technique to access them. This is due to 

several reasons such as the ability of probing very small volumes and therefore gaining a large 
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number of data for limited test sites. The possibility of automatizing the testing procedure as 

well as the simultaneous measurement of indentation depth and time make it a favorable 

technique to obtain time dependent values. 

Since the difference between coarse grained or even single crystalline materials compared to 

ufg materials is of special interest, one focus of this work is to compare the mechanism of 

plastic deformation for these types of microstructures. Another aspect will be the 

determination and comparison of the hardness of these materials. The single crystalline 

materials used in this work potentially show further interesting properties such as indentation 

size-effects (ISE) which will be discussed later in detail. Furthermore these experiments are not 

only conducted at room temperature, but at several elevated temperatures as well. 
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2  Theoretical Background 

2.1 Properties and Mechanical Behavior of single 

crystalline and ultra-fine grained body-centered 

cubic Materials  

Mechanical properties such as hardness, strength and ductility of crystalline materials, such as 

metals, at a given temperature are governed by different distinctive features. Besides others, 

these are primarily the chemical composition (i.e. the element or alloy) and the microstructure. 

Both are affecting the movability of dislocations, which are linear lattice defects and the major 

source of crystal plasticity, in different ways. When two or more different sorts of atoms form 

an alloy, solid solutions are built which lead to an elastically distorted lattice of the crystal. The 

interaction between the lattice’s and the dislocation’s area of distortion is affecting the 

movability of the dislocation. However, the microstructure, on which the focus is put in this 

work, describes the size, shape and arrangement of grains in a polycrystalline material. The 

boundaries between the grains display severe obstacles for the movement of dislocations [1]. 

This is obviously the case when different grains with grain boundaries are present, but is not 

the case for single crystalline material, which consist only out of a single grain. The properties 

of a single crystal are thus mainly governed by the mentioned chemical composition and 

additionally the density of dislocations.  

2.1.1 Hardness and Yield Strength 

Upon the most used parameters for the choice of materials is the hardness. This is due to the 

fact that it can be easily obtained by cheap standardized measuring procedures such as 

microhardness testing as for instance Vickers, Brinell or Rockwell hardness testing. Hence it 

allows a fast comparison of different materials which were tested at similar conditions [7]. The 

mathematical definition of the hardness is the ratio between the maximum load of an indenter 

Pmax and the area A of the created indent after a specified dwell time Eq. (1) 
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 � =	�	
�� 	 (1)	
It needs to be said that different techniques of hardness testing observe different projected 

areas based on their measurement principles. Whereas conventional microhardness testing 

methods such as those mentioned above are usually equipped with an optical microscope to 

determine the residual inprint of the indent after unloading, modern nanoscale testing 

techniques such as nanoindentation (see chapter 2.4) measure load displacement curves and 

derive the projected contact area from the unloading slope. 

Another commonly used parameter describing the strength of a material is the yield strength 

Ϭy. This is the stress which needs to be applied to introduce plastic flow, or, more specifically, 

to move dislocations. The flow stress Ϭf is the strength of a material at a given strain. Both are 

commonly determined by tensile or compression yield tests. The mentioned parameters are 

correlated by the constraint factor c*such as shown in Eq.(2) [8]. 

 �∗ =	Ϭ�� 	 (2)	
In practical use, a value of c* = 3 is often applied, although the value is governed by the nature 

of deformation. The higher the ratio of Young’s modulus to flow stress, the more plastic is the 

character of the deformation. To take that into consideration, Johnson [9] suggested the 

distinctions in Table 1: 

 
Table 1 : Overview of constraint factors for different characters of deformation 

• Fully elastic deformation  < c* < 1.07 

• Elastic and plastic deformation 1.08 < c* < 2.80 

• Fully plastic deformation 2.80 < c* <  

 

Microstructural Influence 

Grain refinement of crystalline materials leads to an enhanced flow stress. This behavior was, 

among others, investigated by Hall and Petch in the 1950s [10, 11]. Their proposed mechanism 

explains this behavior based on dislocation pile ups at grain boundaries. These act, due to the 

orientation mismatch between the grains, as obstacles for dislocation movement. The relation 

between the flow stress and the grain size was found as shown in Eq.(3) : 



2 Theoretical Background    

 

-5- 

 
Ϭ� =	Ϭ� ⋅ �

��
�� 	,	 (3)	

where k is the strengthening coefficient and Ϭ0 is the friction stress which includes 

contributions from solutes and particles but not from dislocations [12]. Since the hardness and 

strength of pure metals is mainly caused by microstructure and dislocation density, Eq.(3) leads 

to a considerably increased hardness and strength for ufg polycrystalline materials, compared 

to their chemically equivalent single crystalline or coarse grained counterparts. This is 

especially true when the measurement length scale is above a certain value, where no size 

effect (see chapter 2.1.4) for sx and cg material is occurring. While this equation was confirmed 

countless times for a broad variety of materials, its validity in the lower end of the accessible 

nanocrystalline regime (dG ≈ 10nm) was discussed over the last decades [13, 14, 15]. For this 

grain size regime, a strength plateau or even a softening was reported. However, this is not of 

concern for this work, since the average grain size of the used samples is situated well above 

that (see chapter 3.5). 

Cubic crystal lattices, such as bcc, show in general anisotropic behavior with a 90° symmetry. 

This means that materials properties of single crystals are changing with the lading angle, but 

reach the same values for steps of 90°. For randomly distributed grain orientations in 

polycrystalline materials, this effect is obviously compensated. 

Temperature Influence 

A single crystal containing no further defects (dislocations, impurity atoms, grain boundaries, 

etc.) possesses a specific flow stress, the intrinsic flow stress. When a dislocation moves, the 

atomic bonds to one adjacent crystallographic plane are stretched, those on the opposite 

plane are pushed together. This mechanisms demands energy, respectively stress. At a certain 

stress level the atomic bonds of the dislocation plane switch and the dislocation moves 

forwards by one atom spacing. The stress level needed to overcome this potential is called 

“Peierls-stress” [1]. 

For crystal structures which possess dense packing, such as fcc and hexagonal systems, the 

contribution of the Peierls-stress to the entire flow stress is minor. For bcc sx and cg materials, 

however, the Peierls-stress is a major contributor to the flow stress at low temperatures. On 

the other hand, the influence of this Peierls stress for polycrystalline bcc material is less 

pronounced compared to bcc sx material due to the contribution of grain boundary 

strengthening to the overall flow stress. According to that the flow stress of bcc materials is 

often separated in an athermic part, which is primarily governed by microstructure and solid 

solution hardening (for non-chemically pure materials), and  an strongly temperature 

dependent thermal part which is mostly the Peierls-stress.  
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If the stress applied is not sufficient to enable dislocations to overcome obstacles and move, 

thermal activation can provide the required energy. The probability p of a dislocation to 

overcome an obstacle by means of thermal activation is shown in Eq.(4).  

 � = 	 !�	"−$ − 2 ⋅ % ⋅ � ⋅ �∗ ⋅ &∗	� ⋅ ' (	 (4)	
The numerator in the exponential function represents the energy gap between obstacle 

potential Q and available work done by the movement of a dislocation. λ is the half obstacle 

spacing, b the dislocations Burgers vector, d* the average width of the obstacle potential and 

τ* is the effective stress on the dislocation. k is the Boltzmann constant and T the absolute 

temperature. 

If the Peierls-stress is assumed to be a special kind of barrier, this mechanisms is decreasing its 

share to the flow stress when increasing the temperature. Therefore the Peierls-stress is also 

referred to as “thermic part” of the flow stress and vanishes finally at a material dependent 

critical temperature called Tc [1]. An overview of this behavior for bcc sx and ufg material is 

shown in Fig. 2.1 for the case of tungsten. For the single crystal the Peierls-stress, Ϭ’, is strongly 

contributing to the overall flow stress at lower temperatures, though it vanishes at a strain 

rate dependent critical temperature, Tc (��). Above this temperature, the single crystals flow 

stress is completely governed by its athermic part, Ϭa-sx. Because of the grain boundary 

strengthening, the Peierls-stress plays only a minor role for the flow stress in terms of the 

polycrystal. This is the reason why it is assumed to only possess an athermic part, Ϭa-ufg, with 

strain rate sensitivity that is caused predominantly by grain boundary mechanisms and 

increases with temperature [16]. 

 

 
Fig. 2.1: Flow stress dependence of sx and polycrystalline tungsten as an example for the temperature 

dependence of bcc polycrystalline and single crystalline or coarse grained metals [16].  
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2.1.2 Young’s Modulus 

Hook’s Law is relating mechanical stress Ϭ with strain	ε. The relation factor used is the 

materials constant Young’s modulus E. This is a direct consequence of the interaction between 

the atoms in the crystal lattice and the assumption that a small displacement of atoms from 

its lattice position is reversible and the force needed to do so is in a linear relation to the 

displacement. It can be interpreted as the resistance of a material to elastic deformation. 

Microstructural Influence 

As mentioned for the strength above, the elastic properties of sx cubic materials are in general 

anisotropic as well. Otherwise there is no major influence of the microstructure on the Young’s 

Modulus.  

Temperature Influence 

The Young’s Modulus is corresponding to the curvature of the potential versus atomic spacing 

relation. For each temperature a certain equilibrium bonding distance between the atoms 

exists, which is increasing with temperature. Higher distances are linked to smaller curvatures 

of the potential curve and thus to lower values of the Young’s modulus. This relation is shown 

in Fig. 2.2. An overview of the temperature dependence of Young’s modulus for some metals 

is given in Fig. 2.3 

 

 
Fig. 2.2: Dependence of potential energy between two atoms on the bonding distance. Two different 

temperatures (0K & T2) and corresponding bonding distances r0 are shown [1]. 
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Fig. 2.3: Temperature dependence of Young’s Modulus for different base centered cubic metals [17]. 

 

2.1.3 Strain Rate Sensitivity and Activation Volume 

Some materials’ flow stress shows a significant dependence on strain rate they are subject to. 

This behavior can be described with a power-law relation such as shown in Eq.(5). Here Ϭ� is 

the flow stress, K is an auxiliary variable, �� the strain rate and m the strain rate sensitivity. By 

reassembling Eq.(5) with respect to m the mathematical expression for the SRS can be found 

such as shown in Eq.(6) [18].  

 

Ϭ� = +	 ⋅ ��		 (5)	

 - =	".	/0Ϭ.	/0��(1 	 (6)	
The reason for the appearance of SRS can be explained by time dependent processes such as 

the movement of. Thermally activated mechanisms can be used to explain the influence of 

temperature and differences between bcc and fcc materials. As shown in Eq.(4) the probability 

of a dislocation to overcome an obstacle by thermal activation is increased by elevating 

temperature. Furthermore P from this equation might be interpreted as the chance to 

overcome obstacles for each (temperature caused) oscillation of the atom from its lattice 

position. Therefore it is obvious that due to a higher strain rate the amount of possible 

attempts in a certain time to overcome obstacles is decreased, which directly leads to a higher 

flow stress [1]. Especially the double-kink mechanism which thermally enables the movement 

of screw dislocations, is believed to have a major share on the plastic flow properties of bcc 

materials.  
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Opposite to fcc, bcc metals show a decreasing SRS with decreasing grain size. An overview of 

this trend for different bcc metals in the nc, ufg and coarse grained regime is shown in Fig. 2.4a 

(including Tantalum) and in Fig. 2.4b (including Chromium). Whereas Fig. 2.4a shows results 

from tensile (T) and compression (C) tests received from ECAP and partially cold rolled 

specimens, those from Fig. 2.4b were obtained from electro deposited samples by 

nanoindentation. Though the production route as well as the testing procedure are different, 

the evaluated data follow the same trend of decreasing SRS with decreasing grain size in the 

ufg and coarse grained regime. However, it needs to be mentioned that for the lower end of 

accessible grain sizes – a few 10nm – this trend is discontinued. Some investigations reveal a 

steep increase of SRS with decreasing grain size in this regime [19]. However, since the samples 

used in this work are ufg (>100nm) this is not for any further concern for our studies. 

Though the SRS is already a major indicator for the governing mechanism of plastic flow, there 

is another distinctive variable which is often used in literature: The activation volume V*. It is 

defined as shown in Eq.(7). 

 3∗ =	√3 ⋅ �5 ⋅ ' ⋅ .	/0��.	Ϭ 	 (7)	
Here, kB is the Boltzmann constant and T the absolute temperature. This number is usually 

divided by the cube of the Burgers vector ��, which leads to the approximate amount of unit 

cells which contribute to the rate limiting step of plastic deformation. 

 

Fig. 2.4a.: Overview of the grain size dependence of the strain rate sensitivity for different bcc metals 

including Tantalum [6]. Production route: ECAP and partially cold rolling; testing procedure: tensile or 

compression tests. b.: including Chromium [19] production route: electrodeposition; testing procedure: 

nanoindentation. 

 

For both, the strain rate sensitivity and the activation volume, one can imagine that for single 

crystalline and coarse grained materials which are supposed to show an indentation size effect 
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for the hardness, this might influence these values and make them, in terms of 

nanoindentation depth dependent. Maier et al. [20] could show that this is in fact only true for 

the activation volume, which is increasing with indentation depth till a large share of the 

macroscopic hardness is reached, but not for the SRS which was found independent of the 

indentation depth. Keeping the constant SRS in mind, this behavior is comprehensible with the 

use of Eq.(27), as explained later. 

2.1.4 Size Effect 

Besides the overall differences in terms of strength for different grain sizes, there is one unique 

feature of coarse grained and single crystalline materials: Their yield strength and hardness 

are size dependent. This means that with decreasing indentation size the mentioned numbers 

increase. One of the first comprehensive explanations for that phenomena [21] revealed that 

the high strain gradients in small indents lead to a high number of geometrically necessary 

dislocation which harden the sample. This is shown in a schematic way in Fig. 2.5, where the 

geometrically necessary dislocations form closed loops with Burgers vector perpendicular to 

the plane of the surface. Such length scale dependent behavior can not only be obtained with 

nanoindentation (ISE), but also with other mechanical testing procedures such as micropillar 

compression [22] or tensile testing [23]. 

 

 
Fig. 2.5: A schematic description of geometrically necessary dislocation building circular loops with Burgers 

vector perpendicular to the plane of the surface to realize the ideal geometry [21].  

 

Nix and Gao [21] also found a law based on their strain gradient plasticity theory which allowed 

them to accurately model the size effect measured by means of nanoindentation: 
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��� = 71 8 9∗

9 	 (8)	

Here, H is the hardness at a certain indentation depth h and H0 is the macroscopic hardness of 

the material. h* is an internal length scale which describes the increase of hardness with 

shallower indentation depths and is depending on the chemical composition of the material 

and its microstructure.  

 Production of bulk ultra-fine grained materials  

2.2.1 Technique overview 

Basically, there are two possible routes for the production of ultra-fine grained or 

nanocrystalline materials. These are namely the top down route, which means the refinement 

of an already existing more or less coarse grained microstructure, most often by means of 

severe plastic deformation (SPD), and the bottom up route, using techniques where nano-sized 

powders, produced by sputtering or ball-milling, are consolidated. The later one is chosen 

particularly when the aimed grain size is below a certain limit accessible with the techniques 

of SPD. Table 2 shows a summary of commonly used methods for the production of bulk ufg 

materials according to [2, 19, 24]. 

 
Table 2:  A summary of commonly used methods for the production of bulk nanostructured materials 

separated in top-down and bottom up techniques 

top-down -  

methods of severe plastic deformation 

bottom-up -  

methods of consolidation 

  

• High Pressure Torsion (HPT) • Electrodeposition  

• Equal Channel Angular Pressing (ECAP) • Pressing and Sintering 

• Accumulative Roll Bonding (ARB)  

 

2.2.2 High Pressure Torsion 

Similar to other SPD techniques, HPT introduces a high amount of plastic deformation to the 

sample in order to refine the grain structure. This is achieved by torsional movement of one 

out of two plungers (see Fig. 2.6) while applying a high hydrostatic pressure onto the usually 

disc-shaped sample. This is located in a cavity formed by the dies of the plungers. In theory it 
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is not absolutely necessary that the sample thickness decreases during the deformation 

process. It is only needed to assure a constant traction between the sample and the rotating 

plunger to avoid slipping and therefore insufficient deformation. This would, for example, work 

with perfectly constrained deformation conditions for the sample (Fig. 2.6a). In practical use, 

the deformation conditions are only partly constrained and to guarantee a steady traction 

between the sample and the plungers, it is feasible to use a sample with a higher thickness 

than the dies are able to accommodate. This leads to an emerge of excess material at the 

beginning of the deformation process such as it is shown in Fig. 2.6b.  

Due to the rotation of the plunger, the shear strain in the sample is not equally distributed, 

but a function of the radius as shown in Eq.(9) where n is the number of revolutions, t the 

thickness of the specimen and r the radial position on the sample. Although this is only 

absolutely accurate for the idealized HPT process, it allows an estimation of the shear strain in 

a non-idealized sample as well. 

 ;(<) = 	2 ⋅ = ⋅ 0> ⋅ <	 (9)	
 

 

 

 
Fig. 2.6: Schematic representation of a high pressure torsion setup with mounted sample. (a) Idealized with 

perfect constraint conditions and (b) practical with partially constraint conditions. Adapted from [25]. 

 

The Institute of Metal Physics in Sverdlovsk investigated intense deformations on different 

metallic alloys and substituted Eq.(9), which only considers shear strain, with a formula 

(Eq.(10)) providing the true accumulative strain ε [26]. 
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 �(<) = 	/0	 "2 ⋅ = ⋅ 09 ⋅ <(	 (10)	
 

As a consequence, the grain size in the center of rotation should be quite unaffected and is 

decreasing with the radius or more specifically with strain. This is true till a certain material 

and processing parameter depended minimum grain size is reached at high strain levels. This 

typical behavior is shown in Fig. 2.7 for austenitic steel and different numbers of rotation 

regarding the HPT process. At a certain radial point, the hardness (which is an indicator for 

grain size due to grain size hardening) reaches a maximum level and is not increasing with the 

radius (strain) anymore.  

 

 
Fig. 2.7: Function of microhardness to the respect of the radius of the sample measured on austenitic steel 

for different numbers of rotation [25]. 

 

Though it needs to be mentioned that some authors were not able to detect a significant 

decrease of hardness when approaching the center of their disc-shaped HPT specimens [27, 

28] Pippan et al. [25] is providing possible explanations for the disappearance of an only slightly 

deformed sample center which, are summarized in Table 3. 
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Table 3 : Different reasons for the real and only seemingly disappearance of a only slightly deformed center 

of the HPT specimens 

actual disappearance 

• Additional compressive deformation caused by the loading of the plunger 

• A gap between the centers of rotation for the upper and the lower plunger 

• Badly aligned axes of the plungers 

 

seeming disappearance 

• Hard detectability of small regions with microhardness testing 

• Sample preparation (badly positioned center cut for cross section measurements)* 
* not [25] 

 

 Microhardness 

These are a group of widely used techniques to observe the hardness while penetrating the 

sample in a depth of several micrometers. This means that features in materials which are 

below a certain size cannot be measured independently from other parts of the 

microstructure. However, it allows a precise measurement of the average hardness of the 

microstructure present in the sample.  

A typical measurement procedure for microhardness testing looks as following: Shock-free 

loading of the specimen, load holding for a specific amount of time, releasing the load and 

optically measuring the residual plastic projected area of the indent. A complete result of such 

tests does not only include the calculated number (load divided by the area, see Eq.(1)) but 

also the measurement technique, the applied load and for not standardized dwell times these 

as well.  

For the Vickers hardness a diamond pyramid with a square cross section and an opening angle 

of 136° is used as indenter. The projected diagonal lengths d1 and d2 of the residual indent are 

measured by means of light microscopy and are averaged to the variable d. In Eq.(11) d and 

the applied load P are linked by a together to determine the Vickers hardness [29]. 

 �3 = 0.189 ⋅ ���	 (11)	
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 Nanoindentation  

In the last decades the popularity of nanoindentation techniques increased dramatically for 

different reasons. Besides the unique possibility of testing very thin films, it is primarily the 

ability to determine a wide variety of mechanical properties such as Young’s Modulus, 

hardness, creep and relaxation behavior, and many more, in the deep sub-micron regime [30]. 

As for the microhardness testing, several different indenter shapes, such as Berkovich, 

spherical, Cube Corner, and conical are used. However, since the experiments of this work 

where all carried out with Berkovich indenters, the following explanations will be focused on 

this type. 

Nanoindentation is referred to as depth-sensing indentation (DSI). This means that during the 

process of indentation the penetration depth and the corresponding load are continuously 

recorded, which leads to load displacement curves such as shown in Fig. 2.8. These are the 

very basis of every DSI type analysis. Instead of any optical or electron-microscopic 

measurements of the projected indentation area after the indentation, as it is typical for 

microhardness testing, is derived from the recorded depth and the known indenter geometry. 

Since many materials, but especially ceramics and metals, show a significant elastic recovery 

when unloading, there is a need to specify the different depths which can be measured and 

particularly the depth which is used to calculate the projected indentation area. Fig. 2.9 shows 

the shape of the loaded indent and the residual plastic deformation after unloading. The 

maximum reached depth consisting of an elastic and a plastic part is called hmax, the elastic 

depth hel, the plastic depth hpl. When the indenter penetrates the the sample, the surface is 

bending away in such a way that the actual contact depth hc is smaller than the maximum 

depth in the load displacement curve. hc is derived from the maximum depth and the 

unloading curve, see chapter 2.4.1. 

 

 
Fig. 2.8: Typical load displacement curve including the loading, holding and unloading part as well as the most 

important displacements.  
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Fig. 2.9: Schematic illustration of the different displacements for a surface under load (black line) and after 

the unloading (grey line)  

 

2.4.1 Load Schedules 

As discussed in chapter 2.1.3, the materials hardness and strength are to a certain degree 

influenced by the strain rate at which the sample is loaded. Therefore it is obvious that in order 

to enable the comparison of results, the strain rate needs to be kept constant. Basically there 

are two different options. The first one is two use static experiments were during the loading ��/P is held constant as proposed by [31] and shown in Eq.(12). Here P and ��  are the loading 

and the rate of loading respectively. The other option is to hold just the loading rate constant 

at a certain level which leads to a quasi-static strain rate. For the latter one, the strain rate can 

be again calculated with Eq.(12). 

 �� = ���	 (12)	
Since the unloading part of nanoindentation experiments is fully elastic, it is possible to unload 

at a certain force, gaining an unloading curve for the determination of the stiffness, and load 

again. This cyclic procedure leads to several hardness and Young’s modulus versus depth 

couples per indent. The different peak loadings can be calculated by Eq.(13) were �B is the 

peak load at a certain cycle number n, �	
� is the maximum peak load, N the overall cycle 

number and q a spreading factor [20]. 
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 �B = �	
� ⋅ CBD�CE 	 (13)	
By combining Eq.(12) and (13) the quasi static strain rate can be determined only depending 

on loading time tload, spreading factor and the share of unloading a. This means that for all 

cycles, though they have different peak loads, the strain rate is equivalent.  

 �� = C 8 F 8 1C ⋅ >GH
I 	 (14)	

2.4.2 Determination of Hardness and Young’s Modulus 

Nanoindentation experiments provide primarily the load-displacement curves as output data. 

In the past there where different approaches to use these to determine the mechanical 

properties of the samples material. In 1992 Oliver and Pharr [32] suggested a procedure which 

instead of assuming a linear unloading curve, uses a power function to fit it.  

 �(9) = � ⋅ (9 − 9�)J	 (15)	
 

A, hf and q are fitting parameters. The stiffness Stotal of the sample frame combination is 

obtained by differentiating Eq.(15) with respect to h and setting h equals hmax such as shown 

in Eq. (16). 

 KLHL
G = ���9 = � ⋅ C ⋅ (9	
� − 9�)JD�	 (16)	
  

In order to separate the stiffness of the machine and the sample itself, the frame compliance 

Cf is subtracted from the total compliance Ctotal, which is the inverse of the overall stiffness 

Stotal. This approach (Eq.(17)) provides the stiffness S of the sample. 
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 K = 1MLHL
G − M�	 (17)	
  

The elastic deformation around the indenter tip hs is a function of Pmax, S and a variable called 

ε (εBerkovich = 0.75) taking the tip geometry into account (Eq. (18)) 

 9N = �	 ⋅ �	
�K 	 (18)	
  

The contact depth is calculated by subtracting hs from hmax. Combining this with Eq. (18) leads 

finally to the formula (Eq.(19)) which is commonly used to determine the contact depth from 

nanoindentation experiments. 

 9O = 9	
� − � ⋅ 	�	
�K 	 (19)	
  

To evaluate the contact area Ac from the contact depth, it is crucial to know the exact 

relationship between these two numbers, the so called area function. For this task Oliver and 

Pharr [32] proposed an approximation by means of a polynomial equation (Eq.(20)) in which 

C1 to C9 are the coefficients. For the sake of simplicity in practice usually only the first three 

terms are used. The error caused by skipping the last six terms is believed to be less than the 

inaccuracy of the area function calibration (see chapter 2.4.3). 

 �O(9O) = M� ⋅ 9O� 8 M� ⋅ 9O 8 MP ⋅ 9O�� 8 MQ ⋅ 9O�Q 8⋯8 MS ⋅ 9O���T	 (20)	
  

Finally, the hardness can be calculated as the quotient of the maximum load and the calculated 

contact area which leads to Eq. (21). 
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 � = 	�	
��O 	 (21)	
 

The reduced modulus Er, which is a property of the sample and the indenter, can be obtained 

by Eq.(21). β is a geometry factor which takes into account that the Berkovich indenter tip is 

not a body of revolution (βBerkovich = 1.034). 

 UV = √=2 ⋅ W ⋅ KX�O	 (22)	
 

Since the contact between sample and indenter tip is very similar to a series of springs with a 

certain stiffness, the relation between reduced modulus Er, the modulus of the indenter Ei and 

the sample’s modulus E, is very close to such equations as well. Only the lateral contraction 

needs to be further taken into account by the Poisson’s ratio of the indenter material νi and of 

the sample material ν.  

 
1UV = 	1 − YZ�ZUZ 8 1 − Y�

U 	 (23)	
 

2.4.3 Calibrations 

As a consequence of the dependency of both, hardness and Young’s modulus on the frame 

compliance and the area function, the need for a precise calibrations of both values arises. In 

order to do so a material with isotropic mechanical properties is used for the calibration 

indents. Commonly used is fused silica with a hardness of 8.85 GPa, a Young’s modulus of 

69.6 GPa and a Poisson’s ratio of 0.17 [33]. Moreover, fused silica shows only a very little 

inclination to build “pile-ups” (chapter 0) which falsify results when not corrected. Although 

recent publications [34] report that the area function measured on fused silica is not an 

inherent property of the tip alone but rather of the fused silica as well, it still stays a very 

suitable reference material.  

For the actual calibration about 100 indents with different loads and therefore different depths 

are made. Since the mechanical properties hardness and Young’s modulus are well known for 
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fused silica, one can calculate the area function for different loads using Eq. (21) and Eq. (22). 

By the use of a least square method the frame compliance is varied till a minimum mismatch 

between the results from the two mentioned equations is reached.  

Likewise is the procedure for the area function determination: A least square method is again 

used to obtain a minimal mismatch between Ac derived from Eq. (21) and Eq. (22), this time 

varying the coefficients of the first three terms of Eq. (20). 

2.4.4 Determination of the Strain Rate Sensitivity and Activation 

Volume 

There are several different methods to obtain SRS with nanoindentation. These are mainly 

strain rate jump tests [6], which apply different distinctive strain rates during one indentation 

cycle. The constant strain rate method (CSR) proposed by Lucas [31] is based on several indents 

with different but constant strain rate. And the constant load (CL) method suggested by Mayo 

et al. [35] uses relaxation during a constant load segment to obtain the needed hardness and 

strain rate data. Since for the strain rate jump test special equipment is required and for the 

CSR method already problems have been reported from the past with the used setup, 

especially arising from issues with very low strain rates, the experiments carried out in this 

work are all CL method based. Thus this chapter is also focused on this approach to determine 

SRS. 

The basic idea of the CL method is to obtain time dependent hardness numbers and 

corresponding strain rates due to the creep of the material during a constant load segment at 

maximum load. This results in a major difference compared to the other techniques mentioned 

above. Namely the continuous, instead of discontinuous, sets of hardness and strain rate data. 

The hardness for nanoindentation experiments was already determined in Eq. (21). Ac is a 

function of hc (Eq.(20)), which is increasing over time as a result of the creeping material. 

Hence, the hardness becomes a time dependent number as well. The strain rate ��	 on the other 

hand is defined as shown in Eq. (24). Here, ha is the absolute depth consisting of a time 

dependent part hr and the depth h0 reached during the loading of the indenter right before 

the holding segment starts (Eq.(25)), 	h\�  is it the derivation of ha with respect to time required 

to calculate the strain rate. 

 

�� = 	 9
�9
 	 (24)	
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 9
(>) = 9V(>) 8 9�	 (25)	
 

Different to usual nanoindentation tests which are targeted on evaluating hardness and 

Young’s Modulus, experiments with long dwell times often lead to a considerable depth gain 

by creeping. hs calculated with Eq.(18) using the slope of the unloading curve gives the accurate 

number for the end of the holding segment, whereas hs for the start of it is slightly smaller. 

However, this is a systematic drawback of this method which can only be avoided by using 

constant stiffness measurement (CSM) techniques. Therefore, the whole range of h(t) has 

been subtracted by the same hs calculated from the unloading slope to obtain a quasi-contact 

depth ha(t). 

It is common practice to fit the received depth versus time data [36, 37]. This simplifies the 

differentiation with respect to time which is needed for the calculation of 9
� . The fitting was 

eventually done according to Eq. (26).  

 9
(>) = F ⋅ (> − �)O 8 � ⋅ >	 (26)	
 

In Fig. 2.10 an illustration of the original raw data of a nanoindentation experiment as well as 

the related fitting curve are shown. It is evident that the creep rate is decreasing over the dwell 

time, which provides the needed range of different strain rates for later evaluation. This makes 

finally the SRS for every couple of hardness and strain rate assessable with utilizing Eq.(6). 

 

 
Fig. 2.10: Illustration of the time dependent part of the creep curve ha(t) and the related fit. Furthermore, the 

plot is schematically separated into Stage A and B.  

 



2 Theoretical Background    

 

-22- 

Owing to the mentioned continuous data of hardness and strain rate, there is also not one SRS 

but rather as many as hardness and strain rate data couples. This leads to the question of 

comparability of the measured SRS’ by different techniques. Recently, there are two major 

approaches. Peykov et al. [36] suggested to separate the creep curve into two distinctive 

regions, namely stage A and B (see Fig. 2.10) and calculate an average SRS for both. This idea 

is primarily driven by the assumption that stage B might be stronger influenced by drift issues 

than it is stage A and that the received m-values from stage A where fairly consistent with 

those obtained by discontinuous methods. Opposite to that, Maier et al. [38] propose to 

interpret the different values as dependency of the SRS to the flow stress. Both approaches 

will be involved in the calculation and the following discussion, see chapters 4.4.2. 

In order to calculate the SRS a slight alteration of to Eq. (7) is used. Since the SRS and the 

hardness are already known, Eq. (8) is a practical approach in finding the activation volume. 

Since the flow stress needs to be derived from the hardness, it is necessary to estimate the 

constraint factor, which was finally determined as 2.8 for all samples. 

 

3∗ = 	√3 ⋅ �5 ⋅ ' ⋅ �∗ ⋅ 1- ⋅ �	 (27)	

2.4.5 Analysis of the Indentation Size Effect  

As mentioned in chapter 2.1.4, the ISE is only pronounced in coarse grained or sx materials. In 

Fig. 2.11a three hardness versus depth curves showing a clear ISE are plotted for the single 

crystalline bcc metals tungsten, molybdenum and niobium.  

For the actual evaluation of the ISE the model of Nix and Gao is used (Eq.(8)). Since the 

hardness values H at certain depths h are known, the macroscopic hardness H0 as well as the 

internal length scale h* can be computed. For that task the original equation is rewritten to 

Eq.(28) which is obviously linear and thus offers the possibility of using linear regression 

methods.  

 �� = ��� 8��� ⋅ 9∗ ⋅ 19	 (28)	
 

With the y-interception of the regression line H0 can be determined which is also required to 

calculate h*. The gained data are usually shown in a so called Nix-Gao plot where the ordinate 

is H�/H�� and the abscissa is the reciprocal value of h. This is to enable a direct display of h* via 

the slope of the regression line (Fig. 2.11b) 
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Fig. 2.11 (a) shows an overview of the size effect measured on different bcc single crystals. Namely Tungsten, 

Molybdenum and Niobium. (b) shows the relating Nix-Gao plots [16]. 

 

Of special concern for the interpretation of the gained data is the fact that the ISE is not every 

time easily distinguishable from other effects. Fischer-Cripps [30] reports of several non-ISE 

related influences observed which can really, or only seemingly increase the hardness of a 

material at shallow depths and might be misinterpreted as ISE (Table 4). 

 
Table 4 : Summarization of different reasons to obtain an actual or only and seeming increase of hardness 

values at shallow indentation depths. 

actual hardness increase seeming hardness increase 

• Indentation Size Effect • bad area function 

• thin oxide layer on the surface • friction between indenter and surface 

• strain hardening from preparation  

2.4.6 Incipient Plasticity – “Pop-Ins” 

The load displacement curves of nanoindentation tests carried out on well-polished and non-

deformed materials (e.g. fully annealed or single crystalline materials) show a remarkable 

feature. The transition between purely elastic to plastic deformation is accompanied by a 

depth excursion of the indenter while the load keeps constant in a load-controlled test. The so 

called “pop-in” marks the onset of plasticity, or, put differently, the moment where dislocation 

start to move. A typical load displacement curve for such a behavior is shown in Fig. 2.12. 
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Fig. 2.12: Schematic illustration of a typical load displacement curve of a load controlled test, including a pop-

in event. The ranges of the elastic as well as of the plastic part (separated by the pop-in excursion) are shown. 

 

It has been reported numerous times that regarding to contact mechanical considerations the 

shear stress sustained before yielding is in the order of the theoretical shear strength [39]. 

Furthermore the very small probing volumes of nanoindentation experiments are often 

assumed to be free of dislocations and other sorts of defects. Taking these thoughts into 

consideration, it seems feasible to attribute homogeneous dislocation nucleation (in particular 

the formation of a closed loop) to the pop-in event as it was suggest among others by Chiu 

[40]. First doubts to this theory where mentioned by Mason et al. [41] who found higher rate 

and temperature dependencies (lower activation energies and volumes) than expected for 

homogeneous dislocation nucleation. A current report [42] obtains proper accordance of the 

theory of homogenous dislocation nucleation for small tip radii (<210nm), but not for larger 

ones. Consequently, it is supposed that for very small volumes the homogenous dislocation 

nucleation might govern the incipient plasticity, whereas for larger ones the activation of 

already existing dislocation might be predominant. This is underlined by Fig. 2.13 in which the 

cumulative probability of pop-in events versus the load is displayed for radii ranging from 60 

to 759nm. While (a) shows a comparison with a prediction (solid line) only based on 

homogenous dislocation nucleation, (b) shows a new prediction involving activation of already 

existing dislocations as well, which gives a much better fit. 
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Fig. 2.13: Comparison of measured and predicted cumulative probability of pop-in events for (a) a model 

based only on homogenous nucleation of dislocations and (b) for a model including the activation of 

preexisting dislocations as well [42]. 

 

For the analysis of the incipient plasticity data gained from nanoindentation, usually the 

assumption is made that the contact between indenter tip and the surface of the sample can 

be approximated with Hertz’ contact relation between a sphere and a flat surface. This is not 

only assumed for actual spherical, but also for Berkovich indenters with a rounded tip [43]. The 

equation for the depth dependence of the load is shown in Eq.(29). 

 � = 43 ⋅ UV ⋅ ^�/� ⋅ 9P/�	 (29)	
 

P is the load, Er the reduced modulus of the contact, R the tip radius and h the elastic depth. 

By fitting the elastic part of the loading curve, either the tip radius can be estimated from a 

known reduced modulus (which was done in this work) or vice versa. To trigger the depth 

recording of the nanoindenter, a load of 0.05 mN is required. For logical reasons the load data 

start at this number as well. Nevertheless, the exact depth at this load, which is assumed to be 

higher than zero, cannot be known precisely. In the light of that, Hertz’ contact equation was 

modified by the addition of an initial starting depth h0 to improve the goodness of fit. This led 

to Eq.(30), which was used to fit the elastic loading part of the sx materials and in which a is a 

proportional constant consisting the tip radius and the reduced modulus of the sample tip 

contact. 
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 � = F ⋅ (9 8 9�)P/�	 (30)	
 

The load induced shear strain pm under the indenter can be calculated with Eq.(31). 

 �	 = `6 ⋅ � ⋅ UV�=P ⋅ ^� a�/P	 (31)	
 

This number can be compared to the theoretical shear strength of the material which can be 

calculated according to Eq. (32). The theoretical shear strengths reported in literature are 115 

and 69 GPa for chromium and tantalum, respectively [44]. 

 &Lb = c2 ⋅ =	 (32)	
 

2.4.7 Pile-ups and Sink-ins 

Plastic deformation under the indenter might lead to plastic distortions, either called sink-ins 

or pile-ups, of the material around it. Both of them are not considered by the Oliver-Pharr 

procedure [20]. Which one of those actually occurs is expected to be dependent on the ratio 

of yield strength to Young’s modulus and the strain hardening properties of the material. 

According to [30], materials with a high strain hardening potential (e.g. well annealed or sx 

metals) might be more likely subject to sink-ins. This is caused by a strength gain of plastically 

deformed material which leads to a favored flow of the residual material around it. Thus 

material farther away from the indenter has a bigger share on the overall plastic deformation 

and the material close to indenter tends to sink in. On the other side materials with low strain 

hardening potential (e.g. highly deformed metals such as ufg materials produced by SPD) and 

a high ratio of young’s modulus to yield strength are showing a higher susceptibility for pile-

ups. This is for the simple reason that most of the plastic deformation takes place close to the 

indenter. In Fig. 2.14a a schematic cross-section of an indent shows sink-in behavior on the left 

side and piling up on the right side. Fig. 2.14b illustrates the actual contact areas of indents 

which are influenced by a sink-in (left) and a pile up (right) respectively.  
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As a result of such distortion the contact area is either underestimated (sink-in) or 

overestimated (pile-up). Since Ac is influencing all further analysis results, unnoticed sink-ins 

or pile-ups might falsify the final experimental results considerably. For indents with a 

sufficient size, strong distortions are potentially detectable with light microscopy. Otherwise 

the use of a scanning electron microscope (SEM) is feasible, though only the use of an atomic 

force microscope (AFM) or similar devices delivers sophisticated information about the 

distortion’s exact geometry. In the past several different procedures had been suggested to 

take these issues into consideration [45, 46]. However, a very simple procedure to correct the 

influence of pile-ups and sink-ins is to estimate their heights or depths, by means of atomic 

force microscopy or similar techniques. The ratio of hp to ht (Fig. 2.14a) can then be used to 

adjust the contact depth. 

 

 
Fig. 2.14: A schematic cross-section of an indent with a sinking-in on the left side and a piling-up on the right 

side (a). Actual contact are of indents which are subject to sink-in (left) and pile-up behavior (right) (b). 

Adapted from [30]. 
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3  Experimental Procedure 

 Starting Material 

The original material for this work were single crystalline chromium and tantalum rods with a 

diameter of 10 mm, obtained from Mateck GmbH, Jülich, Germany. Their purities are 5N and 

4N for chromium and tantalum, respectively. These were cut by means of a diamond wire saw 

into about 1 mm thick disc-shaped samples. Since sx and ufg samples were required, one 

sample of each material was kept in the sx state, whereas three others were processed by HPT 

to achieve an ufg microstructure without any changes in purity. After the surface preparation, 

each disc was finally cut into four segments to achieve a higher amount of individual samples. 

 High Pressure Torsion 

For the production of the ufg samples out of the sx discs, the HPT facility at the Erich- Schmid- 

Institut, Leoben, Austria with a maximum load equivalent to 40t was used. To enable the 

processing of different materials (e.g. single crystals, powders, etc.) and different sample sizes, 

the upper and the lower plunger are exchangeable. Before mounting the sample in the lower 

plunger, the dies and the sample were sandblasted. This was done to increase friction in order 

to avoid slipping between the rotating upper plunger and the samples.  

The HPT runs itself were carried out with the maximum available load of 40 t (≈390 kN), which 

resulted in an approximate pressure of 4.95 GPa. In total 10 revolutions were conducted at a 

rotational speed of 0.2 min-1 on each sample. Due to the high strengths of the final ufg 

material, the abrasion of the plunger dies was considerably high. Therefore, after every second 

run, the dies of both plungers were reshaped by lathing and again sandblasted. Altogether 

three chromium and three tantalum discs were processed which all had a thickness between 

0.6 and 0.7mm. 
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 Sample Preparation 

The preparation of the surface plays a major role for the accessibility of very fine 

microstructures to methods of electron microscopy such as BSE and EBSD imaging. Moreover 

the thorough preparation is crucial for the reliability and homogeneity of nanoindentation 

experiments. The sx as well as the ufg samples were prepared according to Table 5. In detail, 

for the microstructural investigations the cross-sections for radius-dependent examination 

were prepared, for the nanoindentations the top surfaces, respectively (Fig. 3.1). 

  
Table 5 : Overview of the preparation methods for sx and ufg chromium and tantalum. Numbers written in 

brackets represent the graining of the used polishing method. 

methods chromium  tantalum 

• mechanical grinding SiC 500-4000   SiC 800-4000 

• mechanical polishing - MD-Dur (9 μm) 

- MD-Dac (3 μm) 

- MD-Nap (1 μm) 

- MD-Chem (0.04 μm) 

- MD-Largo (9 μm) 

- MD-Dac (1 μm) 

- MD-Chem (0.04 μm) 

• electrolytic polishing - electrolyte: A2 (Struers) 

- voltage: 20 V 

- time: 10 s 

 

- 

• Vibro - MD-Nup (0.04 μm) 

 

 

 

 
Fig. 3.1: Illustration of the HPT processed disc (a), a halved disc showing the cross-section (dashed area) where 

microhardness measurements were conducted (b), and the final sample shape for nanoindentation (grey 

area) (c). 
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 Microhardness Measurements 

Microhardness measurements were conducted on halved HPT-samples (ufg) (Fig. 3.1b) over 

the whole radial range of their cross-sections for both materials. This was done to obtain the 

radius dependency of the hardness and hence the onset of the HPT grain size limit. The middle 

of the cross-sections was used as a starting point, measurements with a spacing of 0.5 mm 

along the radius of the specimen were subsequently performed resulting in about 21 indents 

per sample.  

The measurements were conducted on a BUEHLER MicroMet 5100. The used loads were 500g 

(HV 0.5) for chromium and 1000g (HV 1) for tantalum, respectively.  

 Microstructural Investigations 

In order to gain detailed information about the evolved microstructure of the HPT samples, 

EBSD and BSE imaging was used. This is of major interested because the grain structure 

exceptionally contributes to the mechanical properties of the material as discussed in chapter 

2.1.1. The used SEM was a LEO Gemini 1525 equipped with BSE and EBSD detectors. 

As for all techniques based on backscattered electrons, EBSD and BSE signals increase with the 

atomic number (Z) of the material [47]. Since for the EBSD pattern only the part of electrons 

satisfying Bragg’s law are contributing, this method is particularly delicate to a lack of 

backscattered electrons. Due to the higher atomic number of tantalum (Ztantalum = 73) 

compared to chromium (Zchromium = 24) it was expected to obtain higher quality EBSD maps 

from tantalum. For this reason the microstructural investigation of chromium was eventually 

carried out by means of BSE imaging. Since this technique does not allow for an automatized 

determination of the average grain size, a manual grid method was used. Thereby a grid is 

superimposed to a BSE image and the number of grain boundaries on a grid line are counted, 

enabling the calculation of the average grain size. For the EBSD analysis a minimum grain size 

of ten pixels and a minimum misorientation of 15° where set. For both materials different 

radial distances from the center of the cross-section were chosen to investigate the 

dependency of the microstructure and especially the average grain size with respect to the 

radial position of the sample. In Table 6 the exact positions of the microstructure 

measurements are shown. 

 
Table 6 : Radial positions of the microstructural investigations of chromium and tantalum 

chromium ufg (BSE) [mm] tantalum ufg (EBSD) [mm] 

0.0 – 1.0 – 2.0 – 3.0 – 4.0    0.0 – 0.5 – 1.0 – 1.5 – 2.0 –  

2.5 – 3.0 – 3.5 – 4.0 – 4.5  
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 Annealing Experiments  

Since the nanoindentation tests were performed at several different elevated temperatures, 

the chance of a recrystallization of the ufg microstructures had to be investigated prior. The 

widely known Tammann’s law [48] suggests that for highly deformed pure metals, the 

recrystallization temperature is at about 40% of the melting temperature. Although this is only 

a very rough estimation (not including the exact degree of deformation, impurities, alloy 

elements, etc.), it shows the importance of the melting point for recrystallization. Though both 

materials used in this work are refractory metals which are well known for their high melting 

points, chromium (Tm, chromium = 1900°C) and tantalum are still (Tm, tantalum = 2996°C) far apart. 

Therefore, only chromium was subject to the performed vacuum annealing tests. 

The annealing runs were carried out from 100 to 500°C with 100°C steps in between in a 

XERION vacuum furnace. The temperature profile was set accordingly to a heating rate of 

10 °C/min and a dwell time of 60 min. After each annealing the microstructure of the chromium 

sample was investigated by electron microscopy (BSE) at radial positons of 4mm to the center 

of the sample.  

 Nanoindentation  

In order to obtain mechanical properties such as hardness, Young’s modulus, SRS and 

activation volume, nanoindentation experiments were conducted. In the following chapter the 

instrumental setup, as well as the different tests and corresponding parameters are explained. 

The data processing and plotting was carried out with the manufacturer’s software NanoTest 

Platform Three ®, Microsoft Excel®, and largely using self-written MATLAB® scripts.  

3.7.1 Experimental Setup 

The used nanoindentation facility Micro Materials NanoTest Platform3, Micromaterials, UK 

(Fig. 3.2a) was located at the Department of Nuclear Engineering, University of California, 

Berkeley. The setup consisted of the nanoindenter, the vibration damping table it was placed 

on, and the chamber it was housed in. The latter is required to enable the implementation of 

the purging gas system. This is thought to keep an extremely low oxygen content atmosphere 

in the chamber to avoid oxidation and similar undesired influences. For high temperature 

experiments the nanoindenter was equipped with a high temperature option with heated 

indenter tip and sample configuration (Fig. 3.2b). This allows a separate controlling of indenter 

and sample temperature. Because of their high reactivity with transition metals such as 

chromium and tantalum, respectively, diamond indenters are fairly sensitive to high 
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temperature contact with this type of metals [49]. However, since the maximum temperature 

for the experiments carried out in this work was only around 300 °C, a diamond indenter 

(Ediamond = 72 GPa, νdiamond = 0.07) was used for room temperature, as well as for elevated 

temperature indentation experiments.  

  

  
Fig. 3.2: Overview of the nanoindenter in the chamber (a). Details of the actual indenting high temperature 

set-up (b) showing  heat shield (1), indenter (2), stage (3), high temperature sample holder and heating system 

(4) wiring for the sample heater’s power supply and the thermocouple (5) 

 

3.7.2 Preparation for Nanoindentation  

For the room temperature experiments, the samples where fixed to a shaft-shaped aluminum 

sample holder with super glue. For elevated temperatures a heatable sample holder was used 

instead (Fig. 3.3). Furthermore high temperature cement (Omega Bond 600) was applied 

instead of the glue to avoid degradation issues. On the surface of the heated area of the sample 

holder, the actual specimen and a dummy sample with an attached thermocouple were 

mounted. While the specimen surface was kept free, the thermocouple was fixed to the 

surface of the dummy sample with cement. In order to guarantee consistent drying of the wet 

deployed cement, a waiting time of approximately one day was observed. After attaching the 

sample holder onto the nanoindenter stage, another hour with the door closed was waited for 

thermal equilibration.  
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Fig. 3.3: Dummy sample for temperature controle (1) and indentation sample (2) on the heatable sample 

holder (“hot stage”) (3) with the according wires for power supply and the thermocouple (4). 

 

3.7.3 Experimental Parameters 

Though microhardness measurements and microstructural investigations show a fairly wide 

radial range with similar sample properties for the ufg specimens, a radius of 3.5mm to the 

former disks center was chosen as testing area. For the single crystalline samples no such 

limitations were applied. The required maximum loads for each material were determined by 

test indents. The loading time was chosen to provide a comparable strain rate, whereas the 

unloading time was set empirically. Though it needs to be mentioned that this leads to 

different loading and unloading strains. The used set-up provides an automatic drift correction 

measurement at the end of the (last) unloading curve. This can be seen in Fig. 3.4 and Fig. 3.5.  

Basically two different types of experiments were conducted. The first one was to obtain 

hardness and Young’s modulus with short dwell times to avoid distortion caused by creep or 

thermal drift. These were carried out with a cyclic loading scheme consisting of eight peak 

loads and thus eight unloading curves such as shown in Fig. 3.4. A further use of these tests 

was to observe pop-in events on the sx samples. An overview of the parameters for these 

experiments can be seen in Table (7). The different peak loads for this kind of tests were 

calculated with Eq. (13).  
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Fig. 3.4: Load – time schedule used for the cyclic test runs. On the left-hand side an overview is illustrated. 

The right-hand side is showing the load, dwell and unloading time as well as different loads for one segment 

of the schedule in detail.  

 

 

 
Table 7 :Load-time schedules for the cyclic indentation runs for all used materials 

Load 

Controlled 

Experiment 

load-profile (I) 

[mN] 

load-profile (II) 

[mN] 

loading 

time [s] 

unlading 

time [s] 

dwell 

[s] 

Chromium ufg 

-  

-  

-  

-  

-  

-  

-  

-  

8.85 

13.25 

19.85 

29.65 

44.45 

66.75 

100.00 

150.00 

x 15 5 5 

Chromium sx 

-  

-  

-  

-  

-  

-  

-  

-  

1.41 

2.11 

3.16 

4.74 

7.11 

10.66 

16.00 

24.00 

x 15 5 5 
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Tantalum ufg 

-  

-  

-  

-  

-  

-  

-  

-  

7.00 

10.50 

15.80 

23.70 

35.60 

53.30 

80.00 

120.00 

-  

-  

-  

-  

-  

-  

-  

-  

14.63 

21.85 

32.92 

49.38 

74.07 

111.11 

166.67 

250.00 

15 5 5 

Tantalum sx 

-  

-  

-  

-  

-  

-  

-  

-  

1.17 

1.76 

2.63 

3.95 

5.93 

8.89 

13.33 

20.00 

-  

-  

-  

-  

-  

-  

-  

-  

1.31 

2.35 

4.23 

7.62 

13.72 

24.69 

44.44 

80.00 

15 5 5 

 

The second type of experiments was focused on the determination of SRS and V*. Owing that, 

a long dwell time at peak load should guarantee a sufficient creep depth. A schematic load-

time schedule for these tests is shown in Fig. 3.5. The used parameters can be found in Table 

8. 

 

 
Fig. 3.5: Load – time schedule used for the long dwell time runs.  
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Table 8 : Load-time schedules for the long dwell time runs for all used materials.  

Load 

Controlled 

Experiment 

max. load (I) 

[mN] 

max. load (II) 

[mN] 

loading time 

[s] 

unlading time 

[s] 

dwell 

[s] 

Chromium ufg - 100 x 15 5 200 

Chromium sx - 24 x 15 5 200 

Tantalum ufg - 80 - 120 15 5 200 

Tantalum sx - 20 - 80 15 5 200 

 

The temperatures at which the experiments were carried out were slightly different for 

chromium and tantalum due to their different Tc values. The chromium samples were 

measured at 25 °C, 100 °C, 200 °C and 300 °C, while tantalum was measured at 25 °C, 100 °C, 

250 °C, and 300 °C.  

 Post experimental Investigations 

3.8.1 Pile-ups 

Images made of the indents by light and electron microscopy revealed a piling up of material 

around the indents. This leads to an underestimation of the contact depth and thus distorts 

the results from nanoindentation (chapter 2.4.7). The AFM-mode of the nanoindenter was 

used to determine the shape and height of these pile-ups to enable a suitable correction. 

200nm was chosen as a step width for the surface scanning process. Afterwards, the data were 

analyzed and plotted with a MATLAB script. 

3.8.2 Indent Cross-Sections  

To verify a possible change of the microstructure due to grain growth at elevated temperatures 

and/or the plastic deformation caused by indentation, cross-sections of the 300 °C indentation 

runs on ufg chromium and tantalum were made using a focused ion beam. These cross-

sections also provide reliable information about the potential formation of an oxide layer on 

the surface of the material. In order to receive a distinctive and clean surface, a platinum 

deposition was applied on top of the indent before the milling step.  
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4  Results 

 Microhardness Measurements 

The ufg samples were tested such as described in chapter 3.4. The chromium specimen shows 

a hardness minimum of 289 HV 0.5 at the center. Measurements at a radial position of 1mm 

already show hardness numbers of about 500 HV 0.5. After this steep increase, the further 

curve’s slope is flatter, reaching maximum values of about 550 HV 0.5 (Fig. 4.1a). This is about 

13% higher than Edalati et al. [50] report for their 200 nm average grain size microstructure. 

The tantalum sample on the other hand does not show a hardness minimum towards the 

center, but instead a very evenly distributed microhardness of about 420 HV 1 with a peak 

value of 438 HV 1 (Fig. 4.1b). In Table 3 (chapter 2.2.2) several reasons for the disappearance 

of characteristic minimums are discussed. The average hardness of the tantalum is 

approximately 5% higher compared to literature values [50] which minors the probability of 

unsufficient strain insertion. Thus, the missing minimum is strongly believed to be caused by 

an off-centered cut of the sample. 

 

Fig. 4.1: Microhardness versus radial position of the measurements for ufg chromium (a) and tantalum (b). 
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 Microstructural Investigations 

To provide sophisticated information about the evolved microstructure of the HPT processed 

samples, BSE investigations were performed on a chromium and EBSD investigations on a 

tantalum sample. As described in chapter 3.5, the BSE data were manually analyzed with a grid 

method, whereas the EBSD imaging allowed for an automated calculation of the grain size 

distribution.  

The chromium sample shows an ufg microstructure (Fig. 4.4a–e) with a peak average grain size 

of 263 nm (± 32 nm) which steadily decreases towards the edge, finally revealing a minimum 

of 120 nm (± 10 nm). This trend can be seen in Fig. 4.2a. The standard deviations for the 

different radii where calculated using three varying spots of one according BSE image. The 

evaluated smallest grain sizes are significantly lower than the 200 nm reported by Lee et al. 

[51], but close to the results of Provenzano et al. [52] which determined about 100 nm.  

Tantalum reveals, consistent to the results of the microhardness testing, only a slight 

dependence of the average grain size to the radial position (Fig. 4.3a-f). Especially at the center, 

the EBSD image shows a certain elongation of the grains. However, this is believed to be the 

result of drift influence, rather than the actual microstructure The grain sizes at the center, 

approximately 100 – 110 nm, are decreasing towards the edge of the sample where they are 

close to 90 nm. Since the deviations where automatically calculated from one entire EBSD 

image per radial position, it needs to be interpreted as the grain size distribution of this image, 

rather than the deviation of different average grain sizes at a certain radial position. An 

overview of this behavior can be seen in Fig. 4.2b, where the deviation bars are a fifths of the 

actual grain size. Compared to Edalati et al. [50] and Wei et al [53] reporting 180 nm and 40 nm, 

respectively, the average grain size numbers are situated right in between, showing not only 

the influence of different production parameters, but primarily the difficulty of gaining reliable 

numbers at these small length scales. 
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Fig. 4.2: Graph showing the average grain sizes and corresponding deviations at different radial positions for 

Chromium (a) and Tantalum (b). 

 

 

 

   
   

   
Fig. 4.3: Overview of tantalum ufg microstructures determined by EBSD at 0.0mm (a), 1.0mm (b), 2.0mm (c), 

3.0mm (d), 4.0mm (e) and 4.5mm (f). 
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Fig. 4.4: Overview of chromium ufg microstructures determined by BSE imaging at 0.0 mm (a), 1.0 mm (b), 2.0 mm 

(c), 3.0 mm (d) and 4.0 mm (e). 
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 Annealing Experiments 

In order to determine a possible grain growth during nanoindentation experiments at elevated 

temperatures, annealing runs on a chromium ufg sample where carried out. An overview of 

the results can be found in Fig. 4.5. The average grain size determined as comparison number 

without any annealing steps was 117 nm ± 23 nm, see Fig. 4.6a, which is in good accordance 

to the numbers gained at 4 mm in chapter 4.2. After a slight increase up to 140 nm at 100 °C 

is measured, the average grain size stays nearly constant till the 400 °C annealing step, at which 

it is increasing up to 167 nm ± 32 nm. Finally, after annealing at 500 °C the average grain size 

was determined to 243 nm ± 15 nm. The sample was subsequently polished and its 

microstructure evaluated again, now showing a significantly higher number of 373 nm  ± 49 nm 

as shown in Fig. 4.6b.  

The grain sizes up to an annealing temperature of 300 °C are assumed to be constant, due to 

the minor changes in between. Actual grain growth probably took first place at the 400 and 

500 °C annealing steps, which is hard to determine, since the evaluation for the 400 °C grain 

size was only done on a BSE image with a non-polished surface. In the light of this issue a grain 

growth at lower temperatures, especially 300 °C is still improbable, but cannot be precluded. 

Consequently, for nanoindentation experiments performed at 300 °C on chromium is a 

possibility required to take into account when rationalizing the data. 

 

 
Fig. 4.5: Average grain sizes of a chromium ufg sample after annealing runs at different temperatures.  
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Fig. 4.6: Comparison of the non-annealed reference microstructure with contaminated surface (a) and the 

annealed at 500 °C and subsequently re-polished one (b). 

 

 Nanoindentation 

The nanoindentation tests were carried out according to chapter 3.7. For each material and 

temperature several indents were made with the cyclic loading scheme to evaluate hardness 

and Young’s modulus. With the 200 s dwell time scheme creep data were generated in order 

to access time dependent properties such as strain rate sensitivity and activation volume. To 

accommodate for the high number of indents and for the sake of clarity, in the following 

chapter especially representative and averaged numbers including standard deviations are 

presented. In general the post indentation drift correction was applied for experiments at 

elevated temperature, but not for those at ambient temperature. In some cases issues 

occurred with this type of drift correction, most notably inconsistent drift measurements and 

excessive correction values. If one indent out of the schedule was predominantly affected by 

obvious errors caused by the drift correction, it was precluded for the further calculations.  

All the indents were made with a minimum lateral distance of 30 μm among each other to 

guarantee that plastic deformation introduced by indentation does not influence the 

measurements of subsequent indents. Fig. 4.7a and b show the load depth response of the 

material to the different loading schedules for a tantalum ufg sample at room temperature 

consisting of six indents each. Fig. 4.7c and show the corresponding light microscopy images 

of these indents.  
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Fig. 4.7: Materials response of ufg tantalum at room temperature to a cyclic (a) and to a 200 s loading scheme 

(b). Corresponding light microscopy images of the indents (c,d). 

 

4.4.1 Hardness and Young’s modulus 

In this chapter the hardness for different depths at several temperatures are shown next to 

similar plots for the Young’s modulus. Unless otherwise stated, the results are observed from 

loading profiles denoted as “(I)”, see Table 7 and Table 8. At least three indents per 

temperature were used to calculate the average and standard deviation values. The focus of 

this chapter is to present and compare the gained results with accessible literature and 

microhardness testing data. A critical review and an in-depth discussion about possible 

measurement errors will be done in a subsequent chapter. 

Optical and electron microscopy investigations carried out afterward revealed pile-ups which 

influence the contact depth and therefore all descending numbers as discussed in chapter 

2.4.7. The pile-ups have been measured and corrected by increasing all contact depths by 10%, 

according to chapter 4.4.5. 
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Chromium ultra-fine grained 

The hardness of ultra-fine grained chromium is steadily decreasing with increasing 

temperature, as it can be seen in Fig. 4.8a. While the room temperature as well as the 300 °C 

hardness curves are straight to a certain degree, the 100 and 200 °C do show a considerable 

slope. The average numbers are ranging from 5.69 ± 0.09 GPa at room temperature to 

4.89 ± 0.24 GPa at 100 °C, to 4.35 ± 0.30 GPa at 200 °C and to 3.76 ± 0.21 GPa at 300 °C. The 

room temperature number is close to the 5.4 GPa observed by microhardness testing. 

 

  
Fig. 4.8: Hardness and Young’s modulus of ultra-fine grained chromium for different depths at 25, 100, 200 

and 300 °C. 

 

The Young’s modulus shows, with exception of 300 °C indentations, a decrease when the 

temperature is elevated as it is shown in Fig. 4.8b. The 100 and 200 °C curves show a significant 

slope compared to their room temperature and 300 °C counterparts. The averaged numbers 

range from 295 ± 9.8 GPa to 258 ± 18 GPa to 214 ± 37 GPa to 297 ± 26 GPa for room 

temperature, 100, 200, and 300 °C respectively. A literature value comparison [44] provides a 

room temperature Young’s modulus of 279.1 GPa, giving a mismatch of less than 6%. The 

strong decreases of the Young’s modulus numbers with increasing depth and therefore higher 

loads is believed to be caused by a general stiffness problem of the sample to sample holder 

fixation and not be an intrinsic property of the material. Since the stiffness is contributing to 

the evaluation of the contact depth as well, the s slopes for the 100 and 200 °C hardness curves 

might be induced by this stiffness issue. The data of the 300 °C curve were calculated using a 

comparably high frame compliance, which was evaluated before. It is believed that an 

overestimation of the frame compliance led to the high Young’s moduli at 300 °C. 

Chromium single crystalline 

In general, the hardness numbers of the single crystalline chromium only show a very low 

increase at lower depths, see Fig. 4.9a, compared to literature data for other bcc materials. 

The results range between 1.64 ± 0.08 and 1.55 ± 0.05 GPa at room temperature, 1.42 ± 0.06 
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and 1.21 ± 0.04 GPa at 100 °C, 1.12 ± 0.05 and 0.87 ± 0.04 GPa at 200 °C and 0.88 ± 0.04 and 

0.79 ± 0.03 GPa at 300 °C. This apparent lack of indentation size effect is completely 

unexpected and presumably results from experimental issues as will be discussed later.  

 

  
Fig. 4.9: Hardness and Young’s modulus of single crystalline chromium for different depths at 25, 100, 200 and 

300 °C. 

 

The Young’s modulus results, shown in Fig. 4.9b own, compared to all other materials 

investigated, higher standard deviations. This is especially true for the 300 °C values which are 

conspicuously high, similar to the numbers of the ultra-fine grained chromium at this 

temperature. All curves show decreased values of Young’s modulus at lower depths, beneath 

300 nm, in comparison to numbers evaluated deeper in the material. The values averaged over 

all depths are 269 ± 39 GPa at room temperature, 263 ± 39 GPa at 100 °C, 263 ± 49 GPa at 

200 °C and 299 ± 114 GPa. The room temperature average is thus only less than 4% lower than 

reported in literature [44]. 

Tantalum ultra-fine grained 

The slopes of the hardness curves steadily increase from room to the maximum temperature 

of 300°C as shown in Fig. 4.10a. This behavior is so distinctive that at low depths, the hardness 

at 300 °C reaches the one measured at room temperature. In sum the hardness numbers range 

from 4.28 ± 0.12 GPa to 4.10 ± 0.03 GPa at room temperature, from 4.21 ± 0.08 GPa to 

3.74 ± 0.06 GPa at 100 °C, from 3.59 ± 0.12 GPa to 2.90 ± 0.12 GPa at 250 °C and from 

4.39 ± 0.11 GPa to 2.85 ± 0.05 GPa at 300 °C. The 300 °C measurements have been carried out 

with loading profile (II) in order to reach higher maximum depths. It is remarkable that, though 

it shows similar hardness values as observed from room temperature measurements at low 

depths, the lowest values at approximately 1750 nm, come below those measured at 250 °C 

at ca. 1200 nm. This hardening behavior at elevated temperatures, but particularly from 250 °C 

on, is unexpected and demands and in-depth discussion in order to find a sophisticated 

explanation. This will be attempted in chapter 5.1.1. 



4 Results   

 

-46- 

 

  
Fig. 4.10: Hardness and Young’s modulus of ultra-fine grained tantalum for different depths at 25, 100, 250 

and 300 °C. The 300 °C results are observed from indents made with load profile (II). 

 

The Young’s modulus, see Fig. 4.10b, is continuously decreasing from room temperature to 

300 °C, whereby the 250 and 300 °C moduli are very close. Furthermore, the 100 and 300 °C 

curves are decreasing with raising contact depth. The averaged values are 181 ± 5.6 GPa at 

room temperature, 170 ± 8.9 GPa at 100 °C, 148 ± 8.3 GPa at 250 °C and 141± 13 GPa at 300 °C. 

Literature [44] quotes the room temperature Young’s modulus of tantalum as 185.7 GPa, 

leading to a mismatch of less than 3% compared to results presented in this work. 

Tantalum single crystalline 

 

  
Fig. 4.11: Hardness and Young’s modulus of single crystalline tantalum for different depths at 25, 100, 250 

and 300 °C. The 250 and 300 °C results are observed from indents made with load profile (II). 

 

The hardness curves of the single crystalline tantalum, see Fig. 4.11a, all show higher values at 

lower depths and the other way round. This trend is obviously increasing with temperature. 

The 250 and 300 °C measurements have been conducted with loading profile (II). This provides 
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higher indentation depths leading to a similar behavior as observed from the ufg tantalum. 

The hardness of the room temperature curves range from 1.49 ± 0.04 GPa to 1.12 ± 0.01 GPa 

at room temperature, from 0.93 ± 0.02 GPa to 0.71 ± 0.02 GPa at 100 °C, from 2.46 ± 0.32 GPa 

to 0.70 ± 0.02 GPa at 250 °C and from 2.89 ± 0.06 GPa to 0.89 ± 0.03 GPa at 300 °C. Summarized, 

the hardness at low depths is decreasing from room temperature to 100 °C and is 

subsequently, at 250 and 300 °C, strongly increasing. On the other hand, at high indentation 

depths the hardness of the 250 and 300 °C curves are in the same range as those measured at 

room temperature and 100 °C. Whereby the slopes of the former suggest, that at even higher 

depths, the hardness might further decrease beneath the room temperature and 100 °C 

values. 

The standard deviations of the Young’s modulus numbers are in general higher compared to 

those observed from ufg samples as presented in Fig. 4.11b. Though the room temperature 

numbers are higher than those at elevated temperatures, the dependence is not absolutely 

clear, since the 100 °C measurements reveal lower numbers compared to ones made at 250 

and 300 °C. Furthermore, the values at low depths seem to be underestimated just as for the 

single crystalline chromium. Moreover, the room temperature and 250 °C curves have an 

increasing trend from approximately 500 nm. This behavior will be discussed in chapter 5.1.1. 

The averaged Young’s moduli are 168 ± 17GPa at room temperature, 144 ± 13GPa at 100 °C, 

157 ± 25GPa at 250 °C and 151 ± 18GPa at 300 °C. The Young’s modulus measured at ambient 

temperature has a mismatch compared to literature values [44] of approximately 10 %. 

4.4.2 Strain Rate Sensitivity and Activation Volume 

The strain rate sensitivity was obtained from creep data measured with 200 s dwell time load 

profiles as shown in chapter 3.7.3. For each material and temperature, at least three indents 

were made. The results are shown on one hand as continuous SRS versus strain plots for 

representative creep curves. On the other hand the average m-values of stage A for all indents 

at the corresponding temperature were calculated as well. This attempt was chosen to take 

the fact into account that in a double logarithmic stress versus strain rate plots, the evaluated 

creep curves do not have a constant slope. This is for example shown in Fig. 4.12. Since each 

point has a certain hardness and slope in this plot, the SRS is a function of hardness and 

therefore stress as well. Furthermore it can be easily seen that with the progression of creep, 

the strain rate is decreasing over several magnitudes, reaching numbers in the range of 

potential thermal drift. To address this possible problem, the stage A numbers, which are 

gained at higher creep rates and are hence less sensitive to thermal drift, are evaluated and 

presented next to the continuous plots as well. Anyway, a discussion about the contribution 

of thermal drift to the evaluated results is given in chapter 5.1.2. 
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Fig. 4.12: Double logarithmic plot of hardness versus strain rate for an ufg chromium sample at different 

temperatures. The varying slopes of the curves reveal that the SRS is a function of the stress  

 

The activation volume is basically calculated from SRS, hardness and temperature. Hence the 

thermal drift concerns are similar to those discussed above. It furthermore needs to be 

mentioned, that the lowest values for each SRS curve are observed at the beginning of the 

creep process at high flow stresses, whereas it is the opposite for V*. Since the SRS and V* are 

strongly related to each other, the according results are presented next to each other.  

Chromium ultra-fine grained 

Experiments conducted at ambient temperature led to continuous SRS curves extending from 

0.006 to 0.018. With rising temperature, the SRS of the ufg chromium also increases ranging 

from 0.025 to 0.197 at 300 °C, as shown in Fig. 4.13a. The 200 °C and 300 °C SRS curves are 

rather close. The results gained from stage A are similar and shown in Fig. 4.13b. The SRS is 

rising from 0.012 ± 0.002 at room temperature to 0.070 ± 0.007 at 300 °C. The numbers gained 

at ambient temperature are in good accordance to data and model-predicted values obtained 

from yield tests by Wu et al. [19], who reported 0.012 for a 58 nm average grain size sample. 

V* curves obtained at 100, 200 and 300 °C do have a similar trend as those for the SRS as it is 

shown in Fig. 4.13c. The numbers are ranging from 14 to 40 b3 at room temperature and 4.3 

to 24 b3 at 300°C, though the lowest numbers are reached with 3.0 to 16 b3at 200 °C. The 

evaluation of the stage A data, see Fig. 4.13d, delivers the highest numbers, 21 ± 3 b3 at room 

temperature as well. This is followed by a nearly constant plateau showing 9.9 ± 2 b3 at 300 °C.  
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Fig. 4.13: Continuous SRS vs. stress (a), stage A SRS vs. stress (b), continuous V* vs. stress (c), stage A V* vs. 

stress (d) plots for ufg chromium at different temperatures. 

 

Chromium single crystalline 

The continuous SRS curves of sx chromium at room temperature range from 0.016 to 0.060. 

This is initially followed by decreased values at 100 °C of 0.008 to 0.036. This reduction is 

expected, since bcc single crystals become less rate sensitive towards their critical 

temperatures. The shape of the 100 °C curve is noticeably different. The slope is steeper, which 

proposes a faster increasing SRS with respect to stress compared to its counterparts at other 

temperatures. At 200 and 300 °C the SRS curves are rather similarly shaped compared to the 

room temperature curve again. This comes in hand with a further SRS elevation. An overview 

of this results is presented in Fig. 4.14a. Numbers observed from stage A, see Fig. 4.14b, do 

have the same trend as those observed from the continuous evaluation, reaching from 

0.048 ± 0.004 at room temperature, to 0.015 ± 0.002 at 100 °C to eventually 0.049 ± 0.009 at 

300 °C. The approximately 0.05 measured at ambient temperature are higher than via yield 

test determined m of 0.02 reported by Wu et al. [19]. However, this might be caused by the 

different testing techniques. 
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The results for the activation volume do follow an according trend as shown in Fig. 4.14c. The 

V* curve situated lowest is the one representing room temperature spanning between 17 and 

52 b3. After an increase to numbers measured at 100 °C, ranging from 40 to 172 b3, the V* 

curves of the 200 and 300 °C measurements are decreased again, extending from 27 to 148 b3 

and 34 to 212 b3, respectively. As explained for the SRS plot, the 100 °C curve is divergently 

shaped, showing a steeper decrease of V* versus flow stress. The corresponding numbers for 

V* obtained from stage A are plotted in Fig. 4.14d. These are 18 ± 2 b3 at room temperature, 

91 ± 10 b3 at 100 °C, 58± 7 b3 at 200 ° and eventually 59 ± 17 b3 at 300 °C. 

 

 

 
Fig. 4.14: Continuous SRS vs. stress (a), stage A SRS vs. stress (b), continuous V* vs. stress (c), stage A V* vs. 

stress (d) plots for sx chromium at different temperatures. 

 

Tantalum ultra-fine grained 

The results of the continuous evaluation of the SRS can be found in Fig. 4.15a. The curves 

extend from 0.005 to 0.015 at room temperature, from 0.010 to 0.186 at 100 °C, from 0.018 

to 0.421 at 250 °C and from 0.028 to 0.218 at 300 °C. The numbers for the analysis of stage A 

can be found in Fig. 4.15b. They are 0.010 ± 0.002, 0.024 ± 0.003, 0.063 ± 0.013 and 
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0.052 ± 0.014 for room temperature, 100 °C, 250 °C and 300 °C respectively. It is obvious from 

both figures, that the flow stress of the 300 °C numbers is significantly higher than one would 

expect. While a declining stress is expected when rising the temperature, it is, especially at the 

start of the creep curve, higher than those measured at lower temperatures. At the end of the 

creep curve and thus at higher indentation depths, the slope is decreasing. This is an indicator 

for decreasing flow stress with respect to depth as it was already obtained in chapter 4.4.1 for 

tantalum ufg at 250 °C, but particularly at 300 °C. The ambient temperature SRS numbers are 

well comparable with the 0.007 measured via yield test on an ECAP sample presented by Wei 

et al. [6]. 

 

  

Fig. 4.15: Continuous SRS vs. stress (a), stage A SRS vs. stress (b), continuous V* vs. stress (c), stage A V* vs. 

stress (d) plots for ufg tantalum at different temperatures. 

 

The continuous results for V* are ranging from 14 to 41 b3 at room temperature, from 1.8 to 

27 b3 at 100 °C, from 1.5 to 24 b3 at 250 °C and finally from 2.7to 14 b3 at 300 °C and are 

displayed in Fig. 4.15c. The stage A results, shown in Fig. 4.15d, span from 20 ± 4 at ambient 

temperature, to 13 ± 1  b3 at 100 °C, to 8.1 ± 2  b3 at 250 °C and to 5.8 ± 1  b3 at 300 °C. 
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Tantalum single crystalline 

Different to the other materials in this chapter, creep curves are presented of the 300 °C 

sample after the high temperature experiments at room temperature with two different load 

profiles additionally. This is to show the influence of the observed hardening of the tantalum 

after indentation runs at elevated temperature to the SRS and V*.  

 

  

Fig. 4.16: Continuous SRS vs. stress (a), stage A SRS vs. stress (b), continuous V* vs. stress (c), stage A V* vs. 

stress (d) plots for sx tantalum at different temperatures. 

 

The room temperature SRS numbers range between 0.014 and 0.056. At 100 °C the numbers 

declined as it was expected and as well the case for the sx chromium. The SRS is spanning from 

0.008 to 0.022, whereas the flow stress is lower as well compared to room temperature. The 

250 °C curve shows a different behavior. While the flow stress has overall increased and is even 

higher than those obtained at room temperature, the SRS numbers at the beginning of the 

creep curve are lower, namely 0.007, compared to the 100 °C curves, but increase to eventually 

0.074. The curve measured at 300 °C is situated at even higher flow stresses, but showing the 

highest SRS values of 0.025 to 0.260. After cooling down the 300 °C sample was subject to two 

further indentation runs, one with the usual 20 mN load profile – “profile (I)” - and one with 



4 Results   

 

-53- 

an 80 mN load profile – “profile (II)”, leading to pre-creep contact depths of approximately 500 

and 1350 nm, respectively. As it can be seen in Fig. 4.16a, the SRS of the pre-heated sample 

loaded with the 20 mN profile has significantly declined, just extending from 0.008 to 0.021. 

Furthermore, the flow stress has substantially raised, representing the highest numbers 

measured on this material. The stage A data, shown in Fig. 4.16b, match this trend. They 

proceed from the reference room temperature numbers of 0.042 ± 0.002, to 0.020 ± 0.002 at 

100 °C, to 0.026 ± 0.005 at 250 °C and to 0.067 ± 0.012 at 300 °C. The subsequent tests at room 

temperature revealed SRS values of 0.021 ± 0.002 for load profile (I) and 0.033 ± 0.000 for load 

profile (II). For both methods of evaluating the SRS, it is standing out that the room 

temperature results show a relation between the tantalum hardening after high temperature 

experiments and the measured strain rate sensitivities. The SRS seems to decrease with 

increased hardening. However, the ambient temperature SRS is in the order of the results of 

yield tests on coarse grained tantalum published by Wei et al. [6]. 

All room temperature experiments show rather similar results in terms of activation volume, 

which is shown in Fig. 4.16c. This is due to the fact that a contrary variation of hardness or 

stress on the one hand and SRS on the other hand compensate each other when calculating 

V*. The room temperature reference sample shows V* in the range of 18 to 58 b3. The highest 

values, namely 73 to 178 b3, are received from the 100 °C measurement which arise from 

rather low flow stress and SRS. The 250 °C curve is showing the widest range of V* values, 

extending from 18 to 160 b3. At 300 °C the numbers are spanning between 4.7 and 35 b3. The 

general characteristics hold true for the stage A values, presented in Fig. 4.16d. The V* numbers 

of the reference room temperature sample is 22 ± 1 b3, whereby the further numbers are 

75 ± 6 b3 at 100 °C, 51 ± 9 b3 at 250 °C and 15 ± 3 b3 at 300 °C. 

4.4.3 Size Effect and Macroscopic Hardness 

The hardness and depth data gained from previous experiments, shown in chapter 4.4.1, are 

the initial data for the analysis of the ISE. The ISE for chromium as well as for the tantalum sx 

samples was not as distinctive as expected for single crystalline materials. In fact the hardness 

was, with exception to the tantalum sx tested at elevated temperatures which show a 

hardening phenomenon, not significantly increasing at lower depths. In Fig. 4.17 Nix-Gao plots 

for chromium and tantalum are shown. The presented data points are gained from 

representative room temperature experiments and lead to h* numbers of 27 and 134 nm for 

chromium and tantalum, respectively. A comparison with other bcc sx materials, see Fig. 2.11, 

reveals how low these numbers are. They are in the range, especially in terms of the chromium, 

of what would be expected for an ufg or nc microstructure, rather than for a single crystal. The 

results at elevated temperature show, besides the mentioned exceptions, the same 

unexpected low h* numbers, which is the reason why they are not additionally presented. This 

leads to the assumption that either the measurements itself, or the analysis contain falsifying 

errors. Since only indentation data are used which show a distinctive pop-in event, which are 

only observed for sx and coarse grained materials, the possibility of material caused errors is 
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precluded. A further discussion as well as a comparison with measurements conducted on a 

different nanoindentation system are presented in chapter 5.1.3. 

 

  
Fig. 4.17: Nix-Gao plots for sx chromium (a) and for sx tantalum (b) at room temperature. 

 

4.4.4 Pop-Ins 

In order to compare the shear stress at the occurrence of a pop-in event τpop-in with the 

theoretical strength of an idealized crystal τth, the radius of the tip of the Berkovich indenter, 

which was assumed to be spherical, needed to be evaluated. This was eventually done 

according to chapter 2.4.6 using reduced moduli calculated with Eq.(23) and literature values 

for chromium, tantalum and diamond, namely 278 and 186 and 1147 GPa [44], respectively. 

Since the high temperature experiments are more likely to be influenced by thermal drift and 

decreased moduli of the material, these were not used for the tip radius evaluation. The high 

temperature runs might even affect the data gained post-experimentally, which is why the 

evaluation of the tip radius was done with a special focus on results obtained at room 

temperature before heating. A representative example for the pop-in behavior and the 

according fitting of the elastic loading part of an sx chromium sample at room temperature 

can be found in Fig. 4.18. The resulting tip radius for these loading curves is 533 ± 58 nm. 

Even with the mentioned restrictions to the used data, the determined effective tip radii were 

subject to distinctive fluctuations between 350 and 500 nm. Furthermore a general increase 

of the tip radii seems to occur at latest after the 200 and 250 °C runs, which might be caused 

by abrasive reactions between the indenter tip and the material. However, it was also noticed 

that the calculated tip radius tends to increase with increasing pop-in load, even when the 

different indents can be assumed to be made with the same tip geometry. The results 

regarding the materials strength presented in this chapter, were eventually calculated with a 

tip radius of 450 nm with exception of those made after the 250 °C experiments for which a 

tip radius of 500 nm was used.  
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Fig. 4.18: Load versus depth plot of sx chromium at room temperature showing characteristic pop-in behavior 

(a) and the elastic loading part before the pop-in with the according fitting (b).  

 

Besides the explicit room temperature sample, pop-in experiments were carried out also at 

ambient temperature before and after the high temperature runs. But not only is the sheer 

number of indents made lower at elevated temperatures, also the probability of unambiguous 

pop-in events decreased for both materials with rising temperature. The results of the explicit 

room temperature sample and all pre-heating room temperature tests are presented together 

as “RT” in the following charts. While those made after the high temperature experiments are 

named “RT*” for the 100 °C sample, “RT**” for the 200 and 250 °C samples and “RT***” for 

the 300 °C sample. The 200 °C data for chromium and the 250 °C data for tantalum consist on 

one side of the dedicated 200 and 250 °C target temperature samples and on the other hand 

of those measured at the mentioned temperatures on the subsequently measured 300 °C 

samples.  

Chromium single crystalline 

Altogether 101 pop-in events were observed on the four different chromium samples. A 

general trend is that the overall loads at which they occur is decreasing with rising temperature 

as shown in Fig. 4.19a. It is also apparent that the variation of the pop-in loads is also most 

pronounced for those at room temperature. These range from approximately 0.1 up to 2.5 mN, 

whereas those at elevated temperatures are less scattering. This difference is probably caused 

by the fact that the room temperature curve is consisting all pop-ins obtained from the 

dedicated room temperature sample as well as those made on the other samples before 

heating. The mentioned features are consistent to those in Fig. 4.19b, showing the ratio of τpop-

in to τth. The highest and the lowest strength were consequentially observed on the room 

temperature data and are 0.86 and 0.3 times the theoretical shear strength, respectively. As 

for the pop-in loads, the general relative shear strength is decreasing with rising temperature, 

being 0.63 at ambient temperature and 0.37 at 300 °C. This equals to a shear strength of 

approximately 11 GPa which is in very good accordance to the results obtained from coarse 
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grained chromium presented by Wu et al. [42] for a similar tip radius. The diminishing strength 

at elevated temperatures on the other hand, seems to be an underestimation compared to 

another work of Wu et al. [54], were they report a reduction of approximately 5% at 200 °C, 

whereas it is 20% in this work. However, the lower number of pop-ins observed at elevated 

temperatures is complicating the comparison. 

The indentation runs at room temperature after the high temperature tests delivered strength 

numbers in the range of those observed at room temperature before heating. This is only with 

the exception to RT***, where the average relative shear strength is modestly decreased to 

0.47. Moreover, all post high temperature strength numbers are higher than those observed 

at the corresponding elevated temperatures, which suggests that the reduced strength of the 

high temperature measurements were temperature caused. If significant annealing of 

dislocations would have occurred, it would be expected, that the shear strength of the post 

high temperature tests would be increased which is not observed. However, such a 

comparison would require better statistics for a more definite statement.  

 

  
Fig. 4.19: Overview of pop-in events obtained at different temperatures on sx chromium plotted as cumulative 

probability versus pop-in load (a) and as relative theoretical strength versus temperature (b). 

 

Tantalum single crystalline 

For the tantalum samples 118 pop-ins were observed at different temperatures. In general, 

the temperature dependence on the pop-in load, an overview can be found in Fig. 4.20a, is not 

as simple as for the sx chromium samples discussed above. The pop-in load data gained at 

room temperature exhibit the most spread, as was observed for the chromium previously. 

With only a few exceptions, the variation of the 100 and the 300 °C curves are low, compared 

to the others. The average relative shear strength of the room temperature measurements, 

which are again spreading the most, is 0.77 as shown in Fig. 4.20b. The same value holds true 

for 100 °C. After a slight increase to 0.81 at 250 °C it declines to 0.62 at 300 °C. The room 

temperature and 100 °C numbers equal approximately 8.5 GPa shear strength, which is about 
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13% higher than what Biener et al report [55] for sx tantalum at ambient temperature. 

Statistical issues due to the low number of pop-ins observed might be accountable for the 

increasing trend up to 250 °C instead of a modest decrease which would be expected. This is 

even a possible explanation for the noticeable low average strength of the 300 °C data, which’s 

range is very similarly to those measured at 250 °C. 

In the RT* experiments, only two pop-ins were obtained. However, their shear strength is in 

very good accordance to the averaged comparison RT numbers. A different picture is given by 

the RT** and RT*** tests, which’s shear strengths for certain pop-ins even exceed the 

theoretical strength of tantalum. The highest calculated shear stress is 11.96 GPa, 

approximately 9 % over the materials actual limit. This behavior might be caused by different 

reasons, such as a different tip blunting than assumed for calculation, or an increased thickness 

of the natural oxide layer on the surface of the tantalum sample. 

 

  
Fig. 4.20: Overview of pop-in events obtained at different temperatures on sx tantalum plotted as cumulative 

probability versus pop-in load (a) and as relative theoretical strength versus temperature (b). 

 

Summarized, particularly the low number of pop-ins gained from post- and elevated 

temperature experiments leads to the need of a critically reflection of the received results. The 

room temperature strengths of chromium and tantalum are well comparable to those 

presented by other authors as discussed above, whereas those of the high temperature 

experiments are more demanding due to statistical thoughts. The fact that all shear strengths 

calculated from pop-in events display a significant portion of the theoretical strength of 

respective material leads to the assumption that, as assumed in literature [43, 54, 56], the pop-

ins mark the nucleation of dislocations in the material beneath the indenter tip. 

In order to gain more detailed information about the nucleation process, weather it is of 

homogenous or heterogeneous nature, it became well established to use a statistical model 

developed by Mason et al. [41] estimating the activation volume. However, this last analysis 

step has yet to be done.  



4 Results   

 

-58- 

4.4.5 Pile-Ups  

In order to take pile-ups into account and correct for their falsifying influence on the contact 

depth, AFM-mode scans were conducted on two different room temperature indents on each 

material. The lateral resolution was set to 0.2 μm and the scan size was selected to be 12 μm by 12 μm. Since the indenter tip is used as a probe in this method, the maximum depths to be 

reached are limited. This leads to seemingly similar indentation depths in the result images, 

though they are not.  

 

Fig. 4.21: AFM mode scans of ufg chromium (a), sx chromium (b), ufg tantalum (c) and sx tantalum (d). 

 

In Fig. 4.21 for each material one AFM image is shown from a 30° azimuth viewpoint. As it is 

obvious, the pile-up behavior of the two ufg materials is similar. The indents are surrounded 

by elliptically shaped elevations which are steadily decreasing to the tips of the triangular 

indent. The results of the sx materials are also well comparable, although being different from 

the ufg samples. The elevations are more belly-shaped and reach farther in perpendicular 

directions of the indents edges. All surfaces show a certain degree of tilting, which influences 

the pile ups in such a way that, those on the upper side outrun the others in terms of size. This 

is especially distinctive for the measurements on sx tantalum in Fig. 4.21d which is consistent 
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to the fact that this sample owns the highest tilt angle of 1.9°. These deviations from a perfectly 

perpendicular contact between the surface and the vertical axis of the indenter tip can be 

caused by preparation imperfections or the mounting of the sample on the holder.  

The resulting 3D images were analyzed and led to an underestimation of the non-pile-up 

corrected contact depth of approximately 10 %. Considering that only two room temperature 

indents were scanned, this is an estimation rather than an exact value. The data presented in 

chapter 4.4.1, 4.4.2 and 4.4.3 were all corrected using this approach. 

 

4.4.6 Indent Cross-Sections 

In order to investigate the impact of the plastic deformation to the microstructure of the ufg 

samples and to investigate whether an oxide layer of a certain thickness was formed during 

high temperature experiments, cross sections of the indents were made with a focused ion 

beam (FIB) workstation. As a first step platinum in a rectangular shape was depleted via gas 

deposition as it can be seen in Fig. 4.22a. This is thought to keep the material to indent 

transitional area clean and enable the observation of a possible thick oxide layer. In Fig. 4.22b 

the cut proceeding can be seen in the coarse (high current) setting leading to streaks (vertical 

lines) in the cross section. A subsequent fine cut step removes the streaks giving a clean cross-

sectional surface as shown in Fig. 4.22c. Since the grain size of the investigated ufg samples is 

close to 100 nm and the detector therefore reaches its limits in terms of resolution, an ion 

beam etching step on the cross sectional surface was subsequently performed. The etching 

rate is depending on the orientation of the grains, which is why a certain height profile is 

formed, giving more contrast due to shading effects. The etching current was 0.3 nA for 

chromium and 0.1 nA for the tantalum sample.  

 

   
Fig. 4.22: Workflow of a cross-section cut on a chromium ufg sample showing the indent with the platinum 

depletion (a), the cross section after the coarse (b) and after the fine cut step (c). 

 

Additionally to the mentioned benefits of a cross-sections investigation, in theory also the 

previously discussed pile-ups, see chapter 4.4.5, should be observable. In practice, this is only 

hard to accomplish, since the pile-up heights of the ufg materials are supposed to be in the 
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range of 100 nm, whereas the SEM images have a size of several micrometers. Owing to this 

fact, pile-ups in the cross-section images can only be assumed to be noticeable. 

All pictures presented in the following chapter are captured with a secondary electron (SE) 

detector and are besides cropping not post-processed. 

Chromium ultra-fine grained 

The microstructure beneath the analyzed room temperature indent, see Fig. 4.23a, is well 

comparable with the microstructure obtained from the BSE measurements presented in 

chapter 3.5. The deposited platinum layer is, though being close to completely white in the 

image, displaying a well-defined boarder to the cross section surface with no further layer in 

between. The cross section of a 300 °C indent is shown in Fig. 4.23b. Since both indents were 

approximately cut centrically and made with the same cyclic schedule with a maximum load 

of 150 mN, it is consistent that the 300 °C indent is deeper. It is furthermore apparent from 

comparing the microstructures next to each other, that the grain size of the 300 °C sample is 

increased compared to its room temperature counterpart. This is in good accordance to the 

measured hardness of the 300 °C sample, which is the only one which does not regain its full 

quantity in this respect after the high temperature experiments. Although the annealing tests 

presented in chapter 4.3 do not fully suggest a grain growth at 300 °C they cannot preclude it 

either. Moreover, for the mentioned annealing tests a dwell time of only 1 h is comparably low 

to the approximately 12h the sample was exposed to 300 °C during the nanoindentation tests.  

The plastic deformation opposed to the material beneath the indenter leads for both cases to 

a only short-ranged deformation of the grains close to the indent.  

 

  
Fig. 4.23: Cross sections on ufg chromium indents conducted at room temperature (a) and at 300 °C (b) 
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Tantalum ultra-fine grained 

The ufg microstructure received by the cross section analysis of the room temperature sample, 

shown in Fig. 4.24a, exhibit again similar characteristics compared to what was obtained from 

EBSD scans. The same holds true for the 300 °C image, see Fig. 4.24b, which is only smaller due 

to an off-centered FIB cut. Although much more of the platinum layer is left after cutting and 

etching on the room temperature sample, it is also evident for the 300 °C sample that no 

interlayer between the platinum and the sample material, emerging for example from oxide 

formation, is visible. The deformation of the grains beneath the indents is, as previously for 

the ufg chromium, of short ranged nature. Moreover it seems at least for the room 

temperature sample that the grains adjust their orientation to the indent geometry to a certain 

degree.  

 

  
Fig. 4.24: Cross sections on ufg tantalum indents conducted at room temperature (a) and at 300 °C (b) 

 

After the analysis of the cross sections some important statements can be made. For none of 

the heated samples an oxide layer was observable between the platinum deposition and the 

material beneath the indent. Since the formation of oxides is for thermodynamic reasons 

preferential at higher temperatures, it is assumed that no such layers have formed for the 

other elevated temperature samples either.  

Whereas the microstructure of the tantalum ufg sample did not change, as far as the limited 

resolution allows to say, the grain size of the chromium ufg sample apparently increased. Both 

observations are consistent to post high temperature hardness test on those materials. These 

revealed a full recovery of the hardness in terms of tantalum, but a certain loss in terms of the 

chromium ufg sample. Since the 200 °C chromium ufg sample, where no cross section is 

presented, also showed a full recovery of hardness, it is assumed that neither this nor the 

100 °C chromium sample were subject to grain growth.  
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5  Critical Discussion on some 

Experimental Challenges 

 Nanoindentation 

5.1.1 Hardness and Young’s modulus 

The previously in chapter 4.4.1 presented hardness and Young’s modulus results show some 

unexpected features. Their potential causes will be discussed in the following chapter.  

Influence of Temperature on the Young’s modulus 

Room temperature measurements of the Young’s modulus revealed for both materials 

numbers well matching those cited in literature. Moreover, those obtained from ufg samples 

do not show a certain depth dependence, whereas those calculated from tests on the sx 

materials at room temperature show reduced values at lower depths. The latter behavior was 

also observed at comparison measurements on an in-house nanoindentation system, but its 

cause still needs to be evaluated. However, the Young’s modulus numbers at elevated 

temperatures partly decrease stronger than what would be expected, according to chapter 

2.1.2. This is in most cases strongest pronounced for higher indentation depths and is strongly 

believed to be a frame stiffness problem arising from the mounting of the sample for high 

temperature experiments with cement. The depth dependence is not pronounced for results 

of preheating experiments, while it is for high temperature and subsequently conducted room 

temperature tests. In detail, it is thought that during the heating process the sample loosens 

which leads to an underestimation of the frame compliance. At high loads and depths, this 

leads into low numbers of Young’s modulus due to the underestimation of the sample 

stiffness. 

Influence of the System Stiffness on the Hardness 

Above the depth dependence of certain Young’s modulus curves is discussed. This is often 

accompanied by a depth dependence of the hardness as well, which is, due to hs, influenced 

by an underestimation of the frame compliance as well. The retrospective correction of the 

hardness for a constant Young’s modulus is possible, but very effortful since a wrong frame 
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compliance falsifies the displacement raw data and hence contributes to errors in the analysis. 

However, an example were it is strongly believed that the underestimation of the sample 

stiffness leads to reduced numbers of hardness at elevated depths is presented in Fig. 4.8a and 

b. The 200 °C Young’s modulus numbers decrease from approximately 270 to 160 GPa with 

respect to depth. A similar trend is observable for the according hardness, decreasing from 

approximately 4.6 to 4.0 GPa. For comparison, the room temperature Young’s modulus and 

hardness numbers, plotted in the same figure, do not show depth dependent behavior. In the 

light of this comparison, it becomes evident that stiffness issues can cause an artificial depth 

dependence of the hardness, though it is less distinctive compared to the influence on the 

Young’s modulus. 

Tantalum hardening at elevated temperatures 

On all tantalum samples, sx and ufg, a very pronounced hardening was observed when they 

were heated up to 250 or 300 °C, respectively. Moreover, the strength of this effect was 

increasing with the time the sample was kept at mentioned temperatures. Two different 

explanations appear obvious for which one can assume that a certain amount of oxygen or 

other atmospherical gasses was present in the housing of the nanoindenter. Although the 

purging gas system was enabled before starting the high temperature experiments, the used 

argon gas is limited in its purity and is therefore a potential source of non-inert gases.  

The first possibility is the formation of a tantalum oxide layer with a significant thickness on 

the sample surface. Vermilyea [57] report about oxide growth in 99.5% pure oxygen 

atmosphere at temperatures up to 300 °C for 278 hours. Although these are more severe 

conditions compared to those experiments were conducted at in this work, the oxygen growth 

is only in the several 10 A�  range, as shown in Fig. 5.1a. Hardness tests conducted on sx tantalum 

(Fig. 4.11a) furthermore suggest influence depths of approximately 2000 nm, which is. Oxide 

layers of according thickness are expected to be clearly visible when investigating the cross-

sections of affected intents. This was not the case as it is shown in Fig. 4.24b for an indent 

made on ufg tantalum at 300 °C. Finally, a considerable change of the Young’s modulus would 

be expected for tantalum oxide. This is also not observed as displayed in Fig. 4.11b. 

Different to an oxidation, the possible oxygen presence might also lead to a solid solution 

hardening of the tantalum. The hardness decline with respect to depth might be an evidence 

for such a diffusion controlled hardening. In fact, tantalum was used as a reference material in 

the past to show this mechanism in bcc metals due to its good solubility for nitrogen and 

oxygen [58]. Furthermore, Schmitz et al. [59] report increased hardness for tantalum coatings 

exposed to oxygen at 350 and 450 °C, whereas Smialek et al. [60] present data showing a shear 

stress increase by the factor of four at low strains for an oxygen content of 1040 ppm, see Fig. 

5.1b. However, all these works have in common, that the solution of oxygen in tantalum was 

accompanied by some effort to gain samples with certain amounts of dissolved oxygen. 

Therefore the partial pressure of non-inherent gases which the samples from this work were 

exposed to are presumably far lower. To substantiate the possible hardness increase from solid 
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solution hardening it is required to measure the oxygen concentration on the surface and at 

elevated depths. For literature discussed above, the hardening effects were observed at 

oxygen concentrations of several 0.1 at.%. As it is widely known, this is beyond the resolution 

limits of the energy dispersive x-ray spectroscopy method, requiring more sophisticated 

techniques, just as secondary ion mass spectrometry, or a chemical analysis. Summarized, the 

evidence speak in favor of the solid solution hardening, since a simple oxidation seems - due 

to the investigation of cross-section SEM images - improbable. However, last certainty can only 

be provided by conducting the mentioned oxygen concentration analysis. 

 

Fig. 5.1: Oxidation behavior of tantalum in 99.5 % 02 atmosphere (a) and effect of interstitial solid solution 

hardening for sx tantalum at 177 °C (b) adopted from [57] and [60], respectively. 

 

5.1.2 Strain Rate Sensitivity and Activation Volume 

Different to the ISE the SRS and V* are not strongly dependent on the used area function. This 

is due to the fact that the creep measurements are started at depths over 500 nm where the 

area function is not as sensitive to calibration errors anymore. On the other hand, the 200 s 

creep tests are susceptible for the influence of thermal drift which arises from a non-

isothermal contact between the indenter tip and the sample. Though the used system heats 

both separately and makes use of a contact procedure which is designed to minimize 

temperature differences, it was obtained that thermal drift occurred and that for some cases 

the post-indentation drift correction is not reliable. Since the creep rates in the end of the 

dwell time were for some cases suspiciously high, suggesting a positive thermal drift rate, the 

system often corrected for negative drift rates and hence increased creep depth and SRS. The 

drift correction was usually in the range of 0.3 to - 0.1 nm/s. Therefore, some distinctive creep 

curves are plotted with different artificial drift corrections to show the pronounced influence.  

In Fig. 5.2a and b creep data of the 250 °C curve, already presented in Fig. 4.15a, are shown 

with its counterparts superimposed with different drift rates. These data were chosen since 
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the SRS at the end of the dwell time are suspiciously high. The same holds true for the ufg 

chromium. The results are similarly shaped curves, but especially different maximum SRS are 

obtained, just as expected. The curve corrected with –0.3 nm/s is only ranging from 

approximately 0.02 to 0.1 compared to the original spreading of 0.02 to 0.4. In order to enable 

a comparison, the original room temperature data are plotted in light gray in Fig. 5.2b 

additionally. The positive correction seems improbable since the strain rates keep very high 

even at the end of the dwell time. For example, close to 200 s dwell time, the artificial drift 

rate is contributing to approximately 50 % of the entire strain rate of the + 0.3 nm/s curve. 

 

  
Fig. 5.2: Creep data with superimpose drift for ufg tantalum presented as hardness vs. strain rate (a) and SRS 

vs. stress plot (b).  

 

Another particular example is the sx chromium which showed, just like the sx tantalum, 

unexpected high SRS numbers at 200 and 300 °C. The original data can be found in Fig. 4.14a, 

whereas those superimposed with artificial drifts are presented in Fig. 5.3a and b. In order to 

enable a comparison to the SRS curves measured at lower temperatures, the room 

temperature and 100 °C curves are plotted next to it in Fig. 5.3a. For the above mentioned 

reasons, the focus is again on the negative correction. The SRS of bcc single crystals is expected 

to decrease towards its critical temperature, as it was discussed in previous chapters. This 

decrease was only obtained for the 100 °C data, not for those above. If a negative correction 

is applied, the peak SRS is decreased closing up to the region where they would be expected. 

For example, the original 300 °C data range from 0.013 to 0.102 whereas the -0.3 nm/s 

correction delivers a spreading from 0.007 to 0.02. 
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Fig. 5.3: Creep data with superimpose drift for sx chromium presented as hardness vs. strain rate (a) and SRS 

vs. stress plot (b). 

 

This approach of adding drifts of certain rates to the creep data, altering the SRS, is to assess 

the range a possible thermal drift might have influenced the creep data and hence the SRS. It 

is, on the other hand, not able to estimate the value of drift which actually occurred during the 

experiments. 

5.1.3 Indentation Size Effect 

In order to evaluate reliable numbers for characteristic parameters of the ISE, the hardness 

and depth values must be measured accurately, but especially in the lower depth regimes. This 

is because the fit in the Nix-Gao model is most sensitive to high numbers of the reciprocal 

contact depth. This is also the regime were the finding of an exact area function for the 

indenter tip is most demanding and hence often subject to errors. In Fig. 5.4a the relative 

contact area with respect to depth is plotted for two different area functions, the original one, 

“AF0” and a modified version of it, “AF1”. Fig. 5.4b shows the sx tantalum ISE already 

presented in chapter 4.4.3 and the according analysis with the modified area function. 

Compared to the original one, the parameters C2 and C3 were changed (Table 9) in order to 

show the significant influence of those to the ISE. The results show that while H0 is decreased 

by less than 5%, h* is increased by 133% to 313 nm. This is in the range of what would be 

expected for sx tantalum.  

From Fig. 5.4a it is apparent that even at higher depths the contact area calculated with AF0 

and AF1 do not reach the curve of the idealized geometry, though this would be expected. This 

can be an evidence for a general overestimation of the contact area and hence an 

underestimation of the hardness since all area functions used show a similar behavior. 

Furthermore the area functions suffer from too low values at lower depths, especially beneath 

200 nm, which is in particular decreasing the calculated ISE as well. For example, the analysis 

shown in Fig. 5.4b without the shallowest depth data leads to h* numbers of approximately 
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200 and 400 nm for AF0 and AF1 respectively. Besides the area function, the material itself is 

of course a possible cause for the unexpected results regarding the ISE. To be able to preclude 

the material as an error source, comparison measurements with an in-house nanoindentation 

system were conducted. The h* numbers calculated from room temperature experiments were 

approximately 350 and 450 nm for sx chromium and tantalum respectively.  

Summarized, the AF is strongly believed to be the major source of the unexpected results in 

terms of the ISE. This is underlined by the reasonable numbers of h* measured with the in-

house nanoindenter for the same samples.  

 

Fig. 5.4: Relative contact area of AF 1 to AF 0 with respect to depth (a) and the according Nix-Gao plot of sx 

tantalum at room temperature for both area functions (b). 

 

 
Table 9 : Overview of different parameters of area functions plotted in Fig. 5.4 

 C1 C2 C3 

AF 0 (original)  27.63 2026 6360 

AF 1 (modified) 27.63 1013 0 
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Appendix 

Hardness and Young’s modulus analysis 

clear all 

close all 

clc 

  

% file search 

% ========================================================================= 

  

% file directory  

p_dir     = 'D:\Matlab Files'; 

% function file directory 

f_dir     = 'D:\Matlab Files\functions'; 

% data directory 

file_dir  = 'D:\Studium\Diplomarbeit\Nanoindentation\Data\Vergleiche\Dif Temperatures\Ta sxx\HE Experiments\data files'; 

% export directory 

ex_dir    = file_dir; 

% load depth hysteresis file name 

file_name = {'T19 TaSxx1 lcCyc1-20 6inds cc innr3 dcoff.txt'; 

'T6 TaSxx2 lcCyc1-20 6inds T100.txt'; 

'T23 TaSxx3 lcCyc1-80 6inds T250.txt'; 

'T27 TaSxx4 lcCyc1-80 3inds T300.txt' 

    }; 

  

% data selection 

% ========================================================================= 

  

sched = [1];              % data files used from 'file_name' 

temps = [1 2 3 5];              % specifies colors and markers for different temperatures 

array = [1 2 3 4 5 6];        % indents used 

CycStartNr = 0;               % skip indents within nr  

  

s_ise = 1;                    % schedule nr. for ISE plot 

AF_split = 'on';             % AF corrected used? 

AF_used = 'old';               % ISE calculated with original AF --> 'old' with new AF --> 'new 

  

split = 'on'; 

HE_plot = 'on'; 

YM_plot = 'off'; 

ise = 'on'; 

  

info_disp = 'on'; 

  

nr_inds_max = 6; 

nr_cycs_max = 8; 

nr_colums   = 12; 

  

% material properties 

% ========================================================================= 

  

Edia = 1147; 

ndia = 0.07; 

  

ny_mat   = 0.21; 

% ny chromium = 0.21 

% ny tantalum = 0.34 

  

% corrections 

% ========================================================================= 

  

corrH  = 0.85; 

corrE  = 0.92; 
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corrdc = 1.10; 

  

AF_old = [25.09 2180 9173]; 

AF_new = [27.63 2026 6360]; 

  

% plotting properties 

% ========================================================================= 

  

% axis limits 

Hmax = 5.0; 

Y_ise_max = 2.5;      % set = 0 to activate auto mode 

Emax = 400; 

xlim = [0 1200]; 

dcmin = 100; 

  

s_spec = {'25°C'; '100°C'; '200°C'; '250°C'; '300°C'; '25°C after'}; 

  

% legend postion 

leg_pos = 2; 

leg_pos_list = {'NorthWest'; 'NorthEast'; 'SouthWest'; 'SouthEast'}; 

  

cm1 = [0.9 0.1 0.1];     % dark red 

cm2 = [0.1 0.1 0.9];     % dark blue 

cm3 =... 

      [0.0 0.1 0.9; 

       0.7 0.0 0.0; 

       1.0 0.3 0.0; 

       1.0 0.7 0.0];     % Temp color map 

cmk = zeros(4,3);        % black 

cms = ... 

      [0.0 0.1 0.9;      %RT 

       0.7 0.1 0.0;      %100°C 

       1.0 0.3 0.0;      %200°C 

       1.0 0.5 0.0;      %250°C 

       1.0 0.7 0.0;      %300°C 

       0.0 0.1 0.9];     % special settings 

  

ms = {'v'; 'd'; 's'; 'o'; '<'; '^'}; 

  

mz_p1 = 8;         % marker size plot 1 

mz_p2 = 5;         % marker size plot 2 

mlw_p1 = 2.0;      % marker line width plot 1 

mlw_p2 = 2.0;      % marker line width plot 2 

llw_p1 = 1.5;       % line line width plot 1 

llw_p2 = 1.5;       % line line width plot 2 

  

FontSize1 = 14;  % lable font size 

FontSize2 = 14;  % tick number font size 

  

font_n = 'Calibri'; % font name 

  

eb_width = 80;  % error bar width in 'units' 

  

scale_dc = [1 100 150 300 500 1000]; % ticks for second x-axis of ISE plot 

  

AxCorr = Hmax/Emax;      % correction for 2nd y-axis 

std_os = 1;              % error bar oversizing 

  

% loading data 

% ========================================================================= 

                                                

cd(file_dir); 

  

N = length(sched); 

  

M = zeros(nr_inds_max*nr_cycs_max, nr_colums, N); 

  

for i = 1:N 

  

    file_ID = fopen(file_name{sched(i)}); 

    C = textscan(file_ID, '%f%f%f%f%f%f%f%f%f%f%f%f',... 

        'HeaderLines', 3,'CollectOutput',1); 

    fclose(file_ID); 

    lc = cellfun('length', C(1)); 

    M(1:lc,1:12,i) = cell2mat(C); 

     

end 

  

cd(f_dir); 

  

% arrange values  

% ========================================================================= 

  

% defining variables 

nr_inds = zeros(N,1); 

nr_cycs = zeros(N,1); 

  

dcl   = zeros(nr_cycs_max, nr_inds_max, N); 

Pl    = zeros(nr_cycs_max, nr_inds_max, N); 

Hl    = zeros(nr_cycs_max, nr_inds_max, N); 
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rml   = zeros(nr_cycs_max, nr_inds_max, N); 

El    = zeros(nr_cycs_max, nr_inds_max, N); 

  

Hr    = zeros(nr_cycs_max, nr_inds_max, N); 

Er    = zeros(nr_cycs_max, nr_inds_max, N); 

dcr   = zeros(nr_cycs_max, nr_inds_max, N); 

  

Hav   = zeros(nr_cycs_max - CycStartNr, N); 

Hav_new =  zeros(nr_cycs_max - CycStartNr, N); 

Eav   = zeros(nr_cycs_max - CycStartNr, N); 

dcav  = zeros(nr_cycs_max - CycStartNr, N); 

  

stdH  = zeros(nr_cycs_max - CycStartNr, N); 

stdE  = zeros(nr_cycs_max - CycStartNr, N); 

stddc = zeros(nr_cycs_max - CycStartNr, N); 

  

H_Tav = zeros(1,N); 

E_Tav = zeros(1,N); 

  

stdH_T = zeros(1,N); 

stdE_T = zeros(1,N); 

    

for i = 1 : N 

     

    % nr of indents in file 

    nr_inds(i) = max(M(:,1,i)); 

     

    % nr of cyles per indent 

    nr_cycs(i) = max(M(:,2,i)); 

     

    % contact depth (list) 

    dcl = M(:,4,i); 

     

    % load (list) 

    Pl = M(:,5,i); 

     

    % hardness (list) 

    Hl = M(:,6,i); 

     

    % reduced modulus (list) 

    rml = M(:,7,i); 

     

    % youngs's modulus (list) 

    El = rml.*Edia.*(1-ny_mat^2)./(Edia-rml.*(1-ndia^2)); 

  

    % split column with data from all indents into lines and columns 

    for j = 1 : nr_inds_max 

  

         Hr (:,j,i) = Hl (1+(nr_cycs*(array(j)-1)):nr_cycs*array(j)); 

         Er (:,j,i) = El (1+(nr_cycs*(array(j)-1)):nr_cycs*array(j)); 

         dcr(:,j,i) = dcl(1+(nr_cycs*(array(j)-1)):nr_cycs*array(j)); 

  

    end 

        

    % skip single cycles 

    H(:,:,i)  = Hr (CycStartNr + 1 : nr_cycs_max,:,i); 

    E(:,:,i)  = Er( CycStartNr + 1 : nr_cycs_max,:,i); 

    dc(:,:,i) = dcr(CycStartNr + 1 : nr_cycs_max,:,i); 

     

    % data correction 

    H(:,:,i)  =  H(:,:,i) .*corrH; 

    E(:,:,i)  =  E(:,:,i) .*corrE; 

    dc(:,:,i) = dc(:,:,i) .*corrdc; 

         

  

    Last = H(:,:,i).*(dc(:,:,i).^2*AF_old(1) + dc(:,:,i).*AF_old(2) + dc(:,:,i).^0.5.*AF_old(3)); 

    H_new(:,:,i) = Last./(dc(:,:,i).^2*AF_new(1) + dc(:,:,i).*AF_new(2) + dc(:,:,i).^0.5.*AF_new(3)); 

   

     

    for k = 1 : nr_cycs(i) - CycStartNr 

         

        Hav (k,i) = mean(nonzeros(H (k,:,i))); 

        Eav (k,i) = mean(nonzeros(E (k,:,i))); 

        dcav(k,i) = mean(nonzeros(dc(k,:,i))); 

  

        stdH (k,i) = std(nonzeros(H (k,:,i))); 

        stdE (k,i) = std(nonzeros(E (k,:,i))); 

        stddc(k,i) = std(nonzeros(dc(k,:,i))); 

         

        H_new_av (k,i) = mean(nonzeros(H_new (k,:,i))); 

        stdH_new_av (k,i) = std(nonzeros(H_new (k,:,i))); 

  

    end 

     

    H_Tav(i) = mean(nonzeros(H(:,:,i))); 

    E_Tav(i) = mean(nonzeros(E(:,:,i))); 

     

    stdH_T(i) = std(nonzeros(H(:,:,i))); 

    stdE_T(i) = std(nonzeros(E(:,:,i))); 
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end 

  

% display data 

% ========================================================================= 

  

% plotting 

% ========================================================================= 

  

% PLOT 1: Harndess & Young's Modulus vs. Contact Depth -------------------- 

  

if strcmp('off', split) == 1 

     

    f1 = figure; 

    smp = 1.2; % figure size factor 

    set(f1, 'Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp]); 

  

    set(0,'defaultAxesFontName', font_n) 

    set(0,'defaultTextFontName', font_n) 

     

    % setting chart position in figure 

    AxesH = axes('Units', 'normalized', 'Position', [0.10, 0.15, 0.75, 0.8]); 

  

    [hAx,hLine1,hLine2] = plotyy(dcav,Hav,dcav,Eav); 

    set(hLine1, 'color',cm1 ,'LineStyle','--','LineWidth', llw_p1); 

    set(hLine2, 'color',cm2 ,'LineStyle','--','LineWidth', llw_p1); 

    hold on 

     

    set(hAx(1),'YLim',[0 Hmax]); 

    set(hAx(2),'YLim',[0 Emax], 'Visible','on'); 

    set(hAx(1),'Xlim',xlim); 

       

    for i = 1:N 

        hErrb2 = errorbar(dcav(:,i), Eav(:,i)*AxCorr, stdE(:,i)*AxCorr,'v','LineWidth', mlw_p1,... 

            'Color',cm2, 'MarkerFaceColor', 'w'); 

        errorbar_tick(hErrb2,eb_width);      

        hErrb1 = errorbar(dcav(:,i), Hav(:,i) ,stdH(:,i)*std_os,       'o','LineWidth', mlw_p1,... 

            'Color', cm1, 'MarkerFaceColor', 'w'); 

        errorbar_tick(hErrb1,eb_width); 

    end 

  

     

    % Setting Tick and Limits 

    set(hAx(1),'YLim',[0 Hmax]); 

    set(hAx(1),'YTick',[0:1:Hmax]); 

    set(hAx(2),'YLim',[0 Emax]); 

    set(hAx(2),'YTick',[0:50:Emax]); 

      

    set(hAx,'Xlim',xlim); 

  

    % Adding Labels 

    xl  = xlabel(hAx(2),'Contact Depth [nm]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1'); 

    yl1 = ylabel(hAx(1), 'Hardness [GPa]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1); 

    yl2 = ylabel(hAx(2), 'Youngs Modulus [GPa]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1); 

  

    % Label Positioning 

    xlabh = get(gca,'XLabel'); 

    set(xlabh,'Position',get(xlabh,'Position') - [0 .3 0]) 

    %set(yl1, 'Units', 'Normalized', 'Position', [-0.05, 0.5, 0]); 

    set(yl2, 'Units', 'Normalized', 'Position', [1.11, 0.5, 0]); 

  

    % Removing y1 Ticks on y2 

    set(hAx(1),'Box','off') 

    set(hAx(1),'XAxisLocation','top','XTickLabel',[]) 

  

    set(hAx(1),'linewidth',1.5,'FontSize',FontSize2); 

    set(hAx(2),'linewidth',1.5,'FontSize',FontSize2); 

  

    set(hAx(1),'YColor',cm1); 

    set(hAx(2),'YColor',cm2); 

  

    gridcolor(gca,':',[1 1 0],{[0 0 0],'k',''}) 

    grid on 

     

end 

  

% PLOT 2: Harndess vs. Contact Depth -------------------------------------- 

  

if strcmp('on', split) == 1 && strcmp('on', HE_plot) == 1 

    f2 = figure; 

        

    % setting chart position in figure 

    AxesH = axes('Units', 'normalized', 'Position', [0.15, 0.15, 0.75, 0.8]); 

     

    cm_p2 = cms; 

     

    for i = 1:N 
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        hObj = plot(dcav(:,i), Hav(:,i)); 

        hAx2 = gca;     

        set(hObj, 'color', cm_p2(temps(i),:), 'LineStyle', '--', 'LineWidth', llw_p2, 'MarkerSize', 1);  

         

        hold on 

         

        if strcmp(AF_split, 'on') == 1       

            hObj = plot(dcav(:,i), H_new_av(:,i)); 

            hAx2 = gca;     

            set(hObj, 'color', cm_p2(temps(i),:), 'LineStyle', '--', 'LineWidth', llw_p2, 'MarkerSize', 1);        

        end 

         

        hErrb = errorbar(dcav(:,i), Hav(:,i), stdH(:,i) * std_os, ms{temps(i)},... 

            'LineWidth', mlw_p2, 'MarkerSize', mz_p2,... 

            'MarkerEdgeColor', cm_p2(temps(i),:), 'MarkerFaceColor', 'w', 'Color', cm_p2(temps(i),:)); 

         

        if strcmp(AF_split, 'on') == 1        

            hErrb = errorbar(dcav(:,i), H_new_av(:,i), stdH(:,i) * std_os, ms{temps(i)},... 

                'LineWidth', mlw_p2, 'MarkerSize', mz_p2,... 

                'MarkerEdgeColor', cm_p2(temps(i),:), 'MarkerFaceColor', 'w', 'Color', cm_p2(temps(i),:)); 

        end 

         

        errorbar_tick(hErrb,eb_width,'UNITS'); 

         

        hErrb = get(gca,'Children'); 

        hErrb_sum(i)=hErrb(1); 

         

        legend_str{i} = strcat(num2str(s_spec{temps(i)})); 

         

        hold on 

         

    end 

     

    set(hAx2,'YLim',[0 Hmax]); 

    set(hAx2,'Xlim',xlim); 

     

    % Adding Labels 

    xl  = xlabel(hAx2,'Contact Depth [nm]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1'); 

    y1 = ylabel(hAx2, 'Hardness [GPa]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1); 

  

    % Label Positioning 

    xlabh = get(gca,'XLabel'); 

    set(xlabh,'Position',get(xlabh,'Position') - [0 .2 0]) 

    set(y1, 'Units', 'Normalized', 'Position', [-0.1, 0.5, 0]); 

     

    set(hAx2,'linewidth',1.5,'FontSize',FontSize2); 

    set(hAx2,'linewidth',1.5,'FontSize',FontSize2); 

     

    legend(hErrb_sum, legend_str, 'location', leg_pos_list{leg_pos}); 

    legendmarkeradjust(5,2) 

     

    grid on 

         

end 

  

% PLOT 3: Young's Modulus vs. Contact Depth -------------------------------------- 

  

if strcmp('on', YM_plot) == 1 

     

    f3 = figure; 

     

    % setting chart position in figure 

    AxesH = axes('Units', 'normalized', 'Position', [0.15, 0.15, 0.75, 0.8]); 

     

    cm_p2 = cms; 

     

    for i = 1:N 

         

        hObj = plot(dcav(:,i), Eav(:,i)); 

        hAx2 = gca;     

        set(hObj, 'color', cm_p2(temps(i),:), 'LineStyle', '--', 'LineWidth', llw_p2, 'MarkerSize', 1); 

        hold on 

         

        hErrb = errorbar(dcav(:,i), Eav(:,i), stdE(:,i) * std_os, ms{temps(i)},... 

            'LineWidth', mlw_p2, 'MarkerSize', mz_p2,... 

            'MarkerEdgeColor', cm_p2(temps(i),:), 'MarkerFaceColor', 'w', 'Color', cm_p2(temps(i),:)); 

         

        errorbar_tick(hErrb,eb_width,'UNITS'); 

         

        hErrb = get(gca,'Children'); 

        hErrb_sum(i)=hErrb(1); 

         

        legend_str{i} = strcat(num2str(s_spec{temps(i)})); 

         

        hold on 

         

    end 
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    set(hAx2,'YLim',[0 Emax]); 

    set(hAx2,'Xlim',xlim); 

     

    % Adding Labels 

    xl  = xlabel(hAx2,'Contact Depth [nm]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1'); 

    y1 = ylabel(hAx2, 'Youngs Modulus [GPa]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1); 

  

    % Label Positioning 

    xlabh = get(gca,'XLabel'); 

    set(xlabh,'Position',get(xlabh,'Position') - [0 .2 0]) 

    set(y1, 'Units', 'Normalized', 'Position', [-0.1, 0.5, 0]); 

     

    set(hAx2,'linewidth',1.5,'FontSize',FontSize2); 

    set(hAx2,'linewidth',1.5,'FontSize',FontSize2); 

     

    legend(hErrb_sum, legend_str, 'location', leg_pos_list{leg_pos}); 

    legendmarkeradjust(5,2) 

     

    grid on 

         

end 

  

% size effect 

% ========================================================================= 

  

set(0,'defaultAxesFontName', font_n) 

set(0,'defaultTextFontName', font_n) 

  

if strcmp(ise, 'on') == 1 

     

    if strcmp(AF_used, 'old') == 1 

        H_used = H; 

    else 

        H_used = H_new; 

    end 

     

    n = 0;     

    for i=1:size(H_used,2) 

        if H_used(1,i,s_ise) ~= 0 

            n = n + 1; 

        end       

    end 

     

    H_ise = H_used(:, 1:n, s_ise); 

    dc_ise = dc(:, 1:n, s_ise); 

     

    [frs, gov]     = ISE_fit1(1./dc_ise, H_ise.^2); 

    coefs(s_ise,:)     = coeffvalues(frs); 

  

    H0  = coefs(s_ise,1); 

    hst = coefs(s_ise,2); 

     

    dc_fit = [1 10^5]; 

    Hq_fit = H0^2 + H0^2*hst.*1./(dc_fit); 

  

    Yise     = H_ise.^2    / H0^2; 

    Yise_fit = (Hq_fit / H0^2)'; 

     

    idc_ise_av  = zeros(1, size(Yise,1)); 

    idc_ise_std = zeros(1, size(Yise,1)); 

     

    Yise_av    = zeros(1, size(Yise,1)); 

    Yise_std   = zeros(1, size(Yise,1)); 

     

    for i = 1:length(Yise_av) 

         

        idc_ise_av(i)  = mean(1./dc_ise(i,:)); 

        idc_ise_std(i) =  std(1./dc_ise(i,:)); 

         

        Yise_av(i)    = mean(Yise(i,:)); 

        Yise_std(i)   =  std(Yise(i,:)); 

         

    end 

     

    % plot 

    % --------------------------------------------------------------------- 

    f4 = figure; 

    AxesH = axes('Units', 'normalized', 'Position', [0.12, 0.15, 0.8, 0.7]); 

       

    p2 = plot(1./dc_fit, Yise_fit); 

    set(p2, 'LineStyle', '--', 'LineWidth', 3, 'Color', [0.5 0.5 0.5]); 

     

    grid on 

     

    hold on 

     

    p3  =     ploterr(idc_ise_av, Yise_av, 5.*idc_ise_std, Yise_std,'o','hhx',1.5); 

    p3_h = get(gca, 'Children'); 
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    set(p3, 'Color', 'k', 'LineWidth', 1.5, 'MarkerEdgeColor', 'k', 'MarkerFaceColor', [0.4 0.4 0.4], 'MarkerSize', 7); 

     

    ax1 = gca; 

     

    p_h = [p3(1) p2(1)]; 

     

    if Y_ise_max == 0 

        set(ax1, 'ylim',[0 0.5 + ceil(max(Yise(:)))]) 

    else 

        set(ax1, 'ylim',[0 Y_ise_max]) 

    end 

     

    set(ax1, 'xlim',[0 1/dcmin]) 

     

    xlabel(ax1, '1 / d_ _c  [nm^-^1]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1) 

    ylabel(ax1, 'H^ ^2 / H_ _0^ ^2  [-]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1) 

     

    set(ax1, 'linewidth',1.5,'FontSize',FontSize2); 

     

    xAx2 = LinkTopAxisData(1./scale_dc,scale_dc,'d_ _c  [nm]'); % Add a top axis 

    set(xAx2, 'linewidth',1.5,'FontSize',FontSize2); 

     

    xlabel(xAx2, 'd_ _c  [nm]', 'FontWeight', 'bold',... 

        'FontSize',FontSize1) 

     

    leg = legend(p_h, {'data points' 'Nix-Gao Fit'}, 'location', 'NorthWest','Color', 'w','LineWidth',1.5); 

    set(leg, 'Color', [0.98 0.98 0.98]); 

     

    annbox = annotation('textbox', [0.615 0.298 0.10 0.1], 'String',... 

    {['H^ ^2 / H_0^ ^2 = 1 + h^ ^* * 1 / d_ _c' ],... 

     [],... 

     ['H_0 = ' num2str(round(H0*100)/100) ' GPa'],... 

     ['h^ ^* = ' num2str(round(hst*1)/1) ' nm' ]},... 

    'BackGroundColor',[0.98 0.98 0.98],... 

    'FontSize',10, 'LineWidth',1.5,'FontWeight', 'bold'); 

  

         

end 

  

% directory management 

% ========================================================================= 

  

cd(ex_dir); 

 

Creep data analysis 

clc 

clear all 

close all 

  

% file search 

% ========================================================================= 

% file directory  

p_dir  = 'D:\Matlab Files'; 

% function file directory 

f_dir     = 'D:\Matlab Files\functions'; 

% data directory 

d_dir  = 'D:\Studium\Diplomarbeit\Nanoindentation\Data\Vergleiche\Dif Temperatures\Cr ufg\Creep Experiments\RT-300\raw data'; 

%export directory 

ex_dir = d_dir; 

%an_name = 'T5 Cr1IA lc100 dw200 6inds creep.txt'; 

% dwell data file name 

dw_name = 'Cr1IA T19 __ Cr1IB T10 __ Cr1IIA T6__Cr1IIB T13.txt';                                                     

  

% analysis settings 1 

% ========================================================================= 

  

split = 'on'; 

inds = 4;   

array = [1 2 3 4]; 

Temps = [25 100 200 300]; 

temps_array = [1 2 3 5]; 

  

% experimental settings 

% ========================================================================= 

  

load = [100];                     % constand load [mN] 

comp = [0.83 0.90 1.11 0.79];         % compliance: enter either one or all values 

                                                % number of indentations 

  

dwell = 200;                                    % dwell period [s] 

  

a = 2.88;                                       % latice parameter in angsroem 

                                                % a(Cr) = 2.88 A ; a(Ta) = 3.30 A 
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k = 3^0.5;                                      % burgers vector to latice parameter 

  

pu_corr = 1.1;                                  % pile up correction affecing absolute depth 

                         

% analysis settings 2 

% ========================================================================= 

  

init = 2;                      % number of header lines 

n_start = 2;                   % first point used from data set 

n_end = 199;                   % last point used from data set 

  

length_sta = 20;               % length (in measured points) of stage a 

length_stb = 198;              % points for fitting stage b 

show_length_stb = 100;         % points used for stage b 

  

cf = 2.8;                      % constraint factor 

  

epsb = 0.75;                   % geometry factor berkovic "epsilon" 

  

sc = 1;                        % auxilary points for slope calculation  

asp = 1; 

  

% indenter data 

% ========================================================================= 

  

% area function 

  

AF = [9173 2180 25.09; 

     6360 2026 27.63; 

    -9023 3650 26.37; 

    -22609 4466 26.69]; 

  

AF_list = [2 2 2 3]; 

  

% plot settings 1 

% ========================================================================= 

  

vFig1 = 'off';                 % absolute depth vs time 

vFig2 = 'off';                 % relative depth vs time 

vFig3 = 'off';                 % hardness vs time 

vFig4 = 'off';                 % ln(Hardness) vs ln(Strain Rate)(continous) 

vFig5 = 'off';                 % ln(Hardness) vs ln(Strain Rate)(stage A & B) 

vFig6 = 'off';                 % strain rate sensitivity vs stress (diff fits) 

vFig7 = 'off';                 % strain rate sensivitity vs stress (stage A & B) 

vFig8 = 'on';                 % strain rate sensivitity vs stress (continous) 

vFig9 = 'off';                 % activation volume vs stress (stA, stA fit) 

vFig10= 'off';                  % activation volume vs stress (continous) 

  

  

% plot settings 2 

% ========================================================================= 

tim_pl_range = [0 200];                             % time range limits 

har_pl_range = [0 7];                               % hardness plotting limits 

str_pl_range = [10^-1 10^0];                        % stress plotting limits 

stn_pl_range = [10^-13 10^-2]; 

srs_pl_range = [10^-3 10^0];                        % strain rate sensitivity plotting limits 

vst_pl_range = [10^0 10^3];                        % activation volume plotting limits 

  

lw = 1.5;                                           % axes line width 

fs = 14;                                            % axes font size 

fw = 'bold';                                        % axes font weight 

fn = 'Calibri';                                     % axes font name 

  

cm1 = lines(inds);                                  % colormap 1 

cm2 = [0.0 0.1 0.9; 

       0.7 0.0 0.0; 

       1.0 0.3 0.0; 

       1.0 0.5 0.0; 

       1.0 0.7 0.0];                                % colormap 2 

  

sp_cm_set = 'off';                                  % special color map sef 

cm3 = [0.0 0.1 0.9; 

       0.7 0.1 0.0; 

       1.0 0.3 0.0; 

       0.0 0.4 0.9; 

       0.0 0.6 0.9]; 

  

cm4 = [0.4 0.4 0.4]; 

  

symb_list = {'o','o','o','o','^','v'}; 

  

log_spr = 0.06; 

    

smp = 1.2;                                          % figure size factor 

  

% import data 

% ========================================================================= 

  

X7     = [0.9373 0.6994 1.1970 1.6876 2.2439 1.3890]./cf; 

X7_std = [0.0105 0.0143 0.0045 0.0544 0.0041 0.0277]./cf; 
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Y7     = [0.0420 0.0204 0.0255 0.0668 0.0212 0.0331]; 

Y7_std = [0.0018 0.0017 0.0050 0.0122 0.0015 4.1400e-04]; 

  

Y9     = [21.7167 75.4126 50.5386 14.9109 17.9653 18.5539]; 

Y9_std = [0.9209 6.3986 8.5599 2.7753 2.7753 0.1485]; 

     

cd(d_dir); 

  

dw_data = dlmread(dw_name); 

  

cd(f_dir); 

  

time_column = dw_data(:,1); 

mdepth_column = dw_data(:,2); 

  

% time 

t = zeros(dwell-1,inds); 

  

for i=1:inds 

    t(:,i) = time_column(init+dwell*(i-1):init+i*dwell-2); 

end 

  

% gap between indenter and surface: hs 

hs = zeros(inds,1); 

  

if length(load) > 1 

    if length(comp) > 1  

        for i = 1:inds 

            hs(i) = epsb * load(i) * comp(i); 

        end 

    else    

        for i = 1:inds 

            hs = epsb * load(i) * comp(1); 

        end  

    end 

else  

        if length(comp) > 1  

        for i = 1:inds 

            hs(i) = epsb * load(1) * comp(i); 

        end 

    else    

        for i = 1:inds 

            hs = epsb * load(1) * comp(1); 

        end  

    end 

end 

  

% absolute depth: ad 

ad  = zeros(dwell-1,inds); 

for i=1:inds 

    ad(:,i)  = mdepth_column(init+dwell*(i-1):init+i*dwell-2); 

end 

  

%absolute depth corrected: adc 

adc = zeros(dwell-1,inds); 

for i=1:inds 

    try 

        adc(:,i) = ad(:,i) - hs(i);          

    catch 

        adc(:,i) = ad(:,i) - hs(1); 

    end      

end 

  

adc = adc.*pu_corr; %pile-up correction step 

  

len = length(ad(:,1)); 

  

% smallest corrected depths h0c 

h0c = zeros(inds,1); % hs corrected indenter depth at start of dwell time 

  

for i=1:inds 

    h0c(i)  = min(adc(:,i)); 

end 

  

% relative depth corrected rdc 

rdc = zeros(len,inds); 

for i = 1:inds 

    for j = 1:len 

        rdc(j,i) = adc(j,i)- h0c(i);         

    end 

end 

  

% fitting curves (with "creep_fit()" function) 

% ========================================================================= 

  

Xs = zeros(n_end - n_start + 1, inds); 

Ys = zeros(n_end - n_start + 1, inds); 

  

for i=1:inds 

    Xs(:,i) = t  (n_start : n_end, i); 
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    Ys(:,i) = rdc(n_start : n_end, i); 

end 

  

range_stb = length(Xs)-length_stb +1 : length(Xs); 

  

coefs = zeros(inds,4); 

coefs_sta = zeros(inds,4); 

coefs_stb = zeros(inds,4); 

  

for i=1:inds 

    [frs, gov]     = creep_fit_res1(Xs(:,i),Ys(:,i)); 

    coefs(i,:)     = coeffvalues(frs); 

    [frs, gov]     = creep_fit_res1(Xs(1:length_sta,i),       Ys(1:length_sta,i)); 

    coefs_sta(i,:) = coeffvalues(frs); 

    [frs, gov]     = creep_fit_res1(Xs(range_stb,i),Ys(range_stb,i)); 

    coefs_stb(i,:) = coeffvalues(frs); 

      

end 

  

Yf     = zeros(n_end - n_start  + 1, inds); % fit of corr. relative depths 

Yf_sta = zeros(length_sta, inds); 

Yf_stb = zeros(length_stb, inds); 

  

for i=1:inds 

    Yf(:,i)     = coefs    (i,1).*(Xs(:,i)           - coefs    (i,2)).^(coefs    (i,3)) + coefs    (i,4).*Xs(:,i); 

    Yf_sta(:,i) = coefs_sta(i,1).*(Xs(1:length_sta,i)- coefs_sta(i,2)).^(coefs_sta(i,3)) + coefs_sta(i,4).*Xs(1:length_sta,i); 

    Yf_stb(:,i) = coefs_stb(i,1).*(Xs(range_stb,i)   - coefs_stb(i,2)).^(coefs_stb(i,3)) + coefs_stb(i,4).*Xs(range_stb,i); 

end 

  

%% calculating data 

% ========================================================================= 

  

% fitted abolute dephts: adf 

adf     = zeros( n_end - n_start + 1, inds); 

adf_sta = zeros(length_sta, inds); 

adf_stb = zeros(length_stb, inds); 

  

for i=1:inds 

    adf(:,i) = Yf(:,i) + h0c(i); 

    adf_sta(:,i) = Yf_sta(:,i) + h0c(i); 

    adf_stb(:,i) = Yf_stb(:,i) + h0c(i); 

end 

  

% derivated fitted absolute depths: d_adf 

d_adf     = zeros(n_end - n_start + 1, inds); 

d_adf_sta = zeros(length_sta, inds); 

d_adf_stb = zeros(length_stb, inds); 

for i=1:inds 

    d_adf    (:,i) = coefs    (i,1)*coefs    (i,3).*(Xs(:,i)            - coefs    (i,2)).^ (coefs    (i,3)-1) + coefs(i,4); 

    d_adf_sta(:,i) = coefs_sta(i,1)*coefs_sta(i,3).*(Xs(1:length_sta,i) - coefs_sta(i,2)).^ (coefs_sta(i,3)-1) + coefs_sta(i,4); 

    d_adf_stb(:,i) = coefs_stb(i,1)*coefs_stb(i,3).*(Xs(range_stb,i)    - coefs_stb(i,2)).^ (coefs_stb(i,3)-1) + coefs_stb(i,4); 

     

end 

  

% derivated absolute depth : d_ad 

d_ad = zeros(n_end - n_start + 1 - asp , inds); 

for i = 1:inds 

    for j = 1:length(d_ad) 

        d_ad(j,i) = (adc(j + asp, i) - adc(j, i))/(Xs(j + asp, i) - Xs(j, i)); 

    end 

end 

  

% strain rate 

d_epsf     = zeros(n_end - n_start + 1, inds); 

d_epsf_sta = zeros(length_sta, inds); 

d_epsf_stb = zeros(length_stb, inds); 

for i=1:inds 

    d_epsf    (:,i) = d_adf    (:,i)./adf    (:,i); 

    d_epsf_sta(:,i) = d_adf_sta(:,i)./adf_sta(:,i); 

    d_epsf_stb(:,i) = d_adf_stb(:,i)./adf_stb(:,i); 

end 

  

d_eps = zeros(n_end - n_start + 1 - asp, inds); 

for i=1:inds 

    for j=1:length(d_eps) 

        d_eps(j,i) = d_ad(j,i)./adc(j,i); 

    end 

end 

  

% logarithm of d_eps 

  

log_d_epsf     = zeros(n_end - n_start + 1, inds); 

log_d_epsf_sta = zeros(length_sta, inds); 

log_d_epsf_stb = zeros(length_stb, inds); 

  

for i=1:inds 

    for j=1:(n_end - n_start + 1) 

        log_d_epsf    (j,i) = log(d_epsf    (j,i)); 

    end 
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    for j=1:length_sta 

        log_d_epsf_sta(j,i) = log(d_epsf_sta(j,i)); 

    end 

         

    for j=1:length_stb 

        log_d_epsf_stb(j,i) = log(d_epsf_stb(j,i)); 

    end 

end 

  

log_d_eps = zeros(n_end - n_start + 1 - asp, inds); 

for i=1:inds 

    for j=1:(n_end - n_start + 1 - asp) 

        log_d_eps(j,i) = log(d_eps(j,i)); 

    end 

end 

  

% contact area 

  

Acf     = zeros(n_end-n_start + 1, inds); 

Acf_sta = zeros(length_sta, inds); 

Acf_stb = zeros(length_stb, inds); 

Ac      = zeros(n_end-n_start + 1, inds); 

  

for i=1:inds 

  

    for j=1:(n_end-n_start + 1) 

        Acf(j,i)     = AF(AF_list(i),1) *adf    (j,i).^0.5 + AF(AF_list(i),2).*adf... 

            (j,i) + AF(AF_list(i),3).*adf    (j,i).^2; 

       % Acf_sta(j,i) = A 

        Ac (j,i)     = AF(AF_list(i),1) *adc    (j,i).^0.5 + AF(AF_list(i),2).*adc... 

            (j,i) + AF(AF_list(i),3).*adc    (j,i).^2; 

    end 

     

    for j=1:length_sta 

        Acf_sta(j,i) = AF(AF_list(i),1) *adf_sta(j,i).^0.5 + AF(AF_list(i),2).*adf_sta(j,i)... 

            + AF(AF_list(i),3).*adf_sta(j,i).^2; 

    end 

     

    for j=1:length_stb 

        Acf_stb(j,i) = AF(AF_list(i),1) *adf_stb(j,i).^0.5 + AF(AF_list(i),2).*adf_stb(j,i)... 

            + AF(AF_list(i),3).*adf_stb(j,i).^2; 

    end 

     

end 

  

acsr = zeros(n_end-n_start + 1 - asp, inds); 

for i=1:inds 

    for j=1:(n_end-n_start + 1 - asp) 

        acsr(j,i) = AF(AF_list(i),1)*adc(j,i).^0.5 + AF(AF_list(i),2).*adc(j,i)... 

            + AF(AF_list(i),3).*adc(j,i).^2; 

    end 

end 

  

% strain 

Hf     = zeros(n_end - n_start + 1, inds); 

Hf_sta = zeros(length_sta, inds); 

Hf_stb = zeros(length_stb, inds); 

H      = zeros(n_end - n_start + 1, inds); 

  

if length(load) > 1 

    for i=1:inds 

        for j=1:(n_end - n_start + 1) 

            Hf(j,i)     = load(i)*10^(-3)/(Acf    (j,i)*10^(-12))*10^(-3); 

            H (j,i)     = load(i)*10^(-3)/(Ac     (j,i)*10^(-12))*10^(-3); 

        end 

  

        for j=1:length_sta 

            Hf_sta(j,i) = load(i)*10^(-3)/(Acf_sta(j,i)*10^(-12))*10^(-3); 

        end 

  

        for j=1:length_stb 

            Hf_stb(j,i) = load(i)*10^(-3)/(Acf_stb(j,i)*10^(-12))*10^(-3); 

        end 

    end 

else  

    for i=1:inds 

        for j=1:(n_end - n_start + 1) 

            Hf(j,i)     = load(1)*10^(-3)/(Acf    (j,i)*10^(-12))*10^(-3); 

            H (j,i)     = load(1)*10^(-3)/(Ac     (j,i)*10^(-12))*10^(-3); 

        end 

  

        for j=1:length_sta 

            Hf_sta(j,i) = load(1)*10^(-3)/(Acf_sta(j,i)*10^(-12))*10^(-3); 

        end 

  

        for j=1:length_stb 

            Hf_stb(j,i) = load(1)*10^(-3)/(Acf_stb(j,i)*10^(-12))*10^(-3); 

        end 

    end 

end 
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log_Hf     = log(Hf); 

log_H      = log(H); 

log_Hf_sta = log(Hf_sta); 

log_Hf_stb = log(Hf_stb); 

  

Stress     = Hf    /cf; 

Stress_sta = Hf_sta/cf; 

Stress_stb = Hf_stb/cf; 

  

Stress_av_sto = zeros(length(array),1); 

Stress_av_sta = zeros(length(array),1); 

Stress_av_stb = zeros(length(array),1); 

  

for i=1:length(array) 

    Stress_av_sto(i,1) = mean(Stress(1:length_sta,array(i))); 

    Stress_av_sta(i,1) = mean(Stress_sta(:,array(i))); 

    Stress_av_stb(i,1) = mean(Stress_stb(:,array(i))); 

end 

  

Stress_std_sto = std(Stress_av_sto); 

Stress_std_sta = std(Stress_av_sta); 

Stress_std_stb = std(Stress_av_stb); 

     

log_Stress     = log(Stress); 

log_Stress_sta = log(Stress_sta); 

log_Stress_stb = log(Stress_stb); 

  

% m-values 

  

ms = zeros(n_end - n_start + 1 - sc, inds); 

m_sta = zeros(length_sta, inds); 

m_stb = zeros(length_stb, inds); 

  

for i = 1:inds 

     

    for j = 1:(n_end - n_start + 1 - sc) 

        ms(j,i) = (log_Stress(j+sc,i)-log_Stress(j,i))/(log_d_epsf(j+sc,i)-log_d_epsf(j,i)); 

    end 

     

    for j = 1:length_sta - sc 

        m_sta(j,i) = (log_Stress_sta(j+sc,i)-log_Stress_sta(j,i))/(log_d_epsf_sta(j+sc,i)-log_d_epsf_sta(j,i)); 

    end 

     

    for j = 1:length_stb - sc 

        m_stb(j,i) = (log_Stress_stb(j+sc,i)-log_Stress_stb(j,i))/(log_d_epsf_stb(j+sc,i)-log_d_epsf_stb(j,i)); 

    end 

     

end 

  

% stage a/b linear fitting 

% ========================================================================= 

  

log_d_epsfl_stb = log_d_epsf(range_stb, :); 

log_Hfl_stb     = log_Hf(range_stb, :); 

show_range_stb = length(log_d_epsf_stb) - show_length_stb : length(log_d_epsf_stb); 

  

coefs_lin     = zeros(length(array),2);     % stage a fit out of single fit 

coefs_sta_lin = zeros(length(array),2);     % stage a fit out of stage a fit 

coefs_stb_lin = zeros(length(array),2);     % stage b fit out of single fit 

  

std_coefs_lin          = zeros(length(array),1); % goodnes of fit of coefs_lin 

std_coefs_sta_lin      = zeros(length(array),1); % goodnes of fit of coefs_lin 

std_coefs_stb_lin      = zeros(length(array),1); % goodnes of fit of coefs_lin 

  

for i=1:inds 

    [frs, gov] = stage_linfit_1(log_d_epsf(1:length_sta, i),log_Hf(1:length_sta, i)); 

    coefs_lin(i,:) = coeffvalues(frs); 

    std_coefs_lin(i) = gov.rmse;     

    [frs, gov] = stage_linfit_1(log_d_epsf_sta(:, i),log_Hf_sta(:, i)); 

    coefs_sta_lin(i,:) = coeffvalues(frs); 

    std_coefs_sta_lin(i) = gov.rmse;  

    [frs, gov] = stage_linfit_1(log_d_epsf_stb(show_range_stb, i),log_Hf_stb(show_range_stb, i)); 

    coefs_stb_lin(i,:) = coeffvalues(frs); 

    std_coefs_stb_lin(i) = gov.rmse;  

end 

  

% disp('SRS Stage A, fit 200s') 

% disp(coefs_lin(:,1)); 

m_av_sto = mean(coefs_lin(array,1)); 

m_std_sto = std(coefs_lin(array,1)); 

  

% disp('SRS Stage A, fit stA') 

% disp(coefs_sta_lin(:,1)); 

m_av_sta = mean(coefs_sta_lin(array,1)); 

m_std_sta = std(coefs_sta_lin(array,1)); 

  

% disp('SRS Stage B, fit stB') 

% disp(coefs_stb_lin(:,1)); 
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m_av_stb = mean(coefs_stb_lin(array,1)); 

m_std_stb = std(coefs_stb_lin(array,1)); 

  

%% Calculating V* 

% ========================================================================= 

  

vs     = zeros(n_end - n_start + 1 - sc, inds); 

vs_sta = zeros(inds, 1); 

  

for i = 1:inds 

     

    for j = 1:(n_end - n_start + 1 - sc) 

        vs(j,i) = 3 ^ 0.5 * 1.3807*10^-23 * (Temps(i) + 272.23) * cf /... 

            (Hf(j,i) * 10^9 * ms(j,i)) / ((a/2 * k * 10^-10)^3); 

    end 

     

    vs_sta(i) =   3 ^ 0.5 * 1.3807*10^-23 * (Temps(i) + 272.23) * cf /... 

            ((mean(Hf_sta(:,array(i))) * 10^9 * coefs_sta_lin(array(i),1))) / ... 

            ((a/2 * k * 10^-10)^3); 

        

end 

  

%% plotting curves 

% ========================================================================= 

  

% setting fonts 

set(0,'defaultAxesFontName', fn) 

set(0,'defaultTextFontName', fn) 

  

% seetting color map 

if strcmp('on',split) == 1; 

    cm = cm2; 

else  

    cm = cm1; 

end 

if strcmp('on', sp_cm_set) == 1; 

    cm = cm3; 

end 

  

% FIGURE 1: Absolute Depth vs. Time --------------------------------------- 

  

f1=figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig1); 

  

for i=1:length(array) 

  

    l1 = plot(Xs(:,array(i)), adc(1:length(Xs),array(i)),... 

        'linewidth', 2.0, 'color', cm(temps_array(i),:)); 

    h_l1 = get(gca,'Children'); 

    hold on 

     

    h_fit(i)=h_l1(1); 

     

    if strcmp(split,'on') == 1       

        legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

    else 

        legend_str{i} = strcat('Indent', '#', num2str(array(i))); 

    end 

         

end 

  

hAx1 = gca; 

  

set(hAx1, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

xlabel( 'Time [s]', 'FontWeight', 'bold'); 

ylabel( 'Absolute Depth [nm]', 'FontWeight', 'bold'); 

  

axis([0,200,0,1200]); 

  

legend(h_fit,legend_str,'location','SouthEast'); 

  

% FIGURE 2: Relative Depth - Time ----------------------------------------- 

  

f2=figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig2); 

  

h_fit = zeros(length(array),1); 

  

for i=1:length(array) 

    l1 = plot(Xs(:,array(i)),Ys(:,array(i)),'color',cm(temps_array(i),:)); 

    set(l1(1),'linewidth',1.5); 

    h_l1 = get(gca,'Children'); 

    hold on 

    l2 = plot(Xs(1:length_sta,array(i)),Yf_sta(:,array(i)),'color',cm(temps_array(i),:),'LineStyle','*','linewidth',1); 

    h_l2 = get(gca,'Children'); 

    l3 = plot(Xs(range_stb,array(i)),Yf_stb(:,array(i)),'color',cm(temps_array(i),:),'LineStyle','-.','linewidth',2); 

    h_l3 = get(gca,'Children'); 

     

    h_fit(i)=h_l1(1); 

     

    if strcmp(split,'on') == 1    
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        legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

    else 

        legend_str{i} = strcat('Indent', '#', num2str(array(i))); 

    end 

     

end 

  

hAx2 = gca; 

  

set(hAx2, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

%axis([-5,200,-1,50]); 

  

xlabel( 'Time [s]', 'FontWeight', 'bold'); 

ylabel( 'Relative Depth [nm]', 'FontWeight', 'bold' ); 

  

legend(h_fit,legend_str,'location','Northwest'); 

  

grid on; 

  

% FIGURE 3: Hardness vs. Time --------------------------------------------- 

  

f3 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig3); 

  

for i=1:length(array) 

     

    l1 = plot(Xs(:,array(i)), H(:,array(i)),... 

        'linewidth',2.0,'color',cm(temps_array(i),:)); 

     

    hold on 

     

    h_l1 = get(gca,'Children'); 

    hold on 

     

    h_fit(i)=h_l1(1); 

     

    if strcmp(split,'on') == 1      

        legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

    else 

        legend_str{i} = strcat('Indent', '#', num2str(array(i))); 

    end 

     

end 

  

hAx3 = gca; 

  

set(hAx3, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

xlabel( 'Time [s]','FontWeight', 'bold'); 

ylabel( 'Harndess [GPa]','FontWeight', 'bold'); 

axis([tim_pl_range har_pl_range]); 

  

legend(h_fit,legend_str,'location','NorthEast'); 

  

% FIGURE 4: ln(Harndess) vs. ln(Strain Rate) ------------------------------ 

  

f4 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig4); 

  

for i=1:length(array) 

    plot(log_d_epsf(1:length(log_Hf),array(i)),log_Hf(:,array(i)),... 

        '-o', 'color', cm(temps_array(i),:), 'linewidth', 1.0, 'markersize', 3) 

    hold on 

     

    h_l1 = get(gca,'Children'); 

    h_fit(i)=h_l1(1); 

     

    if strcmp(split,'on') == 1      

        legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

    else 

        legend_str{i} = strcat('Indent', '#', num2str(array(i))); 

    end 

  

end 

  

hAx4 = gca; 

  

set(hAx4, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

xlim([-13 0]); 

ylim([min(log_Hf_stb(:)) - 0.3 max(log_Hf_sta(:)) + 0.2]); 

%ylim([-0.6 0.6]); 

axis([xlim ylim]); 

  

xlabel(horzcat('ln (Strain Rate)'), 'FontWeight', 'bold');     

ylabel(horzcat('ln (Hardness)'), 'FontWeight', 'bold'); 

  

legend(h_fit,legend_str,'location','West'); 

legendmarkeradjust(4, 1.5) 

  

grid on; 



Appendix   

 

-88- 

  

% FIGURE 5: ln(Hardness) - ln(Strain Rate) "Stage A, Stage B"-------------- 

  

f5 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig5); 

  

for i=1:length(array) 

    plot(log_d_epsf_sta(:,array(i)),log_Hf_sta(:,array(i)),... 

        '-o', 'color', cm(temps_array(i),:), 'linewidth', 1.0, 'markersize', 3) 

    hold on 

     

     h_l1 = get(gca,'Children'); 

     

    plot(log_d_epsf_stb(show_range_stb, array(i)),log_Hf_stb(show_range_stb ,array(i)),... 

        's', 'color', cm(temps_array(i),:), 'linewidth', 1.0, 'markersize', 3) 

     

    h_fit(i)=h_l1(1); 

     

    if strcmp(split,'on') == 1      

        legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

    else 

        legend_str{i} = strcat('Indent', '#', num2str(array(i))); 

    end 

  

end 

  

hAx5 = gca; 

  

set(hAx5, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

xlabel(horzcat('ln (Strain Rate)'), 'FontWeight', 'bold'); 

ylabel(horzcat('ln (Hardness)'), 'FontWeight', 'bold'); 

  

legend(h_fit,legend_str,'location','SouthEast'); 

legendmarkeradjust(4, 1.5) 

  

grid on; 

  

% FIGURE 6: Strain Rate Sensitivity vs. Strain Rate Stage A/B ------------- 

  

f6 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig6); 

  

for i=1:length(array) 

    loglog(mean(Stress(1:length_sta,array(i))), coefs_lin(array(i),1),... 

        '+','color',cm(temps_array(i),:), 'linewidth', 1.5) 

    hold on 

     

    loglog(mean(Stress_sta(:,array(i))), coefs_sta_lin(array(i),1),... 

        'o','color',cm(temps_array(i),:), 'linewidth', 1.5) 

    hold on 

    loglog(mean(Stress_stb(:,array(i))), coefs_stb_lin(array(i),1),'v',... 

        'color',cm(temps_array(i),:), 'linewidth', 1.5) 

    hold on 

end 

  

if strcmp(split,'off') == 1 

    errorbar(mean(Stress_av_sto), m_av_sto, m_std_sto,... 

        '+','color', 'k', 'markersize', 5.0, 'linewidth', 1.5) 

    errorbar(mean(Stress_av_sta), m_av_sta, m_std_sta,... 

        'o','color', 'k', 'markersize', 5.0, 'linewidth', 1.5) 

    errorbar(mean(Stress_av_stb), m_av_stb, m_std_stb,... 

        'v','color', 'k', 'markersize', 5.0, 'linewidth', 1.5) 

    hold on 

     

    annotation('textbox', [0.20 0.14 0.3 0.3], 'String',... 

    {['STO' ' m = ' num2str(m_av_sto) ' +/- ' num2str(m_std_sto)],... 

     ['STA' ' m = ' num2str(m_av_sta) ' +/- ' num2str(m_std_sta)],... 

     ['STB' ' m = ' num2str(m_av_stb) ' +/- ' num2str(m_std_stb)]},... 

    'BackGroundColor',[1.0, 1.0, 1.0],... 

    'FontSize',7); 

  

end 

  

hAx8 = gca; 

set(hAx8, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

xlim([min(Stress_stb(:)) - 0.01 max(Stress_sta(:)) + 0.01]); 

axis([xlim ylim]); 

  

xlabel('Stress [GPa]','FontWeight', 'bold'); 

ylabel('Strain Rate Sensitivity [-]','FontWeight', 'bold'); 

  

grid on; 

  

% FIGURE 7: Strain Rate Sensitivity vs. Strain Rate Stage A detailed ------ 

  

if strcmp (vFig7,'on') == 1 

     

    f7 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig7); 

  

    for i=1:length(array) 
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        loglog(X7(i), Y7(i),'--') 

        hold on 

  

    end 

  

    loglog(X7 ,Y7,'LineWidth', 1.5, 'LineStyle', '--', 'Color', 'k'); 

  

    for i=1:length(array) 

        h7 = ploterr(X7(i), Y7(i),[], Y7_std(i), strcat('k-', symb_list{i})); 

        h_l1 = get(gca,'Children'); 

        h_fit(i)=h_l1(1);  

        set(h7,'LineWidth', 1.5, 'MarkerEdgeColor', 'k', 'MarkerFaceColor',cm(temps_array(i),:), 'MarkerSize', 10); 

 

            if strcmp(split,'on') == 1         

            legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

            end 

    end 

  

    loglog(X7,Y7,'k.'); 

  

    if strcmp(split,'off') == 1 

        errorbar(mean(Stress_av_sto), m_av_sto, m_std_sto,... 

            '+','color', 'k', 'markersize', 5.0, 'linewidth', 1.5) 

        errorbar(mean(Stress_av_sta), m_av_sta, m_std_sta,... 

            'o','color', 'k', 'markersize', 5.0, 'linewidth', 1.5) 

        errorbar(mean(Stress_av_stb), m_av_stb, m_std_stb,... 

            'v','color', 'k', 'markersize', 5.0, 'linewidth', 1.5) 

        hold on 

  

        annotation('textbox', [0.20 0.14 0.3 0.3], 'String',... 

        {['STO' ' m = ' num2str(m_av_sto) ' +/- ' num2str(m_std_sto)],... 

         ['STA' ' m = ' num2str(m_av_sta) ' +/- ' num2str(m_std_sta)],... 

         ['STB' ' m = ' num2str(m_av_stb) ' +/- ' num2str(m_std_stb)]},... 

        'BackGroundColor',[1.0, 1.0, 1.0],... 

        'FontSize',7); 

    end 

  

    hAx7 = gca; 

    set(hAx7, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

    ylim(srs_pl_range); 

    xlim([min(X7) / 10^log_spr max(X7) * 10^log_spr]); 

  

    xlabel('Stress [GPa]','FontWeight', 'bold'); 

    ylabel('Strain Rate Sensitivity [-]','FontWeight', 'bold'); 

  

    legend(h_fit, legend_str, 'location','SouthWest'); 

    legendmarkeradjust(5, 1); 

  

    grid on; 

  

end 

 

% FIGURE 8 : SRS vs. Stress Plot continous -------------------------------- 

  

f8 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig8); 

  

for i=1:length(array) 

    l1 = loglog(Stress(1:length(ms),array(i)),ms(:,array(i)),... 

        'color', cm(temps_array(i),:), 'linewidth', 1.0, 'linestyle', symb_list{i}, 'markersize',3); 

    h_l1 = get(gca,'Children'); 

    hold on 

     

    h_fit(i)=h_l1(1); 

     

    if strcmp(split,'on') == 1      

        legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

    else 

        legend_str{i} = strcat('Indent', '#', num2str(array(i))); 

    end 

  

end 

  

hAx8 = gca; 

  

set(hAx8, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs,... 

    'xLim', str_pl_range, 'yLim', srs_pl_range); 

  

xlabel('Stress [GPa]','FontWeight', 'bold'); 

ylabel('Strain Rate Sensitivity [-]','FontWeight', 'bold'); 

  

legend(h_fit,legend_str,'location','SouthWest'); 

legendmarkeradjust(4, 2); 

  

grid on; 

  

% FIGURE 9: Activation Volume vs. Stress ---------------------------------- 

  

if strcmp (vFig9,'on') == 1 
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    f9 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp], 'visible', vFig9); 

  

    X9 = X7; 

  

    for i=1:length(array) 

        loglog(X9(i), Y9(i), '--') 

        hold on 

    end 

  

    loglog(X9 ,Y9,'LineWidth', 1.5, 'LineStyle', '--', 'Color', 'k'); 

  

    for i=1:length(array) 

        h9 = ploterr(X9(i), Y9(i),[], Y9_std(i),strcat ('k-', symb_list{i})); 

        h_l1 = get(gca,'Children'); 

        h_fit(i)=h_l1(1); 

  

        set(h9,'LineWidth', 1.5, 'MarkerEdgeColor', 'k', 'MarkerFaceColor',cm(temps_array(i),:), 'MarkerSize', 10); 

  

            if strcmp(split,'on') == 1         

            legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

            end 

    end 

  

    loglog(X9,Y9,'k.'); 

    hAx7 = gca; 

    set(hAx7, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs); 

  

    ylim(vst_pl_range); 

    xlim([min(X7) / 10^log_spr max(X7) * 10^log_spr]); 

  

    xlabel('Stress [GPa]','FontWeight', 'bold'); 

    ylabel('Activation Volume [b^3]','FontWeight', 'bold'); 

  

    legend(h_fit, legend_str, 'location','NorthWest'); 

    legendmarkeradjust(5, 1); 

  

    grid on; 

     

end 

  

% FIGURE 10: Activation Volume vs. Stress (continous) ---------------------- 

  

f10 = figure('Units', 'normalized', 'Position', [0.3, 0.3, 0.3*smp, 0.4*smp], 'visible', vFig10); 

  

for i=1:length(array) 

    l1 = loglog(Stress(1:length(vs),array(i)),vs(:,array(i)),... 

        'color', cm(temps_array(i),:), 'linewidth', 1.0, 'linestyle', symb_list{i}, 'markersize',3); 

    h_l1 = get(gca,'Children'); 

    hold on 

     

    h_fit(i)=h_l1(1); 

     

    if strcmp(split,'on') == 1      

        legend_str{i} = strcat(num2str(Temps(i)),' °C'); 

    else 

        legend_str{i} = strcat('Indent', '#', num2str(array(i))); 

    end 

  

end 

  

hAx10 = gca; 

  

set(hAx10, 'LineWidth', lw, 'FontWeight', 'normal', 'FontSize', fs,... 

    'xLim', str_pl_range, 'yLim', vst_pl_range); 

  

grid on; 

  

xlabel('Stress [GPa]','FontWeight', 'bold'); 

ylabel('Activation Volume [b^3]','FontWeight', 'bold'); 

  

legend(h_fit,legend_str,'location','SouthWest'); 

legendmarkeradjust(4, 2); 

  

%% Data Display 

% ========================================================================= 

m_range = zeros(length(array), 3); 

v_range = zeros(length(array), 3); 

  

for i = 1:length(array) 

    m_range(i,1) = Temps(i); 

    m_range(i,2) = min(ms(:,i)); 

    m_range(i,3) = max(ms(:,i)); 

end 

  

for i = 1:length(array) 

    v_range(i,1) = Temps(i); 

    v_range(i,2) = min(vs(:,i)); 

    v_range(i,3) = max(vs(:,i)); 

end 
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disp('SRS RANGE'); 

disp('  T[°C]       MIN       MAX'); 

disp(m_range); 

  

disp(''); 

  

disp('V* RANGE'); 

disp('  T[°C]      MIN     MAX'); 

disp(v_range); 

  

% ========================================================================= 

cd(ex_dir);  

 

 

Pop-In analysis 

clear all 

close all 

clc 

  

% file search 

% ========================================================================= 

% file directory  

function_dir     = 'D:\Matlab Files\functions'; 

% data directory 

file_dir  = 'D:\Studium\Diplomarbeit\Nanoindentation\Data\CrSxx3\Data\Hysteresis Data'; 

%export directory 

ex_dir    = 'D:\Studium\Diplomarbeit\Nanoindentation\Data\CrSxx3'; 

% load depth hysteresis file name 

file_name = 'T5 CrSxx3 lcCyc1-24 6inds T200_before hys.txt';                                                     

  

% analysis information 

% ========================================================================= 

  

array = [1 2 5 6]; 

nrofin    = 6;                 % total number of indents in the schedule 

nrofcy    = 8;                 % number of branches per cycle 

  

start_cycle = 1; 

end_cycle = 1; 

au_skip = 3; 

au_slope = 1; 

x_jump_boarder = 6; 

  

r_over = 0;                    % tip radius over rule is off when r_over is set to zero 

artifical_x_corr = 0; 

  

Er = 233; %[GPa] 

G  = 115; %[GPa] 

  

%GCr = 115 GPa 

%GTa =  69 GPa 

  

% plotting properties 1 

% ========================================================================= 

  

x_gap_Fig3 = 5;         % gap on x axis in chart 3 between fitting curves 

y_gap_Fig3 = 1.5;       % gap on y axis in chart 3 in perc for chart 

  

vFig1  = 'on'; 

vFig2  = 'off'; 

vFig3a = 'on'; 

vFig3b = 'off'; 

vFig3c = 'off'; 

vFig4  = 'off'; 

  

disp_info = 'on'; 

  

smp = 1;                % figure size factor 

  

cm = [0.0 0.0 0.0; 

    1.0 0.0 0.0; 

    0.5 0.5 0.0; 

    0.0 1.0 0.0; 

    0.0 0.5 0.5; 

    0.0 0.0 1.0; 

    0.2 0.2 0.2; 

    0.3 0.3 0.3]; 

  

%% import & analyzing 

% ========================================================================= 

  

cd(file_dir); 

  

file_data        = dlmread(file_name); 
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load_data_orig  = file_data(:,1); 

depth_data_orig = file_data(:,2); 

len_data        = length(load_data_orig); 

  

cd(function_dir); 

  

% searching indents and cycles -------------------------------------------- 

  

load_index = zeros(nrofcy,nrofin); 

load_index(nrofcy,nrofin) = len_data; 

  

loadq = 1; 

indent_run_nr = 1; 

cycle_run_nr = 1; 

  

for i=1:len_data - au_skip 

    % indent_run_nr equals indent nr 

     

    if load_data_orig(i + au_skip) < load_data_orig(i) 

        loadq = 0; 

    end 

     

    if (load_data_orig(i + au_skip) > load_data_orig(i) && loadq == 0) 

        load_index(cycle_run_nr, indent_run_nr) = i; 

        loadq = 1; 

        cycle_run_nr = cycle_run_nr + 1; 

             

        if cycle_run_nr - 1 == nrofcy && indent_run_nr ~= nrofin 

            cycle_run_nr = 1; 

            indent_run_nr = indent_run_nr + 1; 

   

        end 

    end 

end 

  

index_val = zeros(nrofin,2); 

for i=1:nrofin 

     

    if start_cycle == 1 && i == 1  

        start_val = 1; 

        end_val   = load_index(end_cycle, i); 

  

    elseif start_cycle == 1 && i ~= 1 

        start_val = load_index(nrofcy, i - 1); 

        end_val   = load_index(end_cycle, i); 

  

    else 

        start_val = load_index(start_cycle - 1, i); 

        end_val   = load_index(end_cycle      , i); 

  

    end 

     

    index_val(i,1) = start_val; 

    index_val(i,2) = end_val; 

     

end 

  

X1 = zeros(500, length(array)); 

Y1 = zeros(500, length(array)); 

  

for i=1:length(array) 

    for j=1:(index_val(i,2) - index_val(i,1)) 

        X1(j, i) = depth_data_orig(index_val(array(i), 1) + j); 

        X=X1(1:length(X1)-10,:); 

        Y1(j, i) = load_data_orig (index_val(array(i), 1) + j); 

        Y=Y1(1:length(Y1)-10,:); 

    end  

end 

  

% finding pop-in ---------------------------------------------------------- 

  

dY = zeros(400, length(array)); 

dX = zeros(400, length(array)); 

  

% calculating slope 

for i=1:length(X(:,1)) - au_slope 

    for j=1:length(array) 

        dY(i,j)    = Y(i + au_slope,j) - Y(i,j); 

        dX(i,j)    = X(i + au_slope,j) - X(i,j); 

        

    end 

end 

  

dX_max     = zeros(1, length(array)); 

dX_max_pos = zeros(1, length(array)); 

  

for i = 1:length(array) 

    [dX_max(i), dX_max_pos(i)] = max(dX(:, i)); 

end 

  



Appendix   

 

-93- 

x_pop    = zeros(1, length(array)); 

y_pop    = zeros(1, length(array)); 

  

for i = 1:length(array) 

    x_pop(i) = X(dX_max_pos(i) + x_jump_boarder, i)... 

        - X(dX_max_pos(i) - x_jump_boarder, i); 

    y_pop(i) = Y(dX_max_pos(i),i); 

end 

  

% pop-in fit 

  

try 

    [fitresult, gov] = popin_linfit_1(x_pop,y_pop); 

    coef_lin = coeffvalues(fitresult); 

catch 

     

    coef_lin = [0 0]; 

end 

  

xf = [0 200]; 

yf = coef_lin(1).*xf + coef_lin(2); 

  

% hertzian fitting of elastic loading part 

  

Xe = zeros(max(dX_max_pos), length(array)); 

Ye = zeros(max(dX_max_pos), length(array)); 

  

for i=1:length(array) 

    for j = 1 : dX_max_pos(i) - au_skip 

         

        if X(1,i) >= 10 

            Xe(1,i) = 0; 

        end 

         

        if X(j,i) >= 0 

            Xe(j,i) = X(j,i); 

            Ye(j,i) = Y(j,i); 

        else 

            Xe(j,i) = 0; 

            Ye(j,i) = 0; 

        end 

    end 

end 

  

Xe = Xe + artifical_x_corr; 

Xe_p15 = Xe.^1.5; 

  

coef_tip = zeros(1,length(array)); 

coef_tip_aux = zeros(1,length(array)); 

tip_fit_gov = cell(1,length(array)); 

yf_tip   = zeros(length(Xe),length(array)); 

  

  

for i=1:length(array) 

     

    Xeh = Xe(:,i); 

    Xeh = Xeh(Xeh~=artifical_x_corr); 

    Yeh = Ye(1:length(Xeh),i); 

     

     

    if Yeh(1) == 0 

        Yeh = Yeh(2:length(Yeh)); 

        Xeh = Xeh(2:length(Xeh)); 

    end 

     

    [fitres, gov] = tip_fit_7(Xeh, Yeh); 

     

    coef_aux = coeffvalues(fitres); 

    coef_tip(:,i) = coef_aux(1); 

    coef_tip_aux(:,i) = coef_aux(2); 

    tip_fit_gov{i} = gov; 

     

    for j = 1:length(Xe) 

        yf_tip(j,i) = coef_tip(i)*(Xe(j,i)+coef_tip_aux(i))^1.5; 

    end 

  

end 

  

coef_tip_av = mean(coef_tip); 

coef_tip_std = std(coef_tip); 

  

coef_tip_aux_av = mean(coef_tip_aux); 

coef_tip_aux_std = std(coef_tip_aux); 

  

% indenter tip radius calculation 

  

tip_rad = zeros(1,length(array)); 

for i=1:length(array) 

    tip_rad(i) = (0.75*coef_tip(1,i)/(Er*10^9)*10^10.5)^2 * 10^9; % [nm] 

end 
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if r_over ~= 0 

    tip_rad(:) = r_over; 

end 

  

tip_rad_av = mean(tip_rad(tip_rad~=0)); 

tip_rad_std = std(tip_rad(tip_rad~=0)); 

  

css = zeros(1,length(array)); 

for i=1:length(array) 

    css(i) = 0.31/pi*(6*y_pop(i)*10^(-3)*(Er*10^9)^2/((tip_rad_av*10^(-9))^2))^(1/3); 

end 

  

rel_str = css.*10^-9./(G/(2*pi)); 

  

%% show data 

% ========================================================================= 

  

if strcmp(disp_info, 'on') == 1 

     

    disp('Pop-In Experiment Fitting Results of '); 

    disp(strcat('"', file_name, '"')); 

  

    P_popin = y_pop 

    P_popin_av = mean(y_pop) 

    P_popin_std = std(y_pop) 

  

    css 

    css_av = mean(css) 

    css_std = std(css) 

  

    rel_str 

    rel_str_av = mean(rel_str) 

    rel_str_std = std(rel_str) 

  

    coef_tip 

    % coef_tip_av 

    % coef_tip_std 

    coef_tip_aux 

    % coef_tip_aux_av 

    % coef_tip_aux_std 

  

    celldisp(tip_fit_gov) 

  

    tip_rad 

    tip_rad_av 

    tip_rad_std 

  

end 

  

mean(coef_tip) 

mean(coef_tip_aux) 

  

%% Plotting 

% ========================================================================= 

% Fig 1 hysteresis data plot ============================================== 

  

f1 = figure('Units', 'normalized', 'Position',... 

    [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig1); 

  

for i=1:length(array) 

     

    pl_X = X(:,i); 

    pl_X = pl_X(pl_X~=0); 

     

    pl_Y = Y(:,i); 

    pl_Y = pl_Y(pl_Y~=0); 

     

    p1 = plot(pl_X, pl_Y,'b'); 

    h_p1 = get(gca,'Children'); 

    hold on 

     

    p2 = plot(X((dX_max_pos(i) - x_jump_boarder),i), y_pop(i),'ro',... 

        'MarkerSize',5,'LineWidth',2); %plotting lower boarder 

    h_p2 = get(gca,'Children'); 

  

    plot(X((dX_max_pos(i) + x_jump_boarder),i) ,y_pop(i),'ro',... 

        'MarkerSize',5,'LineWidth',2); %plotting upper boarder 

    grid on 

end 

  

h_fig = gca; 

set(h_fig, 'LineWidth', 1.5, 'FontWeight', 'normal', 'FontSize', 12); 

  

hleg_1 = [h_p1(1), h_p2(1)]; 

legend(hleg_1,'load-depth data', 'pop-in marker','Location','SouthEast'); 

  

  

title (horzcat('L-D Hysterersis'),... 

     'FontSize',10,'FontWeight', 'normal'); 
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xlabel('Indentation Depth [nm]', 'FontSize', 12, 'FontWeight', 'bold'); 

ylabel('Load [mN]', 'FontSize', 12, 'FontWeight', 'bold' ); 

  

axis([-5 max(X(:))*1.2 0 max(Y(:))*1.2]); 

  

% Fig 2: critical shear stress vs pop-in depth plot ----------------------- 

  

f2 = figure('Units', 'normalized', 'Position',... 

    [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig2); 

  

for i=1:length(array) 

    p1 = plot(x_pop(i),y_pop(i),'r*'); 

    h_p1 = get(gca,'Children'); 

    hold on 

end 

  

p2 = plot(xf,yf,'g--'); 

h_p2 = get(gca,'Children'); 

hleg_2 = [h_p1(1),h_p2(1)]; 

legend(hleg_2,'pop in data', 'linear fit','Location','SouthEast'); 

  

title (horzcat('Critical Load vs. Extension'),... 

     'FontSize',10,'FontWeight', 'normal'); 

xlabel('Extension at Pop-In [nm]'); 

ylabel('Critical Load [mN]'); 

grid on 

  

axis([0 max(x_pop)*2 0 max(y_pop)*2]); 

  

% Fig 3: hertzian fitting plot -------------------------------------------- 

  

f3a = figure('Units', 'normalized', 'Position',... 

    [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig3a); 

  

lv = 0; 

for i=1:length(array) 

    p1=plot(Xe(:,i) +  lv*x_gap_Fig3, Ye(:,i),'.'); 

    h_p1 = get(gca,'Children'); 

    hold on 

    p2=plot(Xe(:,i) + lv*5, yf_tip(:,i),'g.'); 

    h_p2 = get(gca,'Children'); 

    hold on 

    lv = lv + 1; 

end 

  

h_fig3 = gca; 

set(h_fig3, 'LineWidth', 1.5, 'FontWeight', 'normal', 'FontSize', 12); 

  

ab4 = max(Ye(:)) * y_gap_Fig3; 

ab5 = max(Xe(:)) + length(array) * x_gap_Fig3; 

  

axis([0 ab5 0 ab4]); 

  

hleg_3 = [h_p1(1); h_p2(1)]; 

legend(hleg_3,'original data', 'fitting curve') 

  

annotation('textbox', [0.14 0.82 0.3 0.08], 'String',... 

    {['av. R = ' num2str(int16(tip_rad_av)) ' +/- '... 

    num2str(int16(tip_rad_std)) 'nm']},... 

    'BackGroundColor',[1.0, 1.0, 1.0]); 

  

title (horzcat('Herzian fit of elastic loading part'),... 

     'FontSize',10,'FontWeight', 'normal'); 

xlabel('Indentation Depth [nm]'); 

ylabel('Load [mN]'); 

  

xlim([0 60]); 

axis([0 50 0 1.6]); 

grid on 

  

f3b = figure('Units', 'normalized', 'Position',... 

    [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig3b); 

  

lv = 0; 

for i=1:length(array) 

    p1=plot(Xe(:,i).^(3/2), Ye(:,i), '.', 'Color', cm(i,:)); 

    h_p1 = get(gca,'Children'); 

    lv = lv + 1; 

    hold on 

end 

  

xlim([0 150]); 

grid on 

  

f3c = figure('Units', 'normalized', 'Position',... 

    [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig3c); 

  

lv = 0; 

for i=1:length(array) 

    p1=plot((Xe(:,i)+coef_tip_aux(i)).^(3/2), Ye(:,i), '.', 'Color', cm(i,:)); 
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    h_p1 = get(gca,'Children'); 

    lv = lv + 1; 

    hold on 

end 

  

xlim([0 150]); 

grid on 

  

% Fig 4: critical shear stress analysis plot ------------------------------ 

  

f4 = figure('Units', 'normalized', 'Position',... 

    [0.3, 0.3, 0.3*smp, 0.4*smp],'visible',vFig4); 

  

xbar = [1:(length(array))]; 

  

p4 = plot(0:0.001:length(array)+1,G/(2*pi),'r-'); 

h_p4 = get(gca,'Children'); 

hold on 

  

p5 = bar(xbar,css./(10^9)); 

h_p5 = get(gca,'Children'); 

hleg_4 = [h_p4(1); h_p5(1)]; 

  

axis([0.5 length(array)+0.5 0 30]); 

set(gca,'XTick', 0:length(array)); 

set(gca,'XTickLabel',horzcat([0],array)); 

  

set(gca,'YGrid','on'); 

  

title (horzcat('Critical Shear Stress'),... 

     'FontSize',10,'FontWeight', 'normal'); 

wi=legend(hleg_4, 'Theoretical Strength (G/2pi)', 'Critical Shear Stress','Location','NorthEast'); 

xlabel('Indentation Number'); 

ylabel('Shear Stress [GPa]'); 

  

%% directory management 

% ========================================================================= 

 cd(ex_dir); 

 


