
Improved Anomaly Detection in
Computer Networks with Evolutionary

Undersampling

Master Thesis

Submitted to the course of studies

Information Technology & Systems Management
at the Salzburg University of Applied Sciences

in collaboration with

by

Karl Anton Huber, BSc
Salzburg, September 2020

Head of Degree Programme: FH-Prof. DI Dr. Gerhard Jöchtl
Supervisor (FHS): FH-Prof. Priv.-Doz. DI Mag. Dr. Dominik Engel

Supervisor (BGSU): Ph.D. Robert C. Green II, Ph.D.

Affidavit

I, Karl Anton Huber, BSc, born on 5th June 1989, in Melk, hereby declare that I have
written this master thesis entirely on my own without using sources other than the ones
explicitly stated. This work is my own and contains no results of collaboration with others,
except as specified in the text and my acknowledgements.

Salzburg, September 1st, 2020

Karl Anton HUBER

1810581025

Enrolment number

Acknowledgments

First of all, I would like to thank my supervisor at the University of Applied Sciences
Salzburg, FH-Prof. DI Mag. Dr. Dominik Engel, for believing in me and giving me the
opportunity to apply for the Marshall Plan Scholarship. I am incredibly grateful for this
experience, even if it was overshadowed by the events of 2020.

My thanks also go to Prof. Robert C. Green II, Ph.D. of the Department of Computer
Science at Bowling Green State University. As my supervisor at the BGSU, he was
always available for a conversation, even if it was mostly virtual. All possible digital
communication channels were used during my stay. His guidance, exciting discussions, and
constructive feedback were incredibly important for the success of this work. Fortunately,
we had the opportunity to meet at least a few times before the university was completely
closed down.

A sincere thank you to my roommates Chase Tipsword, Jeremy Strader, and Matthew
Horton. Thankfully, they always found a way to keep me sane during the quarantine
period, which hit the United States harder than any other country on this planet.

Finally, I would like to express my appreciation to my family and especially to my partner
Jennifer Brunner for their support and encouragement during the five years of my studies,
especially in times of doubt.

Thank you.

General Information
Author: Karl Anton Huber, BSc

University: Salzburg University of Applied Sciences

Degree Program: Information Technology & Systems Management

Title of the Thesis: Improved Anomaly Detection in Computer Networks
with Evolutionary Undersampling

Keywords: Anomaly Detection
Pattern Recognition
Imbalanced Data
Evolutionary Sampling
Over- and Undersampling
Statistical Testing
Python

Supervisor at FHS: FH-Prof. Priv.-Doz. DI Mag. Dr. Dominik Engel

Abstract
This work investigates if the evolutionary undersampling method is able to compete
with other state-of-the-art undersampling methods for real-world, imbalanced datasets.
Anomaly-based intrusion detection systems depend heavily on sampling as malicious net-
work traffic appears primarily in an unbalanced way, thus, causing low detection rates
when using standard anomaly detection approaches. As an example of real-world intru-
sion detection, the Australian Defence Force Academy Linux Dataset is used, because
it includes contemporary attacks and is well-known for evaluating the performance of
anomaly-based intrusion detection systems. Evolutionary undersampling (EUS) is thor-
oughly explained herein, and then the implementation is used to evaluate its performance
using the ADFA-LD dataset. Finally, the performance is compared to other well-known
undersampling methods by using appropriate statistical tests. EUS shows promising re-
sults, and with most performance measures, there is no statistically significant difference
between it and traditional undersampling methods.

Table of Contents

List of Abbreviations iii

List of Figures v

List of Tables vii

1 Introduction 1

2 Literature Review 3
2.1 Information Security . 4
2.2 Intrusion Detection Systems . 6
2.3 Pattern Recognition . 9

2.3.1 Approaches and Learning . 10
2.3.2 Steps in Pattern Recognition . 12
2.3.3 Classification . 13
2.3.4 Common Classifier Modeling Algorithms 18

3 The Class Imbalance Problem 21
3.1 State-of-the-art Approaches . 24

3.1.1 Data Level . 24
3.1.2 Algorithm Level . 25
3.1.3 Cost-sensitive Learning . 25
3.1.4 Ensemble-based . 26

3.2 Resampling to Combat Class Imbalance 26
3.2.1 Undersampling . 27
3.2.2 Oversampling . 30

3.3 Performance Analysis . 32

4 Methodology 35
4.1 Evolutionary Algorithms . 35

4.1.1 Genetic Algorithms . 36
4.2 Evolutionary Undersampling . 40
4.3 Statistical Testing of Algorithms . 43

4.3.1 Nonparametric Statistical Tests . 45
4.4 Dataset . 47

ii

5 Implementing Evolutionary Undersampling 50
5.1 Preliminary: Environment . 50
5.2 Algorithm Implementation . 52

5.2.1 General Steps . 52
5.2.2 Promotion of Diversity in the Fitness Function 56

6 Evaluation 58
6.1 Used Methods, Classifiers and Performance Metrics 58
6.2 Evaluation on a Real-world Dataset . 62

6.2.1 Performance Evaluation . 62
6.2.2 Statistical Testing . 65

7 Conclusion and Outlook 70

Bibliography 72

Appendix Additional Results 77

List of Abbreviations

ACC Accuracy
ADASYN Adaptive Synthetic
ADFA-LD Australian Defence Force Academy - Linux Dataset
AIDS Anomaly-based Intrusion Detection System
ALLKNN AllK-Nearest-Neighbor
ANN Artificial Neural Network
AUC Area Under the ROC Curve
C-NN Condensed-NearestNeighbor
CNN Convolutional Neural Network
DT Decision Tree
EA Evolutionary Algorithm
EBUS Evolutionary Balancing Undersampling
ENN EditedNearestNeighbor
EUS Evolutionary Undersampling
EUSCM Evolutionary Undersampling Guided By Classification Measures
FDR False Discorvery Rate
FN False Negative
FNR False Negative Rate
FP False Positive
FPR False Positive Rate
FWER Family-wise Error Rate
GA Genetic Algorithm
GCP Google Cloud Platform
GM Geometric Mean
GS Global Selection
HIDS Host-based Intrusion Detection System
IDE Integrated Development Environment
IDS Intrusion Detection System
IT Information Technology

iv

KNN K-Nearest-Neighbor
LDA Linear Discriminant Analysis
MDC Minimum Distance Classifier
MLP Multi Layer Perceptrons
MS Majority Selection
NCR NeighborhoodCleaningRule
NIDS Network-based Intrusion Detection System
OSS OneSidedSelection
QDA Quadratic Discriminant Analysis
RENN RepeatedEditedNearestNeighbor
ROC Receiver Operating Characteristics
RUS RandomUnderampler
SIDS Signature-based Intrusion Detection System
SMOTE Synthetic Minority Oversampling TEchnique
SVM Support Vector Machine
TL TomekLinks
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate

List of Figures

2.1 Connection between the following chapters. 3
2.2 Relationship between ICT-, cyber- and information security 4
2.3 Cybersecurity triad . 5
2.4 Network-based IDS vs. Host-based IDS . 8
2.5 IDS general overview . 9
2.6 Pattern classifier . 12
2.7 The pattern recognition cycle . 14
2.8 Classifier decision rules . 14
2.9 Overly complex classifier decision rules . 15
2.10 Supervised learning steps from labeled data 16
2.11 Ensemble of classifiers spanning a decision boundary 17
2.12 The structure of a CNN . 20

3.1 Models learned from imbalanced data . 22
3.2 Imbalanced dataset problems . 23
3.3 Imbalanced data research solutions . 25
3.4 Undersampling example using Clustercentroids 27
3.5 Undersampling example using RUS . 28
3.6 Undersampling example using NearMiss 28
3.7 Undersampling example using different neighbor rules 29
3.8 Undersampling example using TomekLinks 29
3.9 Undersampling example using C-NN, OSS, NCR 30
3.10 Oversampling example using ROS . 30
3.11 Oversampling example using SMOTE . 31
3.12 Oversampling example using ADASYN . 31

4.1 Idealized Darwinian evolution . 36
4.2 General steps in evolutionary algorithms 37
4.3 Parts of a genetic algorithm . 37
4.4 Mechanism of the roulette wheel in a GA 38
4.5 Single-point and double-point crossover techniques 39
4.6 Mutation operator in a GA . 40
4.7 Evolutionary undersampling taxonomy . 41
4.8 Overview of the statistical tests . 44

5.1 Evolutionary undersampling process . 52
5.2 Population, chromosomes, and genes in the implementation 53

vi

5.3 Crossover of two chromosomes . 55
5.4 Chromosome mutation in EUS . 56
5.5 Different undersampling results of EUS, side by side 57

6.1 Big picture of the undersampling and classification process 58
6.2 Extracted data samples from the ADFA-LD 59
6.3 5-fold cross-validation process after data splitting 60
6.4 Statistical evaluation process after classification 66
6.5 Friedman Test input variables . 66
6.6 Input values for the Wilxocon Rank-Sum Test and the Holm method. . . . 67

List of Tables

2.1 Differences between misuse detection and anomaly detection 7
2.2 Differences between host-based and network-based IDS 8

3.1 Confusion matrix for a two-class problem. 33

4.1 Details of individuals in a roulette wheel 39
4.2 Errors in the decision of statistical tests . 44
4.3 ADFA Linux Dataset Attack Structure . 48

5.1 Details on version information of software utilized in this thesis 51
5.2 Different kNN values used in the fitness function 54
5.3 Comparison of two different EUS implementations 57

6.1 Used classifiers with their parameter . 61
6.2 Performance metrics of used classifiers without undersampling 63
6.3 Performance metrics of used classifiers with EUS and NCR 64
6.4 The average performance of undersampling methods 64
6.5 Comparison of unsampled and EUS performance measures 65
6.6 Friedman Test results for AUC . 67
6.7 Wilcoxon Rank-Sum Test for the AUC . 68
6.8 Corrected p-values with Holm method for AUC 68
6.9 Holm method overview of all performance measures 69

A.1 Full table of tested undersamplers and classifier results 79
A.2 Full table of Friedman Test results . 80
A.3 Full table of all Wilcoxon Ranked-Sum Test pairwise comparisons 81
A.4 Full table of Holm method results with corrected p-values 83

1. Introduction

Detecting malicious activity in computer networks reliably is a topic that has received
increasing attention in recent years. With ever-increasing connectivity, the need to detect
attacks has become more critical, especially as more parts of critical infrastructure, such
as energy networks, production facilities, or automotive infrastructure, are included in
the move towards digitalization and thereby connected to the outside world. Therefore,
in addition to traditional countermeasures such as firewalls and network segmentation, it
is of utmost importance to detect attacks, ideally in real-time. To achieve this, there are
two sectors in network intrusion detection that can be categorized as anomaly detection
and signature detection. The difficulty in anomaly detection is categorizing the traffic into
“normal” and “abnormal” behavior. Typically, malicious behavior and network intrusions
represent a minimal subset of all network traffic, which leads to a considerable imbalance
in classification. As argued by the authors of [1], this imbalance increases the difficulty of
classifying the data correctly. Misclassified “normal” network traffic (or false positives)
is a considerable problem for imbalanced datasets, since those false positives lead to data
fragmentation, packet loss of relevant packages, and noise. Furthermore, a high number
of false positives may lead to a non-negligible number of false alarms for the operator.
With the digitalization of critical infrastructures, it is essential to filter alerts to ensure the
operator’s full focus. An intrusion detection system that produces a high number of false
positives drains the focus of the operator and, therefore by itself poses a security risk due
to the high number of alarms. Hence, it is imperative to significantly decrease intrusion
detection systems’ false positive rate, especially in the context of digitalization.

However, making this detection reliable is a challenging task because, in relation to non-
malicious traffic, the amount of traffic that is malicious is a minute fraction. Simply put,
this is a classification problem, where the number of samples of one class is significantly
higher than the number of samples of the other class. Therefore, almost all anomaly-based
intrusion detection approaches currently used suffer from a high false-positive rate. In
order to improve the accuracy and detection rate of malicious network traffic, different
machine learning methods are applied, focusing on addressing the predominant imbalance
problem. Therefore, the classification approach needs to distinguish classes of very differ-
ent cardinalities: the majority or negative class, and the minority or positive class. When
discussing intrusion detection systems, the majority class is referred to as the normal or
benign network traffic with no malicious intent. In contrast, the minority class stands
for malicious traffic that needs to be identified as fast as possible. This identification is
usually achieved using a classifier whose main objective is to minimize the false-positive
and false-negative rates.

2

There are two techniques to reduce the imbalanced data distribution in these datasets:
over- and undersampling. Oversampling tries to replicate or generate new examples from
the minority class while undersampling reduces data by eliminating majority class ex-
amples. Both pursue the same goal of equalizing the number of examples in each class.
Various sampling methods have been shown to be successful and are widely used; how-
ever, every one of these methods also includes drawbacks, so the goal is to improve the
performance of traditional methods for imbalanced datasets. One of the most promising
techniques to overcome these drawbacks is evolutionary undersampling [2].

From these findings the main research question of this thesis can be formed: Is it pos-
sible to implement an evolutionary undersampling algorithm with state-of-
the-art genetic algorithms that is able to compete or improve the perfor-
mance of commonly-used undersampling methods in the field of intrusion
detection?

This thesis will first start with a thorough investigation of state-of-the-art intrusion de-
tection and pattern recognition methods. Then, the class imbalance problem will be
presented and explained why it is relevant in this problem domain. Solutions to this
imbalance problem will be described, and subsequently, the performance evaluation will
be shown. The next chapter will deal with the methodology used to implement the pro-
posed evolutionary undersampling (EUS) algorithm. The idea is to use EUS as a first
stage in intrusion detection to decrease the degree of imbalance, which should result in an
improvement of the performance of anomaly-based intrusion detection methods. Within
this chapter, the general idea behind evolutionary algorithms and background of EUS will
be explained. Then, statistical tests necessary to check any significant differences between
undersampling algorithms are investigated. The used dataset will conclude the theoretical
part of this thesis. The implementation is then introduced by describing the environment
used for development. Using the theoretical foundations, an implementation of EUS will
be presented, and its performance calculated with selected classifiers. Next, the results are
compared with different, well-known undersampling methods. Finally, these results are
used for statistical testing to determining if EUS has any significant differences compared
to those other sampling methods.

2. Literature Review

In this part of the thesis, underlying principles of anomaly detection are explained. Within
this first part, the interdependence of the following chapters can be shown in Figure 2.1.
Some parts of cybersecurity would not be possible without an intrusion detection system
(IDS), whereas an IDS would not be able to make the right decision without its underlying
pattern recognition system. The decisions made by pattern recognition systems depend
largely on the classifier and sampling method used. By providing the interconnected and
well-adjusted parts, an IDS is able to deliver satisfying performance without raising too
many false alarms or missing out on potential threats.

Cyber Security
Intrusion Detection System

observe and
monitor anomaly detection

10101001 01010110

Pattern Recognition

?
malicious

Evolutionary Undersampling

Majority Minority

MinorityMajority

sampling

MinorityMajority

train
model

Classi�cation + Evaluation

1

2

3

4

5 result
safe

Figure 2.1.: Connection between the following chapters.

This chapter provides insight into the definition of information security in Section 2.1,
and presents the idea behind IDS in Section 2.2. In Section 2.3, state-of-the-art pattern
recognition background will be explained, and the approaches and methods, the steps in
pattern recognition, and classification are shown.

2.1 Information Security 4

2.1. Information Security
Bruce Schneier, who is often referred to as the closest thing to a rock star in the field
of cybersecurity, mentioned: “The internet can be regarded as the most complex machine
mankind ever built. We barely understand how it works, let alone how to secure it” [3].
This statement was phrased over ten years ago, and with the ever-increasing speed of
technological development, it has never been more true than it is today.

In a general sense, security means the protection of enterprises, individuals, and infor-
mation from intentional attacks, breaches, incidents, and consequences. It is desired to
protect these assets against the most likely forms of attacks to the best and reasonable
extent. In this context, reasonable means that assets should only be protected to the
extent that these assets’ productivity remains at an acceptable level. The best protection
of an asset is only worthwhile so long as the asset remains productive after all protective
mechanisms have been put into place. Additionally, when securing an asset, it also must
be considered on how that level of security relates to the value of the protected item.
The cost of security put into place should not exceed the value of the protected asset.
Ultimately, the goal of security is to find the balance between protection, usability, and
cost [4]. The authors of [5] identified several terms that describe this protection of assets,
including computer security, network security, information security, and cybersecurity.
The latter two terms are the most commonly used in the literature, and are often used
interchangeably. As illustrated in Figure 2.2, cybersecurity can be seen as a component of
information security. More specifically, information security deals with information, regar-
dles of what form it takes, whether it is a paper document, intellectual property, or verbal
and visual communication. Cybersecurity, on the other hand, deals with the protection of
digital assets, including everything from hardware to networks, and the information that
is processed, stored, and transferred over these Internet-linked systems.

Analog
Information

Other things
than just

information

Cyber
Security

Information
Security

ICT
Security

Things that
are vulnerable
through ICT

Information Digital
Information

Figure 2.2.: Relationship between ICT-, cyber- and information security, by [6].

Due to the increasingly complex nature of information in current times and the rapid
development of technologies, the term “cyber” is often used too widely by marketing,
vendors and analysts. The increasingly complex and networked nature of information and
critical infrastructures in the digital age is challenging to understand fully. Using new
technologies has introduced a host of new vulnerabilities with far-reaching implications.
As technology moves forward with time, security demands change, and introduces the shift

2.1 Information Security 5

from information security to cybersecurity. In [5, p.5], cybersecurity is defined as “the
protection of information assets by addressing threats to information processed, stored
and transported by inter-networked information systems.”

Nowadays, the objective of information security consists of the three critical components
of the Confidentiality-Integrity-Availability (C-I-A) triangle, as illustrated in Figure 2.3.
Confidentiality aims to protect information from unauthorized access or disclosure. The
confidentiality levels vary for different types of information and may change over time, for
example, financial, medical, and personal data may require a higher degree of confidential-
ity than other information. Integrity, on the other hand, is the protection of information
from unauthorized modification during the exchange or transmission. The last compo-
nent, availability, deals with timely and reliable access to the required information on
request.

Con�dentiality

Integrity Availability

Figure 2.3.: Cybersecurity triad, by [5].

Using the elements of the CIA triad, security issues can be discussed in a very specific
fashion. To clarify the general understanding of these elements, the example of a lost
delivery is used in [4]. Suppose a security problem occurs when the only existing backup of
unencrypted, sensitive data tapes is lost. As for confidentiality, there is a problem because
those tapes were not encrypted to begin with. From an integrity standpoint, there is an
issue because, after the possible recovery of these tapes, no one would immediately know
if the files were altered or not. Availability wise, the issue would arise unless the tapes
were recovered because it was the only copy of the files.

In order to mitigate risks in information technology (IT) systems, there are various meth-
ods to ensure that a given type of threat is accounted for. These methods are often
referred to as “controls”, and can be divided into three categories: physical, logical, and
administrative. Physical controls protect the physical environment in which the asset is
located, including fences, gates, locks, and cameras. Logical controls protect the logical
systems, networks, and environments that process, transmit, and store data. These assets
include items such as passwords, encryption, logical access controls, and firewalls. The
authors in [7] referred to these items as the firstline of cybersecurity measures, as they
are the first real entry point into the cybersecurity domain. Finally, the administrative
controls are based on rules, laws, policies that define how users should behave in the
protected environment [4].

2.2 Intrusion Detection Systems 6

Since this thesis deals with intrusion detection, only the logical control is dealt with in
more detail. It is an integral element to monitor data and information flowing into and
out of an organization. The most commonly used instrument for detecting threats are logs
from various sources such as IDS, anti-virus software, firewalls, and proxies. Those devices
are implemented at the borders of, and within, computer networks to increase security.
Therefore, monitoring is considered carefully within this thesis. The next section explains
the concept of an IDS in more detail.

2.2. Intrusion Detection Systems
IDS are considered to be the second line of security measures, as they work in conjunction
with various network devices by monitoring network usage anomalies. These systems
operate in the background continuously and notify administrators when an intrusion is
detected. An intrusion is defined as any kind of unauthorized activity that can damage
the protected system [8]; therefore any attack that poses a possible threat to the CIA triad
is considered to be an intrusion. For example, events that would render computer services
unresponsive to authorized users are considered an intrusion. As IDS is usually situated
right after firewalls, it is the main goal of an IDS to identify malicious network traffic and
computer usage that passed the firewall undetected. It is vital to achieving high protection
against actions that compromise the CIA triad of computer systems. Depending on how
an IDS identifies those intrusions, they can be categorized into two groups: Signature-
based Intrusion Detection System (SIDS) and Anomaly-based Intrusion Detection System
(AIDS).

SIDS, commonly called misuse-based IDS, are based on techniques that match a pattern
to an existing known attack. When an intrusion event signature matches the signature of
an intrusion that is already stored in a signature database, an alarm event is triggered.
These pattern matching techniques result in excellent detection accuracy for previously
known attacks. In the literature [8], they are also labeled as “Knowledge-Based Detec-
tion” or “Misuse Detection”. A detection rule could resemble a simple if-else condition,
for example, “if (source IP address=destination IP address) then label as an attack.” Un-
fortunately, many intrusions are more complex than a simple IP address comparison. As
modern attacks and malware become more sophisticated, storing and extracting infor-
mation over multiple packets is often necessary, resulting in more resource requirements.
Signature-based methods have difficulties detecting zero-day attacks because no matching
signature is stored in the matching database until the signature of a new attack is identi-
fied, extracted, and stored. Even though targeted zero-day attacks are declining [9], they
are still present, with almost four billion tracked cases in 2017, rendering SIDS techniques
progressively less effective.

Contrary to the previous technique, AIDS depend on a normal model of the behavior
to decide whether an event is malicious. This model is created by using machine learn-
ing, statistical-based, or knowledge-based pattern recognition methods, which will be ex-
plained thoroughly in Section 2.3. If there is a significant deviation between the observed
behavior and the model created, the behavior is assumed to be an anomaly. Anomaly-

2.2 Intrusion Detection Systems 7

based systems assume that any abnormal behavior that differs from standard behaviors is
classified as an intrusion. AIDS are designed in two phases: the training and the testing
phase. During the training phase, all network traffic in an allegedly clean environment
is used to create a normal behavior model. The testing phase is where current traffic
is compared with the model created in the training phase. By scanning for abnormal
behaviors and not relying on a signature database, AIDS can detect zero-day attacks; the
main advantage it has compared to a signature-based system. Furthermore, AIDS can
also detect internal malicious activities; if an intruder starts executing allowed events in
an unusual way, the systems will most likely raise an alarm [8].

Usually a combination of signature and anomaly-based IDS provides the best detection
rates. To get an better overview of available IDS types, Table 2.1 shows the differences
between SIDS and AIDS.

Misuse Detection Anomaly Detection
Detection
performance

Low false alarm rate;
High missed alarm rate

Low missed alarm rate;
High false alarm rate

Detection efficiency
High, decrease with scale
of signature database

Dependent on model
complexity

Dependence on
domain knowledge

Almost all detections depend
on domain knowledge

Low, only the feature design
depends on domain knowledge

Interpretation
Design based on domain know-
ledge, strong interpretative
ability

Outputs only detection results,
weak interpretative ability

Unknown attack
detection

Only detects known attacks
Detects known and
unknown attacks

Table 2.1.: Differences between misuse detection and anomaly detection by [10]

Another way of categorizing IDS can be made with respect to the input data sources used
to detect abnormal activities. There are two types of technologies that can be considered
in terms of data sources: Host-based Intrusion Detection System (HIDS) and Network-
based Intrusion Detection System (NIDS). Figure 2.4 illustrates the different positions of
both methods.

When network traffic is extracted from a network through packet capture, NetFlow, or
other network data sources, the system is called a NIDS. These systems can monitor many
computers and devices within a network, but it is crucial to place the NIDS in a location
where it is not being overloaded. This problem arises by the high bandwidth of modern
high-speed communication networks, as all traffic is usually redirected to the network
intrusion detection system. By placing the NIDS behind filtering devices such as firewalls,
this problem can be alleviated and decrease the traffic that the system needs to inspect
[8]. While dealing with large amounts of traffic, they generally only perform a relatively
superficial inspection to decide whether the packets are malicious or normal.

2.2 Intrusion Detection Systems 8

Internet

Internet
HIDS HIDS

NIDS

Log

Centralized
Control
Module

Packet Sni�er

Log

Figure 2.4.: Network-based IDS vs. Host-based IDS

Further, there are HIDS. These systems are located directly on the host systems and
inspect sources including event logs, firewall logs, application logs, and database logs.
Host-based systems can detect intrusions that do not involve network traffic or intrusions
that are directed at the network interface of a particular host. Their scope is considerably
reduced compared to network-based systems, as they only monitor one single host at a
time. They can detect changes in executable applications, detect the deletion of critical
files, and issue warnings when privileged commands are carried out [4]. The advantages
and disadvantages of such systems can be found in Table 2.2.

Host-Based IDS Network-Based IDS

Source of data
Logs of operating system or
application programs

Network traffic

Deployment
Every host; Dependent on
operating systems;
Difficult to deploy

Key network nodes;
Easy to deploy

Detection
efficiency

Low, must process
numerous logs

High, can detect attacks
in real time

Intrusion
traceability

Trace the process of intrusion
according to system call paths

Trace position and time of
intrusion according to IP
addresses and timestamps

Limitation
Cannot analyze network
behaviors

Monitor only the traffic
passing through a specific
network segment

Table 2.2.: Differences between host-based and network-based IDS by [10]

The authors of [7] describe the actions of an IDS in the following way: IDS are capable
of analyzing HTTP packets, IP flow records, DNS replies, and Honeypot data. HTTP

2.3 Pattern Recognition 9

traffic, which represents a significant portion of Internet users’ traffic, can be used by
analyzing the uniform resource identifiers (URLs) embedded in HTTP packets to help
prevent malicious communications. For instance, IP flow records can be used to provide
invaluable data for highlighting botnet communications or detecting intrusions. These
records can help to trace every communication from the Internet to enterprise networks
and vice versa. Monitoring the Domain Name System (DNS) requests, an IDS is able to
efficiently and proactively identifying malicious domains. A honeypot is commonly used
to emulate a vulnerable service in a production network. Behind this fake vulnerability,
there is often some fake production data hidden so that the attacker thinks he penetrated
the security measures. Logging honeypot information helps to obtain information about
attackers and their behaviors. These behaviors could contain specific network protocols
that are targeted the most, IP addresses used, and scanning strategies.

Figure 2.5 presents a taxonomy of IDS proposed in [10]. It shows two types of IDS
classification methods, including the data source as the main classification consideration,
and the detection method as a secondary classification element.

Source of data

Host-based

Detection methods

Network-based

Anomaly detection

Misuse detection

Log-based detection

Packet-based detection

Flow-based detection

Session-based detection

Statistical model

Machine learning

Time series

Pattern matching

Expert system

Finite-state machine

Packet parsing

Payload analysis

Combine of
rule-based system

Text analysis

Feature engineering

Statistical feature

Sequence feature

Deep learning

Traffic grouping

Feature engineering
IDS

Figure 2.5.: IDS general overview by [10]

This thesis focuses on anomaly-based intrusion detection systems. To explain the un-
derlying principles, the next section covers pattern recognition methods necessary during
this detection process.

2.3. Pattern Recognition
Usually, pattern recognition is a problem of differentiation between classes. To explain the
general steps of pattern recognition in an understandable way, the authors of [11] use this
example: Thousands of people within a population should be divided into four types: tall
and thin, tall and thick, small and thick. Therefore, each person needs to be classified in

2.3 Pattern Recognition 10

one of the four populations. This recognition process turns into classification. To decide
which class the person belongs to, features are needed to make the right decision. In order
to decide if a person is tall or small, age would be the wrong feature to choose; instead,
the feature selection process could select a combination of height and weight. The act of
obtaining these measurements is called feature extraction. If the feature extraction process
is too difficult to perform, alternative features need to be found, or the existing data needs
to be transformed into usable information. This process is called preprocessing.

Although pattern recognition is a natural and straightforward process for humans to
recognize voices or faces, these tasks can be very demanding and complicated for machines
[12]. When trying to translate the above example to the cybersecurity domain, a pattern
to be recognized could be a malicious attack. In order to find this pattern, all the steps
of the pattern recognition need be passed through: first, the general approaches and
methods, and the necessary steps will be explained in the next two subsections. Then,
the next section is dedicated to available models and their classification tasks. Finally,
this chapter will end with an evaluation of the classification approaches.

2.3.1. Approaches and Learning
In pattern recognition, machine learning, and datamining, one major task is to construct
good models from datasets. Generally, a dataset consists of feature vectors, where each
feature vector is a description of an object by using a set of features. Dimensionality
describes the number of features in a dataset. If a feature vector is formed of two features,
its dimensionalty is two. Ultimately, a model is a predictive model or a model of the
structure of the data that the pattern recognition process wants to construct or discover
from the dataset. These structure models can include decision trees, neural networks,
support vector machines, etc. The generation process of these models is called learning or
training. [13]. There are four basic approaches to create models in pattern recognition:
template matching, statistical approach, syntactic or structural approach, and neural
networks [14].

Template matching is one of the simplest and earliest to pattern recognition. It matches
the pattern to be recognized with an existing database of patterns, and can be compared
with signature-based IDS approaches, where the pattern is already known and stored in
a database. While useful in some application domains, it has several disadvantages. For
instance, it fails to find patterns that are distorted or altered in any way. Also, if the
pattern to be recognized is not already stored in the database, this approach will not be
able to recognize the corresponding class.

Statistical approaches focus on feature vectors. Features are specified by the investigator
and play an essential role in the effectiveness of the approach. Depending on how efficiently
the features were selected, the classification process may change drastically. Thus, it is
essential to find and extract the correct features to distinguish between different classes.
The primary goal of this is to find well-formulated decision rules within the feature space
to maximize the ability to distinguish between the different classes in a dataset.

2.3 Pattern Recognition 11

The syntactic or structural approach is used when the recognition problem involves more
complex patterns. This approach uses a hierarchical perspective where patterns are viewed
as a composition of simple subpatterns. These subpatterns are composed of even simpler
subpatterns. The simplest subpatterns that can be recognized are called “primitives”.
In syntactic pattern recognition, there is a formal analogy drawn between a language’s
syntax and the structure of patterns. The primitives are the alphabet of the language,
and the patterns resemble sentences belonging to a language. When used correctly, an
extensive collection of intricate patterns can be described by using grammatical rules
and a small number of primitives. The grammatical rules can be inferred from available
training data. The syntactic approach can lead to a broad diversity of possibilities, but
with the cost of great computational effort and by requiring large training sets [14].

Neural networks have the ability to learn more complex nonlinear relationships between
their input and output. The way biological nervous systems, such as the brain, process
information, are the main inspiration of neural networks. Using large amounts of inter-
connected processing units, neural networks can efficiently perform difficult tasks. Other
characteristics include that they use sequential training procedures and adapt themselves
to the provided data. This last property is one of the main reasons why neural networks
are becoming increasingly popular for pattern recognition problems; they have a seemingly
low dependence on domain-specific knowledge. Furthermore, there is a high availability
of efficient learning algorithms for users.

Learning Techniques

The process of generating models from data is called learning or training. There are
different learning settings in pattern recognition, among which the most common are
supervised learning, unsupervised learning and reinforced learning. In supervised learning,
a pattern recognition method learns based on a labeled dataset, meaning that the dataset
provides the correct answer to the classifier in the form of a targeted label [13]. It is a
form of learning, a task under supervision; someone is present judging whether the answer
is right or wrong. If the label is categorical (a shape, or positive/negative), the task is
called classification, and the learner is called classifier. However, if the label is numerical
(a range of infinite numbers e.g., length including decimals) the task is called regression
and the learner is called fitted regression model. For instance, a labeled dataset of flower
images would tell the model which photos were lilies, roses, and tulips. When shown a
new image, the model would compare it to the training examples to predict the correct
label [15].

Unsupervised learning, on the other hand, is when the dataset has no assigned targets.
The pattern recognition method tries to make sense of the data by extracting features
and patterns on its own. The results of this technique are called clustering (discovering
groups) or density estimation (determine the distribution). It is often challenging to
obtain datasets that are perfectly labeled, making unsupervised learning methods key
in various research areas. However, they come with the disadvantage that it is difficult
to measure the accuracy of these learning methods because there is no ground truth in
unlabeled datasets.

2.3 Pattern Recognition 12

The third technique, reinforced learning, is an iterative process of finding the best solution
for a particular goal or improving the performance on a specific task. In order to make
choices, this learning method tries different variations of a specific task. It improves the
performance with the help of experiences from earlier tries and exploration of new tactics
[15].

As this thesis deals with intrusion detection, using a dataset where all targets assigned to
the correct classes, the supervised learning method is considered for the following parts.
Subsequently, these approaches and methods need to go through various steps to work as
expected. This will be the focus of the next Section 2.3.2.

2.3.2. Steps in Pattern Recognition
After introducing the basic pattern recognition approaches and learning techniques, this
section will outline the necessary steps to construct a good model. The central focus of
this thesis lies on statistical pattern recognition approaches and, as mentioned before, su-
pervised learning approaches. Figure 2.6 shows a simplified pattern recognition procedure
to receive an optimal response for a given input.

representation
pattern

feature
pattern

decision
Feature Selector

/ ExtractorSensor Classi�er

Figure 2.6.: Pattern classifier by [12]

This response is an estimate of the class to which the design belongs. In intrusion de-
tection, these classes are usually divided by normal or malicious behavior (negative or
positive class). First, a sensor collects data for a given problem. Then the data may
undergo several transformation stages before the classifier provides its decision. These
transformations stages, including preprocessing, feature selection, or feature extraction,
process the data in different ways and have a number of functions. They can reduce the
number of features in a feature vector, which is called dimension reduction or feature
selection, and can also remove redundant or irrelevant information or transform the vec-
tor into a more appropriate form for subsequent classification. It is a goal to find the
intrinsic dimensionality; i.e., to find the minimum number of variables (features) required
to capture the structure within the data. In many cases, it is necessary to perform at
least one or more transformations of the measured data to get a good estimation. After
these transformation stages are complete, the classifier can investigate the data. There
are various classifiers that can be constructed from a dataset, such as linear discriminant
functions, decision trees, and support vector machines. These different classifiers will be
examined in Section 2.3.3.

As mentioned above, Figure 2.6 is simplified, and the pattern recognition process consists
of more phases than those shown in the figure. The enumeration below shows a fairly
typical process, even though not all the stages may be present or some may be merged
[12]:

2.3 Pattern Recognition 13

1. Problem formulation: Trying to fully and clearly understand the given problem
that has to be solved and planning the next steps.

2. Data collection: Collecting or creating measurements on appropriate variables.
Storing additional details of the data collection procedure, such as the ground truth
(label data for supervised learning).

3. Initial examination: The first look at the collected data, plotting data, checking
random samples, and calculating statistics in order to get a better understanding of
the structure.

4. Feature selection or feature extraction: Picking needed measurements that are
appropriate for the pattern recognition task. Feature extraction might generate
variables or measurements by linear or nonlinear transformations of the gathered
dataset. Sometimes classification and feature extraction may be summarized in one
step, as some classifiers include the optimization process of the extraction phase
into their design.

5. Unsupervised pattern classification or clustering: This is explorative data
analysis and may already allow for successful completion of a study. It may also
be used as another means of preprocessing the data for a supervised classification
procedure.

6. Use discrimination or regression methods: Methods are used as appropriate.
This step provides a training set of exemplar patterns and is used to train the
classifier.

7. Evaluation of the results: Applying the trained classifiers to independently test
data with labeled targets. The performance of classifiers is often summarized by
using a confusion matrix (More in Section 3.3).

8. Interpretation

These steps can be an iterative process, as the analysis of the results may produce new
hypotheses that require more data collection than initially assumed. This cycle may be
aborted during the first iteration, or it may have to be aborted because it is determined
that the data may not be able to answer the original question. If the question cannot
be answered, the problem must be reformulated. To show the bigger picture of pattern
recognition and all of its steps, Figure 2.7 is used to illustrate this iterative process. The
blue highlighted steps show the used classification categories this thesis will present.

After explaining the steps and approaches in pattern recognition, the next chapter will
give a brief overview of classifiers and models, and how decisions are made.

2.3.3. Classification
To explain the fundamentals of classification, an example from [16] is used. The authors
of this example try to let a classifier distinguish between two different types of fish. In
this example, the feature vector is two-dimensional because it consists of two different

2.3 Pattern Recognition 14

design of experiments;
methodology;

exploratory data analysis

feature selection;
feature extraction

classi�cation

supervised unsupervised

regression

clustering

via Bayes’ theorem discriminant analysis

parametric nonparametric linear nonlinear

assessment

Figure 2.7.: The pattern recognition cycle by [12]

features (lightness and width). The feature extraction process defined that these two
features are sufficient to differentiate between both species. It is challenging to minimize
the needed features of an object to be still able to classify a class as reliable as possible.
The classifier’s main goal is to mathematically describe a decision boundary between the
two classes that can decide whether the sample is class A or class B. The plot illustrated
in Figure 2.8 shows the calculated decision boundary, represented by the black line, in
the unseen test data. The rule suggests classifying the fish as salmon if the feature vector
falls beyond the decision boundary and as a sea bass otherwise. Besides a handful of fish
on the wrong side of the classification boundary, this rule appears to do an excellent job
of separating the samples.

Lightness

W
id

th

sea basssalmon

Figure 2.8.: Classifier decision rules by [16]

In order to improve the decision boundary, even more features could be added; if the
computational cost in attaining more features would not matter, the decision boundary
could be more complicated than the simple straight line. Figure 2.9 illustrates that a more

2.3 Pattern Recognition 15

complex decision rule would lead to perfect classification with the trained data samples;
however it is of note that this method would have considerable problems when dealing
with novel datasets. In this example, new samples, such as the red dot in the middle of
the dataset, would most likely be misclassified as a sea bass even though it would more
probably be a salmon. This behavior is known as overfitting.

Lightness

W
id

th
sea basssalmon

Figure 2.9.: Overly complex classifier decision rules by [16]

Classifiers should also work on known and novel patterns; the above mentioned “solution”
would be not desirable, and the satisfaction of the excellent performance would be pre-
mature. This is an issue of generalization. It is very unlikely that the complex decision
boundary would provide good generalization when presented with a new dataset as it is
“tuned” to the particular dataset of salmon and sea bass. One approach to overcome
this overfitting issue would be to simplify the decision boundary to get a slightly poorer
performance on the training samples, but therefore a better performance on new datasets
[16]. To find the perfect trade-off between a classifier’s simplicity and the performance
on unseen data, the test data could be preprocessed in a special way; this is called data
splitting.

Data splitting usually divides the dataset into two parts: training data and test data
(Figure 2.10, step 2). In supervised learning methods, the training dataset is used to
train the classifier to generate the decision boundary. The trained classifier can then be
compared with the correct target labels for each input vector in the training dataset.
Based on the results of the comparison and the specific classifier used, the parameters
can then be adjusted (Figure 2.10, step 3). Successively, the fitted classifier or model is
used to predict the classes in the test data (Figure 2.10, step 4). This dataset represents
the unseen part of the evaluation and is unbiased to the previous training data [13, 16].
Further explanation of different data splitting methods will follow in Section 3.3 of this
thesis.

As mentioned above, the main goal of statistical pattern recognition approaches is to find
decision rules within the feature space to maximize the ability to distinguish between
the different classes. In order to create well-suited decision boundaries, the two main
approaches are shown in Figure 2.7: Bayes’ theorem and discriminant analysis. In reality,
there are three approaches; ensemble methods combine classifiers of these two main ap-
proaches to utilize the advantages of both while expecting better generalization results.

2.3 Pattern Recognition 16

101001010100101010010

101001010100101010010

Labeled
obervations

Training set

Test set

Machine learner

Prediction model stats

101001010100101010010

101001010100101010010

1
2 3

4

3

42

Figure 2.10.: Supervised learning steps from labeled data from [15]

The next part will briefly describe the basic differences between these methods.

Elementary Decision Theory

This approach focuses on discrimination that is based on knowledge of each class’s prob-
ability density function in the dataset. To accomplish this, the Bayes theorem is used
to find the probability of a class based on prior knowledge of conditions that might be
relevant to the event. There are two terms used in this theorem that can help with un-
derstanding this topic: a priori probability and a posteriori probability. Priori is the
probability of an event happening before any additional knowledge is earned. Posteri-
ori probability, on the other hand, is the probability obtained after we have observed a
decision [17]. For instance, the optimal Bayes’ decision rule tries to assign a pattern to
the class with the highest posterior probability. Since it is not possible to calculate the
posteriori probability for each class, as the necessary knowledge is not always available,
an estimated density function can be built. Classification is achieved by applying the
Bayesian decision rule. For this, knowledge from the class-conditional density function
p(x|wi) (normal distributions that are estimated from the data), or non-parametric den-
sity estimations (kernel density estimation) is required [12]. Commonly used classifiers
utilizing the Bayes’ theorem are the k-Nearest-Neighbor (kNN) classifier and the Parzen
classifier.

Discriminant Analysis

Compared to the latter approach, the discriminant analysis uses discriminant functions
instead of probabilities to determine its decision rules. A discriminant function is a
function of the pattern x that leads to the desired classification rule. The authors of [12]
describe that in a two-class problem, a discriminant function h(x) with a threshold k is
denoted as:

h(x) > k ⇒ x ∈ ω1

h(x) < k ⇒ x ∈ ω2
(2.1)

If the case occurs that h(x) = k, then the pattern x is assigned arbitrarily to one of both
classes. The most crucial difference between Bayes’ theorem and discriminant analysis
is that the form of the discriminant function is differentially influenced by both. In the
Bayes’ theorem, the form of the discriminant function is specified and imposed by the

2.3 Pattern Recognition 17

underlying distribution; in the discriminant analysis, the distribution only specifies the
function and not the form.

Three discriminant approaches can be distinguished: linear functions, non-linear functions
(kernel-based or projection-based approaches), and tree-based approaches. Conventional
classifiers using discriminant analysis are Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), Minimum Distance Classifier (MDC), and Support Vector
Machine (SVM) [12].

Ensemble Methods

Ensemble methods use multiple learning algorithms to solve one classification problem.
They combine the results from different ordinary learning approaches to a set of learners.
This is depicted in Figure 2.11. An ensemble is constructed by combining several learners,
called base learners. These base learners have to be as accurate as possible and as diverse
as possible [13, 18], therefore, the strategy is to create many classifiers and combine their
outputs in a way that the combination of the results improves the overall performance.
However, this requires the individual classifiers to make different errors on different oc-
casions in the dataset. The idea here is that the strategic combination of those different
errors of each classifier reduces the total error. This concept is commonly used with low
pass filtering of the noise. If each classifier is as unique as possible, especially with respect
to misclassification, this set of classifiers is said to be diverse [18].

Feature 1

Fe
at

ur
e

2

(a)

Feature 1

Fe
at

ur
e

2

(b)

Figure 2.11.: Examples of an ensemble of individual classifiers forming a complex decision
boundary, from [18]

Figure 2.11a shows a decision boundary in a two dimensional, two-class problem with a
complex decision boundary. A traditional linear classifier would not be capable of learn-
ing this complex boundary; however, a combination of circular classifiers, the ensemble,
would classify smaller sub-parts of the dataset. In a sense, it follows a divide-and-conquer
approach by separating the feature space into smaller, easier partitions where each clas-
sifier can deal with the problem correctly. A combination of the results can then be used
to recreate the complex decision boundary as presented in Figure 2.11b.

2.3 Pattern Recognition 18

There are two main differentiation methods of ensemble methods; boosting and bagging.
Briefly explained, boosting works by training a combination of learners sequentially. After
the learning process, it combines them for prediction, where the later learners focus more
on the mistakes of the earlier ones. Bagging (short for bootstrap aggregating), is a parallel
ensemble method in which several learners are trained in parallel. The basic motivation
in boosting is to exploit the dependency between learners, whereas the motivation in
bagging is to exploit the independence between learners [13].

2.3.4. Common Classifier Modeling Algorithms
This section presents standard classifying algorithms in supervised learning used in the
course of this master’s thesis. There are two main categories in the following lists: single
classifiers that only rely on the result that they generate by themselves, and ensemble clas-
sifiers that combine the results of single classifiers with the goal of creating a better result.
Single classifiers can be categorized into shallow models and deep learning models.

Shallow models are the traditional machine learning models that have been studied for
several decades by now and are considered mature. In addition to the detection effect,
they also focus on practical problems, such as detection efficiency and data management.
The most common shallow models are listed in the following [10]:

• k-Nearest-Neighbor (kNN): The core idea of this classifier is based on pairwise linear
discriminant functions. Its main hypothesis states that if most sample neighbors
belong to the same class, then there is a high probability that the unseen sample next
to the already-classified sample is the same class. This classification is only carried
out to the top-k nearest samples, where k is the number of neighbors considered.
Smaller k values increase the risk of overfitting and lead to a more complex model,
whereas larger k values lead to simpler models with weaker fitting abilities [10].

• Support Vector Machine (SVM): The strategy of SVMs is to find the maximum
separation hyperplane in the available feature space. Only a small number of support
vectors can determine this hyperplane; thus, it is a commonly used classifier when
there are only small datasets available. However, SVMs can be sensitive to noise
near the created hyperplane. The hyperplane separation can be created with the
help of linear functions or nonlinear kernel-based functions. Kernel-based functions
map the original feature space into a new one so that nonlinear data can be separated
[10].

• Quadratic Discriminant Analysis (QDA): This is an adapted form of the standard
linear discriminant analysis. Since linear decision boundaries are not appropriate for
the many classification problems, QDA can create more complex decision boundaries
by using quadratic discriminant functions [12].

• Decision Tree (DT): This tree-like model uses a series of rules for classification. It
can automatically exclude irrelevant and redundant features. The training steps
of this classifier are feature selection, tree generation, and tree pruning. The tree
generation selects the most suitable features and builds child nodes starting from

2.3 Pattern Recognition 19

the root node. Other forms of DT classifier exist, such as random forest, and several
boosting and bagging versions. [10].

• Multi Layer Perceptrons (MLP) or Artificial Neural Network (ANN): This classi-
fier relies on a feed-forward neural network to perform the task of classification.
They contain a minimum of three layers; an input layer, at least one hidden layer,
and an output layer. The units in neighboring layers are fully interconnected and
can theoretically approximate arbitrary functions. They therefore promise an excel-
lent fitting ability, especially for nonlinear functions. However, due to the complex
model structure, training can be time-consuming. They utilize a technique called
backpropagation for training [10].

The classifiers mentioned above all have different strengths and shortcomings; ensem-
ble methods try to combine various weak classifiers to implement a classifier with lesser
weaknesses. Noticeable classifiers that fall under the category of ensemble methods are
the boosting based AdaBoost and different bagging based classifiers such as Random for-
est.

Deep learning models play an increasingly important role in the field of IDS. They provide
supervised and unsupervised learning models, and since 2015, the number of studies of
deep learning-based IDSs skyrocketed, as these models are able to directly learn feature
representation from the original data without the need of manual feature engineering.
Deep learning models consist of diverse deep networks used to improve the performance
of IDSs. When compared with the aforementioned shallow machine learning models,
they own stronger generalization and fitting abilities. However, there are also several
disadvantages, including interpretability and real-time requirements. The first problem of
interpretability is due to the fact that most deep learning problems are black boxes, that
only report the detection results without any interpretable basis. Cyber security decisions
should be made cautiously, as decisions taken without an identifiable reason are generally
not convincing. The second problem of real-time requirements lies in the fact that deep
learning models require longer running times than shallow models and therefore hardly
meet the real-time requirements of IDSs. One of the most promising approaches in the
field of deep learning is the so-called Convolutional Neural Network (CNN) [10].

These neural networks are designed to mimic the human visual system and obtain signif-
icant performance in computer vision, such as object and face recognition. A CNN uses
alternating convolutional and pooling layers as illustrated in Figure 2.12. The convolu-
tional layers deal with the feature extracting process and the pooling layers deal with the
enhancement of the feature generalizability. Even though CNNs have been recognized as
highly accurate in the field of computer vision, they have not been fully exploited in the
field of IDS. One reason being that they work on 2-deminsional (2D) input data, there-
fore the input data for most IDS systems must first be translated into matrices for attack
detection. [10, 19].

Even though CNNs are gaining more and more attention, they are not going to be used
in this thesis because of several reasons. First, compared to shallow classification models,
would have to be translated from 1D data to 2D input data. Furthermore, most of the
literature dealing with evolutionary undersampling does not provide results of CNNs,

2.3 Pattern Recognition 20

Input Layer Output Layer

Convolutional
Layer

Pooling
Layer

Convolutional
Layer

Pooling
Layer

Fully Connected
Layer

Figure 2.12.: The structure of a CNN, by [10]

therefore making it harder to compare the gained results of the implementation. Another
reason is that the authors of [20] also used the same dataset utilized in this thesis and
already executed a grid search with different classifiers. Section 4.4 will explain the used
dataset and Section 6.1 will then present the used classifiers of the implementation.

Now that the underlying principles of the pattern recognition process have been explained,
a major problem needs to be addressed that emerges in many fields in the data science
domain; the problem of imbalanced data distribution, as briefly mentioned in Section 2.2.
The next chapter will present this problem and explain ways to deal with it. Recent re-
search solutions, specific methods and ways to evaluate the performance of these methods
will be explained.

3. The Class Imbalance Problem

Although the class imbalance problem is a subset of pattern recognition, it is treated
as a separate chapter in this thesis because this problem has countless contributions in
literature [21–27] dealing with this problem. Therefore, it will be explained in detail
below.

The class imbalance problem emerges whenever the classes in a dataset are not evenly
distributed. Considering the imbalance of a two-class classification problem would mean
that one class is under-represented. This fact usually introduces several difficulties in the
learning process of a classifier and worsens the recognition rate of the under-represented
class. The under-represented class is usually referred to as the minority or positive class,
while the over-represented class is called the majority or negative class. These terms are
used interchangeably in the literature; in this thesis, they will be referred to as previously
mentioned. In most cases, the minority (positive) class is the most interesting one from
a learning perspective [26]. The problem with imbalanced datasets is typically due to
standard classifiers that are designed to maximize the accuracy rate. This means that
they are trying to classify as many samples as possible in the dataset correctly; therefore,
they are biased towards the majority class. Also, as mentioned in Section 2.3.3, classifiers
generally try to find a trade-off between performance and simplicity of the classifier.
If the imbalance is severe enough, it is easier for the classifier to treat the minority
class as noise and ignore them during the learning process, and thus, leading to better
performance.

This is an inherent and inevitable problem when using anomaly-based IDS in computer
networks. Network intrusions and malicious behavior represents only a small subset of
network traffic. Benign traffic generally takes the majority of all generated network pack-
ets and thus increase the difficulty of detecting possible attacks. However, their correct
detection is crucial for the health of a computer network, as false alarms can lead to loss
of relevant packets and drain the focus of administrators [1].

The authors in [25] provide an example considering the “Mammography Dataset” is used,
as it has been widely utilized in the analysis of the imbalanced learning problem. This two-
class dataset contains images acquired from a series of mammography exams to distinguish
if patients are “positive” or “negative” or “cancerous” or “healthy,” respectively. Strictly
speaking, there are 10923 majority and 260 minority class samples, which leads to an
imbalance ratio of 1:37 (ImbalanceRatio = (MajorityClass)/(MinorityClass)). In an
ideal world, a classifier would provide a balanced degree of predictive accuracy (ideally
100%) for both classes. For the imbalanced mammography dataset, the usual accuracy
(3.1) is close to 100% for the majority class and only around 10% for the minority class.
This phenomenon is shown in Figure 3.1 from [25]. It has to be noted that both parts

22

in Figure 3.1 illustrate an imbalanced ratio of 1:100 and use the same dataset to train
the classifier. While the left model (3.1a) learned that it should mark each data point
as negative (majority), the right model (3.1b) created a decision boundary in the feature
space (shown as a purple rectangle). Even though model (a) obtains 0% accuracy of the
positive class examples, it still achieves a 99.01% of overall accuracy, due to the fact that
all majority examples are classified correctly. On the other hand, model (b) assumes that
part of the feature space belongs to the positive class. Since the minority class is the
class of interest, this seems to be the most desirable decision. However, this model really
obtained 98.61% accuracy, which is 0.4% lower than model (a).

(a) (b)

Figure 3.1.: Examples of two models learned from imbalanced data, from [26]

In the mammography example, an accuracy rate of 10% would lead to around 234 minority
samples that are misclassified as majority samples. The consequence of this misclassifica-
tion is equivalent to 234 cancerous patients diagnosed as noncancerous. In such a delicate
problem domain, this result is extremely undesirable. In the medical sector, it can be over-
whelmingly costly to misclassify positive samples as negative, and of course, the other way
around. The same applies for the field of network anomaly detection. Typically, as men-
tioned in [1], network intrusions and malicious behavior represent a minimal subset of all
network traffic, however, it is highly critical to ensure a balanced accuracy rate between
both the majority (normal traffic) and minority (malicious traffic) classes. A high amount
of false alarms is unacceptable, as it will lead to loss of relevant packets and frustration
of users and administrators. Thus, learning classifiers from unbalanced datasets face a
variety of relevant problems, such as data fragmentation, improper inductive bias and
noise, absolute or relative lack of data, and improper classification evaluation metrics.
Therefore, the main goal with imbalanced data is to find a classifier that provides high
accuracy for the minority class without losing too much accuracy in the majority class.
As a result, it is also clear that the accuracy of a singular assessment criterion for the
performance of a classifier is not sufficient. Fortunately, there are different performance
evaluations in imbalanced data that will be discussed in detail in Section 3.3.

23

The authors of [28] propose that imbalanced data can be categorized into normal im-
balanced datasets and highly imbalanced datasets. The first is only slightly unbalanced,
meaning that, the records differ at least 10% from perfectly balanced (50-50) datasets,
therefore, to count as a normal imbalanced dataset, the distribution of one class must be
at least 40% or lower. The second category comprises datasets with a degree of imbalance
considered to be extremely unequal. The distribution of highly imbalanced datasets is
10% or lower of one class. Datasets with very high inequality between class distributions
are usually accompanied by increased difficulties during the learning process. However,
the imbalanced ratio alone is not the only factor that increases the difficulty of the classifi-
cation problem. For instance, the difficulties in real-world problems could also come from,
small sample sizes, overlapping or small disjuncts. These problems are also amplified if
the dataset is high-dimensional [26].

The problem of small sample sizes is related to the “lack of density” or “insufficiency
of information.” It emerges when learning algorithms lack enough data to make useful
generalizations about the underlying dataset, resulting in poorly trained models and in-
tensifying in the presence of class imbalance. The majority class may be sufficient to train
a reasonable classification model, but the lack of minority class samples increases the dif-
ficulty of creating a good generalization. Overfitting is frequently a problem encountered
when dealing with small sample sizes [26].

Feature 1

Fe
at

ur
e

2

(a)
Feature 1

Fe
at

ur
e

2

(b)

Figure 3.2.: Imbalanced dataset problems (a) class overlapping (b) small disjuncts, from
[25]

Data samples in a feature space are referred to as overlapping when examples of both
classes are mixed up, illustrated in Figure 3.2a. Simply put, the decision boundary can-
not be clearly established to distinguish between both classes. If the data samples overlap,
the creation of discriminatory rules becomes more difficult, resulting in more general rules
needing to be created that classify a high number of minority class instances. The less over-
lapping between classes exist, the less problematic the imbalance ratio gets, because even
simple classifiers would be able to distinguish between classes without overlapping.

The last problem, called small disjuncts, illustrated in Figure 3.2b, is the problem of
the minority class samples forming multiple fields. In the literature [26], this problem is
referred to as subconcepts being formed within the concept of the minority class. Those

3.1 State-of-the-art Approaches 24

smaller subconcepts tend to increase the complexity of decision boundaries because the
number of instances is generally unbalanced.

Two lessons can be learned from the previous mentioned drawbacks to imbalanced data
distributions. First, accuracy is no longer a good measure of correctly classified examples
of distinct classes. It can lead to erroneous conclusions, as the overall accuracy can
still be around 90%, in a dataset with an imbalance ratio of 1:9, when all classes are
classified as negatives. Therefore, more informative measures in this context are required,
such as ROC, geometric mean, f-measure, precision or recall, which will all be explained
thoroughly in Section 3.3. The second conclusion is that there needs to be a solution to
construct classifiers that are biased towards the minority class without being too harmful
to the accuracy of the opposing class [26]. The next part of this thesis will deal with
solutions that can be categorized into four groups.

3.1. State-of-the-art Approaches
A wide range of research has addressed different approaches to deal with the unbalanced
class distribution in datasets. Publications such as [2, 26–28] and many more have ad-
dressed this problem. Generally, the techniques are separated depending on how they deal
with the problem. Those categories are: Data level approaches, algorithm level approaches,
cost-sensitive learning approaches, and ensemble-based approaches. In the following sec-
tion, these are all briefly discussed along with notable methods for each category, as some
of them may be used during the implementation phase of this thesis. Figure 3.3 gives an
overview of the approaches mentioned above and shows that solutions by cost-sensitive
learning include both methods of data-level and algorithm-level approaches. Ensemble-
based approaches are referred to as boosting within the data-level approaches as they use
a combination of data level learners.

3.1.1. Data Level
Data level approaches, also called external approaches, aim at balancing the class dis-
tribution by adjusting both classes to the same level. This eliminates the classifier bias
towards the negative class as the imbalance in the dataset is removed or reduced. Thus,
this approach is overall more versatile because no modification to the classifiers has to
be made. Rebalancing the class distribution is accomplished by using the preprocessing
methods over- and undersampling. Undersampling focuses on reducing the majority class
to equalize the number of examples in each class, and oversampling generates or repli-
cates samples from the minority class in order to reduce or eliminate the imbalance ratio
[26].

As this thesis focuses mostly on resampling methods, a detailed explanation to over- and
undersampling and selected methods can be found in Section 3.2.

3.1 State-of-the-art Approaches 25

Data level approaches Algorithm level approaches

resampling data space
adapting existing algorithmsResearch

Solutions

boosting cost-sensitive learning

 randomly resampling
 informatively resampling
 synthesizing new data
 combining above methods

Introducing learning bias
 decision tree
 SVM
 associative classi�cation
 etc.

One class learning
 SVM
 BPNNs

Small class boosting
 RareBoost
 SMOTEBoost
 DataBoost-IM

Cost-sensitive boosting
 AdaC1-3
 AdaCost
 CSD2

Weighting data space
 Transition Theorem

Adapting learning algorithms
 Integrating costs into learning
 Decision making to minimizing costs

Figure 3.3.: Research solutions to the problem of classification of imbalanced data, from
[29]

3.1.2. Algorithm Level
Algorithm level approaches, also referred to as internal approaches, try to adapt existing
classifier learning algorithms to improve the imbalanced class problem by biasing the
learning procedure towards the minority class. The major drawback is that they require
specialized knowledge of the classifier and the application domain. This knowledge is
necessary because these solutions try to comprehend why the classifier is failing when the
distribution of classes is imbalanced [26]. Generally, there are three different categories:
one-class learning, adapting learning algorithms, and choosing an appropriate inductive
bias. Approaches for finding the right balance of bias are, for example, probabilistic
estimates at the tree leaves, or development of new pruning techniques for decision trees.
For SVMs, solutions include using different penalty constants for different classes or are
adjusting the class boundaries on a kernel-based alignment ideal. Adapting learning
algorithms can be done by integrating the costs into the learning process and tweaking
the decision-making process to minimize costs. One-class learning is a system where only
one class is used to make boundaries that surround the target concept; algorithms that
implement this type of learning are neural networks and SVMs [29].

3.1.3. Cost-sensitive Learning
This approach is a combination of algorithm and data level approaches, as it needs both
data-level transformation and algorithm level modifications. The data level transforma-
tion is needed to add the costs of misclassification to each instance. Further, algorithm
level modification is necessary to accept those misclassification costs in the classifier learn-
ing algorithm. By penalizing mistakes on the minority class, this approach tries to bias
the classification results away from the majority class. A significant drawback of this

3.2 Resampling to Combat Class Imbalance 26

approach is that the costs need to be assigned to each class by either a domain expert or
an estimate using training data [26].

As depicted in Figure 3.3, cost-sensitive learning approaches can be distinguished by three
main categories: data space weighting, making a specific classifier learning algorithm
cost-sensitive, and using the Bayes’ risk theory to assign each sample to its lowest risk
class. Weighting the data space deals with modifying the distribution of the training set
with regards to misclassification costs such that it is biased towards the costly classes
based on the theoretical foundations of the Translation Theorem. The second category
makes a specific classifier learning algorithm cost-sensitive. For example, in decision trees,
the tree building strategies can be adapted for minimizing misclassification costs. Cost-
information can either be used to choose the best attribute to split the data or to determine
if a subtree should be pruned. For the last category, the Bayes’ risk theory is used to
assign each sample to its lowest risk class. A typical decision tree, for example, assigns
each class label on a leaf node depending on the majority class that reaches the node.
With cost-sensitive algorithms, the class label is assigned to the node that minimizes the
classification cost [29].

3.1.4. Ensemble-based
The results of ensemble-based approaches have recently shown promising results in the
domain of class imbalance [30]. They are usually created by combining an ensemble-
based learning algorithm (Section 2.3.3) and the previously mentioned data level and
cost-sensitive approaches. Data level approaches are used by applying an over- or under-
sampling preprocessing algorithm before the ensemble approach is trained. Cost-sensitive
ensembles include costs to either each base classifier or globally to the whole ensem-
ble.

3.2. Resampling to Combat Class Imbalance
As mentioned above, over- and undersampling techniques pursue the same ultimate goal.
They try to balance a given dataset, but there are significant differences that lead to
advantages and disadvantages. Undersampling techniques only change the majority class
by reducing the number of majority class items, thus balancing the imbalance ratio. This
method results in a smaller dataset, which could be a problem if the dataset is already
relatively small at the beginning. Oversampling techniques, on the other hand, only
change the minority class by generating new class items, leading to a generally larger
dataset that balances both majority and minority class [31].

Since this thesis is trying to show that evolutionary undersampling methods can improve
intrusion detection systems’ performance, the main focus will deal with data level tech-
niques and, in particular, undersampling methods. However, to give a brief overview of
oversampling methods as well, the most common ones will also be explained.

3.2 Resampling to Combat Class Imbalance 27

3.2.1. Undersampling
Within this thesis, only undersampling is taken into consideration because various research
[2, 22, 28, 30] has shown that undersampling is able to deliver promising results and help to
reduce the need of resources due to the smaller sample size in the resulting undersampled
dataset.

The first method is called ClusterCentroids, which undersamples datasets by replacing the
original samples using an algorithm called clustering using representatives (CURE). This
algorithm identifies clusters (e.g. centers of classes) and replaces the relevant points within
these clusters while maintaining the underlying cluster structure. ClusterCentroids differs
from other undersampling methods in the way that it generates samples in the majority
class. Other methods only use existing majority class samples for their resampling process
[32].

The following figures in this Section 3.2 are created using the imbalanced-learn toolkit [33].
Each figure contains 250 samples with 28 samples in the minority class and 222 in the
majority class. This results in an imbalance ratio of roughly 1:8. Purple points represent
the minority class samples, and yellow points represent the majority class, respectively.
Slightly transparent data points represent the samples that were removed by the under-
sampling method. Figure 3.4 shows an example of ClusterCentroids undersampling.

Figure 3.4.: Undersampling example using ClusterCentroids, by [33]

The following undersampling methods select samples from the existing majority class
samples. This type of undersampling can be divided into two groups: controlled and
cleaning. While controlled methods are able to manage the number of majority samples
taken, cleaning methods only remove specific samples that are considered unnecessary
without specifying the exact number [32].

RandomUnderampler (RUS) is the simplest and simulataneosly, the riskiest way to make
such a selection by randomly selecting samples from the majority class. It is risky because
it deletes random samples without checking their potential significance or relevance. An
example is shown in Figure 3.5.

3.2 Resampling to Combat Class Imbalance 28

Figure 3.5.: Undersampling example using RandomUndersampling, by [33]

There are three different versions of the NearMiss algorithm, and all versions implement
some heuristic rules to select samples. NearMiss-1 selects samples from the majority
class, where the average distance to the k nearest samples of the minority class is the
smallest. NearMiss-2 selects majority class samples with the minimum average distance
to the farthest minority class samples. Finally, NearMiss-3 consists of two steps; first,
the m nearest-neighbors for each minority sample will be kept, then the majority class
samples with the maximum average distance to the k nearest neighbors is the largest are
selected [32]. All three methods are shown in Figure 3.6.

Figure 3.6.: Undersampling example using different NearMiss versions, by [33]

EditedNearestNeighbor (ENN) edits the dataset by removing samples of the majority class
that do not “agree enough” with their nearest neighbors. A strict option of “agreeing”
in this case could mean that all neighbors who are not the same class are removed. It is
possible to run this selection process multiple times iteratively, which would lead to the
principle of RepeatedEditedNearestNeighbor (RENN). AllK-Nearest-Neighbor (AllKNN)
is only slightly different from RENN; instead of repeating the same process repeatedly,
AllKNN increases its k parameter of its internal nearest-neighbor algorithm each iteration
[34]. Figure 3.7 shows these relatively similar undersampling approaches.

3.2 Resampling to Combat Class Imbalance 29

Figure 3.7.: Undersampling example using ENN, RENN and AllKNN, by [33]

TomekLinks (TL) forms links by connecting two nearest neighbor samples from different
classes with each other. There are two variants of this undersampling method; first, there
is the option to remove both samples that form a link, and the other is to only remove the
majority class sample in this link. The different modes are presented in Figure 3.8.

Figure 3.8.: Undersampling example using TomekLinks, by [33]

Condensed-NearestNeighbor (C-NN) is using the one nearest neighbors algorithm to
choose which majority sample can be removed. The issue with this method is that it
is sensitive to noise by preserving noisy samples. OneSidedSelection (OSS) adds the use
of TomeLinks to C-NN to remove links that are considered noisy. NeighborhoodClean-
ingRule (NCR) combines C-NN and OSS and additionally uses the previous mentioned
ENN algorithm to remove more noise samples. After that, misclassified instances are
removed by using the 3NN rule [32]. The differences can be seen in Figure 3.9.

3.2 Resampling to Combat Class Imbalance 30

Figure 3.9.: Undersampling example using C-NN, OSS, NCR, by [33]

3.2.2. Oversampling
For completeness, some popular oversampling methods will be discussed in this section.
The first method is RandomOversampling; it randomly replicates data samples until the
classes are balanced. The results of this method can be seen in Figure 3.10, the darker
purple data samples on the right side of the Figure indicate that the replicates overlap
with the original minority samples [26].

Figure 3.10.: Oversampling example using RandomOversampling, by [33]

Instead of simply replication data samples, Synthetic Minority Oversampling TEchnique
(SMOTE) tries to introduce synthetic examples by interpolating between several minority
samples that lie together. As examples, at the border and boundary are more likely to be
misclassified, SMOTE-Borderline was introduced to create new synthetic examples along
with these borderline instances. SMOTE-SVM instead, focuses on the creation of samples
on the decision borders of minority and majority classes created by the SVM classifier
[26]. A comparison of these SMOTE variants is illustrated in Figure 3.11.

3.2 Resampling to Combat Class Imbalance 31

Figure 3.11.: Oversampling example using different SMOTE variants, by [33]

SMOTE has been the inspiration for almost all the conventional oversampling meth-
ods used within the imbalanced class problem. The next algorithm, Adaptive Synthetic
(ADASYN) oversampling, also uses SMOTE and has two main goals: first to reduce the
bias towards the majority class and then to shift the decision boundaries to harder clas-
sifiable examples. ADASYN calculates the k nearest-neighbor from the majority class for
each minority example. After that, it decides how many examples should be generated
for each majority based on a weighting algorithm. The last step is the crucial difference
compared to SMOTE, because of the equal number of newly generated samples for each
minority example [31]. Figure 3.12 shows an example of this algorithm.

Figure 3.12.: Oversampling example using ADASYN, by [33]

3.3 Performance Analysis 32

3.3. Performance Analysis
Analyzing the performance of classifiers and learning algorithms is a challenging task
under the presence of class imbalance. As mentioned before, measures such as accuracy
may mask an inferior classification performance if the imbalance ratio is too high. Natu-
rally, it is of utmost importance to alleviate this problem by choosing suitable measures
in infrequent classes. This section presents different performance measures used in clas-
sification and elaborates on additional steps necessary to obtain appropriate results. In
Section 2.3.3, the topic of data splitting has already been briefly introduced, following the
fundamental importance in classification and in unbalanced dataset classification is dealt
with in more detail.

When dealing with classification problems, it is often helpful to gain a common range of
values within the dataset, in which a method called scaling is used as a preprocessing
procedure. There are three common scaling or normalizing methods: interval fit, z-
score scaling (or standardization), and arctangent scaling. The interval fit scaling method
transforms the available data to fit into a certain interval, commonly [0,1]. Z-score, on the
other hand, scales the features in a way that that they have the properties of a standard
normal distribution with a mean of zero and a standard deviation of one. Arctangent
scaling will fit the available data within the interval [-1,1], thus ensuring that features
near the mean are scaled almost linearly and outliers are still within the interval range.
All those methods can lead to easier processing and distinction of patterns because of
smaller variability within the features [16, 17].

The usual way to obtain training and test sets is by splitting a given set into two parts.
When splitting, it is desired to keep all the defining properties of the original dataset as
much as possible. If the properties are ignored, the chances increase that the validation
set would provide misleading estimates. For instance, the training set might only include
the majority class, while the test set only contains majority instances. In order to conquer
this problem, a common method called stratified sampling is used. In stratified sampling,
a split percentage can be chosen to split the data accordingly, and this percentage is
maintained for both training and test sets. Sometimes there is not enough labeled data
available to create a proper test dataset. If this is the case, a validation method called
cross-validation can be used. With k-fold cross-validation, the original dataset is divided
into k (1 ≤ k ≤ n) equal subsets by stratified splitting. Then k − 1 subsets are used to
train the classifier while the remaining subset is used for performance evaluation. This
process is then repeated k times so that each subset is used once for testing. The result of
the cross-validation is then the average of the k runs. Usually, this k-fold cross-validation
is repeated multiple times to reduce the influence of randomness introduced by the data
split. Common configurations include 10-times 5-fold cross-validation and 5-times 2-fold
cross-validation. In an extreme case, if the number of folds equals the number of samples
in the original dataset, there is only one instance in each test set. This method is called
leave-one-out validation [13].

When evaluating classifiers’ performance, it is key to properly assess its quality with
respect to other classifiers dealing with the same problem. As mentioned in Section 2.3.2,
the results of correctly and incorrectly classified examples of each class can be stored in

3.3 Performance Analysis 33

a confusion matrix (Table 3.1).

To evaluate the performance of classifiers, historically, the accuracy (ACC) (3.1) has been
the most commonly used measure [2, 30]. With imbalanced class distributions, however,
it is not a suitable option because accuracy rate weights the influence of classes concerning
their number of instances in the dataset. This means that classes with more instances
have a greater influence on the accuracy rating, which is not desirable in an imbalanced
scenario.

Acc = TP + TN
TP + FN + FP + TN (3.1)

Positive prediction Negative prediction
Positive class True positive (TP) False negative (FN)
Negative class False positive (FP) True negative (TN)

Table 3.1.: Confusion matrix for a two-class problem, from [30]

As this thesis deals with imbalanced domains, other measures that calculate the perfor-
mance of each class independently without being influenced by the other class need to be
considered. By using the confusion matrix (Table 3.1), different measures can be calcu-
lated to evaluate the performance of each class independently. Four metrics are especially
interesting: the false negative rate (FNR) (3.5), false positive rate (FPR)(3.4), true neg-
ative rate (TNR) (3.3), and the true positive rate (TPR) (3.2). On the one hand, there
is FNR and FPR that represent the percentage of cases misclassified. On the other hand,
TNR and TPR represent the cases that are correctly classified [28].

True positive rate (also known as Sensitivity or Recall) TPrate = TP
TP + FN (3.2)

True negative rate (also known as Specificity) TNrate = TN
FP + TN (3.3)

False positive rate FPrate = FP
FP + TN = 1− Specificity (3.4)

False negative rate FNrate = FN
TP + FN = 1−Recall (3.5)

However, these measures consider only one of the classes when used on their own. For
this reason, there are two commonly considered measures to use in this scenario, the
geometric mean (GM) (3.6) and the Area Under the ROC Curve (AUC) (3.7). The GM
balances the accuracy between majority and minority instances while at the same time,

3.3 Performance Analysis 34

being able to deal with the class imbalance problem. A poor performance in prediction
of the positive examples will lead to a low GM value, even if the negative examples are
correctly classified.

GM =
√
TPrate · TNrate (3.6)

The AUC, on the other hand, is computed as the area under the Receiver Operating
Characteristics (ROC) curve. The ROC curve is created by plotting the TPR against the
FPR at different classification thresholds. To put in another way, it plots the false alarm
rate versus the hit rate. It visualizes the trade-off between TPR (benefits) and the FPR
(costs), showing that it is not possible for any classifier, to increase the number of true
positives without increasing the number of false positives, respectively.

Therefore, the AUC corresponds to the probability that the model ranks a random positive
example more highly than a random negative example. AUC ranges in values from 0 to
1. A model where all predictions are wrong has an AUC of 0.0; one where all predictions
are 100% correct has an AUC of 1.0. It is widely used in imbalanced domains [28].

AUC = 1 + TPrate − FPrate
2 (3.7)

Another commonly used metric in imbalanced classification is the F-Measure (3.9). It
focuses on analyzing the positive class and tries to find the trade-offs between correctness
and coverage in classifying. For its calculation, it uses a weighted harmonic mean between
precision (3.8) and recall (3.2). Precision measures how many of all predicted minority
class samples are classified correctly, whereas, the recall shows how many instances of all
real minority samples are predicted correctly. The F-measure combines these performance
metrics and adds a weighting factor, β, to influence the importance given to each term.
Usually, β = 1 is used leading to the F1 measure, shown in (3.10) [26].

Precision = TP
TP + FN (3.8)

Fβ = (1 + β2) · Recall · Precision
(β2 · Precision) + Recall (3.9)

F1 = 2 Precision · Recall
Precision + Recall (3.10)

4. Methodology

After the introduction into the class imbalance problem and the ways to overcome it, this
chapter gives insight into the methods used in this thesis to tackle the problem in network
anomaly detection. First, evolutionary algorithms are explained in Section 4.1. A modern
field of the Evolutionary Algorithm (EA) is the Genetic Algorithm (GA), presented in Sec-
tion 4.1.1. These algorithms are the cornerstone of evolutionary undersampling, as their
methods are used to create a supposedly superior sampling method. EUS, its taxonomy,
and the concept behind it are explained in Section 4.2. Furthermore, methods to evaluate
the performance of undersampling methods compared to other sampling methods will be
discussed in Section 4.3. Finishing this chapter, the used dataset and its structure, quan-
tities, and detailed description will be presented in Section 4.4. Alltogether, this chapter
deals with the used methods and resources to prepare for the implementation in Chapter
5.

4.1. Evolutionary Algorithms
Evolutionary algorithms are, in fact, not a very new research topic; early computing
pioneers such as Alan Turing and John von Neumann already discovered the possibilities
of these algorithms. They formed ideas around machine learning, biological mathematics,
and biological automation using evolutionary approaches. These visionaries realized that
exploitative methods could only go so far to solve a set of complex problems; that is
why they focused on more exploratory methods. Compared to exploitative approaches
that focus more on direct local knowledge to generate a solution, an EA takes a more
exploratory or stochastic approach (leaping into the unknown). These algorithms form a
group of biologically-inspired algorithms that take advantage of synthetic methods, such
as management of populations, replication, variability, and selection. These methods all
rely on the fundamental theory of Darwinian evolution in that they produce a simulation
in which the survival of the fittest creature leads to passing on their genes to the next
generation. In general, these algorithms are often simple at the higher level, but they
become very complex the more domain knowledge is brought into the system. An EA
generally needs some form of quantitative goal to work; this goal is the metric that can
determine success or failure. The success metric can also be used to end the algorithm
early if some threshold is reached [35].

Evolution can be viewed in two ways; the first is a biological view dealing with various
interactions of biological systems, and the other is from the computer science perspective.
This thesis deals with the computer science view, but mixed with a hint of biology to

4.1 Evolutionary Algorithms 36

better visualize the underlying principles. Evolution always includes a population of en-
tities (potential solutions), where some form of replication, variation and selection occurs
dynamically. The three dynamic mechanisms can be shown in Figure 4.1, they represent
a stochastic but guided process where the main goal is to move towards a fixed goal.

Selection Variation

Replication

Evolution

Figure 4.1.: Idealized Darwinian evolution, by [35]

Replication is usually achieved by forming new entities either through creating an entirely
new generation of the population or altering an existing generation, whereas variation is
commonly achieved by either crossover (also called recombination) or mutation. Crossover
creates new solutions by combining parts of other entities, while mutations introduce
randomness into the population by randomly changing features of solutions. Finally,
selection is based on Darwin’s theory of natural selection or survival of the fittest. Within
this subpart, entities should be selected that show the most promising solutions and are
thus carried forward to create children for the next generation [35].

Evolution in computer science, also called digital evolution, is a development in which a
population of entities undergoes several generational changes. Every one of these changes
starts with a selection from the previous generation. To select an entity, an evaluation
process checks each entity against the known goal. After the selection, some replication
occurs. Each replication process performs some form of variation, by either recombina-
tion or mutation. Figure 4.2 shows this necessary digital process that is adopted by many
EAs. This high-level evolutionary process, as depicted, seems to be a relatively simple
and straightforward procedure, but within this process, various complex nuances and vari-
ations appear. These variations are mainly influenced by evolutionary biology [35]. The
general ideas of these steps can be carried over to the next section of genetic algorithms.
The goal to reach the best possible solution will be explained in detail.

4.1.1. Genetic Algorithms
These algorithms are inspired by the Darwinian theory of evolution [36], a theory where
the survival of the fittest creature and their genes are simulated. Its main inspiration
is the natural selection of the fittest individuals for reproduction so that their offspring
inherit the characteristics of their parents and forms the population of the next generation.

4.1 Evolutionary Algorithms 37

G
en =

 G
en +

 1

Mutation

Crossover

Selection

SolutionEvaluation

Initialize

Figure 4.2.: General steps in evolutionary algorithms, by [35]

A Genetic Algorithm (GA) evaluates the fitness of each individual in the population by
using a fitness function. If their parents have scored a high fitness value, their offspring
will likely develop good genes and thus have a better chance of surviving. This process
keeps iterating, and at the end, a generation with the best-suited solution to the problem
will be found [35].

This algorithm begins with a set of individuals that is called population. Each individual
represents a solution to a problem and is called chromosome. Chromosomes are character-
ized by a set of parameters (features or variables) known as genes. Figure 4.3 illustrates
the different parts of a GA. In the case of an undersampling problem, a gene could be
one sample of the majority class, and the chromosome could represent the set of reduced
samples from the majority class. The population would consist of different versions of the
undersampled majority class sets.

C1 1 0 1 0 0 1

C2 0 1 1 0 1 0

C3 1 1 0 0 1 0

PopulationGene

Chromosome

Figure 4.3.: Parts of a genetic algorithm, created from [37]

As GAs have a stochastic background, their reliability might be questioned. Even with
several randomized steps, the algorithm is able to stay reliable by estimating the global
optimum for a given problem. This process maintains the best solutions in each generation
and uses them to improve the upcoming solutions, thus improving the entire population
generation by generation. Creating new solutions in the crossover process by combin-
ing them results in exploiting the area between the chosen parent solutions. Diversity
can be promoted by implementing mutation and, therefore even further increasing the
exploratory behavior of the GA. Mutation might randomly create substantially better
solutions and ultimately lead to other solutions towards the global optimum [37].

4.1 Evolutionary Algorithms 38

As mentioned earlier, most of the evolutionary algorithms build on the steps illustrated in
Figure 4.2. The same concepts exist with GA; these steps are explained in the following
[37]:

1. Create the population: The initial population includes multiple solutions (chro-
mosomes) to a problem. This step’s primary focus is to spread the solutions in the
search space as uniformly as possible. A diverse set of solutions increases the chance
of finding promising regions.

2. Determine fitness: To determine how to fit a solution is (i.e., the ability to com-
pete with other solutions), a fitness value needs to be calculated. The probability
that a solution will be selected for reproduction in the next step is based on the
fitness value. Calculations for the entire population can be a time-consuming activ-
ity, depending on the complexity of the fitness function and population size. This
function is why EAs are highly adaptive. Each method to obtain a fitness value is
problem-dependent; for instance, in the pattern selection domain, a fitness function
could be the accuracy of a chromosome.

3. Select the mating pool: The main inspiration for this component is natural
selection. In nature, the fittest individuals exceed others with higher chances of
obtaining food and mating. Therefore, their genes are more likely to contribute to
the production of newer generations. As GAs are inspired by that idea, a roulette
wheel selection operator is used. This method assigns every solution a probability
proportional to their fitness value. Figure 4.4 illustrates an example for 6 different
individuals. Details of each individual are presented in Table 4.1. In these examples,
Individual 5 is the fittest solution with the largest probability to be selected for
the next generation. As the roulette wheel method is a stochastic operator, poor
solutions have a small chance of participating in the next generation. Using “lucky”
poor individuals will increase the diversity of the population.

31%

25%
27%

8%

5%

4%

Individual 2

Individual 3

Individual 4Individual 5

Individual 1

Individual 6

spin

Selection Point

Figure 4.4.: Mechanism of the roulette wheel in a GA, by [37]

4.1 Evolutionary Algorithms 39

Individual Number Fitness value % of Total
1 12 5
2 55 24
3 20 8
4 10 4
5 70 30
6 60 26
Total 227 100

Table 4.1.: Details of individuals in a roulette wheel, by [37]

4. Breed new generation: In nature, after the individuals for reproduction are
selected, the genes of a male and female are combined to produce new chromosomes.
In GAs, this is simulated by combining two individuals, also called parent solutions,
selected by the roulette wheel. Different techniques for this crossover exist, and
commonly used are two methods: single-point and double-point, as illustrated in
Figure 4.5. With single-point crossover, a randomly chosen index decides which
part of each parent is used by splitting at this point and swapping each parent’s
genes. In a double-point crossover, two randomly chosen crossover points mark an
area that is swapped.

Parent solutions

Children solutions

Single-point Double-point

Crossover points

Figure 4.5.: Single-point and double-point crossover techniques, by [37]

5. Mutate new generation: The last component of a GA maintains the diversity
in the population and plays a key role in the exploration of the search space by
changing multiple genes in new solutions. This relatively low mutation rate prevents
the solutions to become too similar. Figure 4.6 visualizes randomly selected genes
to be changed.

4.2 Evolutionary Undersampling 40

Parent solutions

Children solutions Mutated genes

Figure 4.6.: Mutation operator in a GA, by [37]

GAs start with a random population and then loop through steps 2-5, as they represent
the evolutionary operators (selection, crossover, and mutation), to improve the quality of
the genes over each iteration. Another commonly used evolutionary method to further
improve quality is called elitism. With this added method, one or multiple best solutions
of the previous generation are maintained and transferred to the next generation without
modification. This method’s main idea is to keep a good solution without the chance of
degrading them when applying crossover and mutation components [37].

With the methods explained above, an undersampling method can be created, which will
be the focus of the next section.

4.2. Evolutionary Undersampling
The undersampling method used in this thesis relies on the principles of the GA mentioned
above. EUS has already shown its usefulness in real-world applications [38]: it is an
evolutionary prototype selection algorithm adapted to work within the class imbalance
problem. Prototype selection is a sampling procedure that aims to reduce the reference
set for the nearest neighbor classifier. The reduced reference set helps to improve its
accuracy and reduces the amount of storage needed. However, the general objective of
prototype selection and undersampling is different. The balance of the data distribution
is more critical in an imbalanced scenario than reducing the overall size of the dataset.
For this reason, EUS tries finding a useful undersampled dataset where the search for this
solution is guided by a GA [2].

In [28] the taxonomy of EUS is introduced; consisting of a total of eight EUS methods.
The first differentiation can be done by the objective that EUS pursues and how it se-
lects instances. Concerning the objective, the authors suggest two goals: Evolutionary
Balancing Undersampling (EBUS) aims to balance the data without lacking effectiveness
in classification accuracy, and Evolutionary Undersampling guided by Classification Mea-
sures (EUSCM) aims to achieve the optimal power of classification without considering
the balancing of the data. Regarding the types of instance selection, there is Global Selec-
tion (GS) that also allows minority and majority examples to be removed, and Majority
Selection (MS) that only allows removal of majority classes. This categorization of EUS
produces four subgroups that can further be separated by the measure of evaluation; these
measures are AUC and GM. Figure 4.7 shows the full taxonomy introduced in [28].

4.2 Evolutionary Undersampling 41

Evolutionary
Undersampling

Evolutionary Under-
sampling guided for

Classi�cation Measures

Evolutionary Balancing
Undersampling

Global Selection

Majority Selection

Global Selection

Majority Selection

EUSCM-MS-AUC

EUSCM-MS-GM

EUSCM-GS-AUC

EUSCM-GS-GM

EBUS-MS-GM

EBUS-MS-AUC

EBUS-GS-AUC

EBUS-GS-GM

Figure 4.7.: Evolutionary undersampling taxonomy, by [28]

As mentioned in Chapter 3, network traffic is usually prone to very high imbalance ratios.
The authors of [28] achieved the most promising results with EBUS-MS-GM when using
highly imbalanced datasets; therefore EBUS-MS-GM is considered and explained in this
thesis. The blue highlights in Figure 4.7 illustrates this path.

Initially, EUS creates a set of randomly undersampled data subsets, which are then evolved
by the steps of selection, crossover, and mutation until the best undersampled dataset
cannot be further improved in terms of the fitness function. In EUS, chromosomes are
represented as a binary vector, where each gene either represents the absence or presence
of the corresponding instance in the dataset. EBUS-MS only considers the majority class
for removal, so all majority class examples are included in each chromosome but flagged
as 1 or 0, respectively. Minority class instances are automatically added to the final
dataset; in other words, a binary one tells the algorithm that this instance is included in
the solution, and a binary zero means that this sample is not used for this chromosome.
Each chromosome is represented as follows [28]:

V = (νx1, νx2, νx3, νx4, ..., νxn−) (4.1)

where νxi
is either set to 0 or 1 and n− represents the number of majority class in-

stances.

In order to estimate the performance, a fitness function is used that considers the balancing
between the minority and majority class instances. EBUS-MS-GM uses the GM as a
performance measure, maximizing the accuracy of both classes at the same time. The
authors of [30] use a 1NN classifier combined with a leave-one-out cross-fold validation
to calculate this fitness value. As this calculation has to be done for every generation,
this process can be very time-consuming, hence the 1NN classifier is a resource-friendly

4.2 Evolutionary Undersampling 42

and fast choice for this step. The fitness function proposed by [30] provides a good trade-
off between data balancing, reduction and accuracy in classification. Finally, the fitness
function is defined as followed:

fitnessEUS =
 GM−

∣∣∣1− n+

N− · P
∣∣∣ if N− > 0

GM− P if N− = 0
(4.2)

where n+ stands for the number of minority class instances, and N− stands for the
majority class instances selected in a solution. P is a penalization factor that accounts
for the importance of balancing both classes; [28] recommends this parameter to be set
to 0.2.

To find the right balance between exploration and exploitation, EUS uses a well-known
algorithm called CHC [39] that uses the heterogeneous uniform crossover GA procedure
between two chromosomes. For that, exactly half of the different genes are interchanged
between the parents. In order to prevent incest, the mating is only considered if the
diversity of both parts is sufficient [30].

As mentioned in Sections 2.3.4 and 4.1.1, it is often essential to make sure that the
datasets used for classifying are as diverse as possible. A relation between diversity
and single-class measures was found in [40], having a positive impact on positive class
classification and global performance measures such as the AUC. To promote diversity,
EUS prefers solutions that are different from the best solutions in previous generations.
As it is a preprocessing algorithm, it is assumed that base classifiers learned from these
specially-treated datasets are ultimately more diverse. For that reason, the authors of
[30] proposed a modification from the original fitness function (4.2). For this modification
to be implemented, the diversity between the solutions must be measured, which is done
by introducing the Q-statistic [41], which is applied by comparing two solutions with
each other. The result refers to the diversity between two solutions and ranges from -
1 to 1, lower values indicating greater diversity. With two binary vectors (solutions or
chromosomes shown in 4.1), the Q-statistic can be calculated as follows [30]:

Qi,j = N11N00 −N01N10

N11N00 +N01N10 (4.3)

where Nab is the number of instances with value a in the first and with value b in the
second vector; if a and b are equal, both datasets do or do not include the same data sam-
ple. Qij = 0 means that both solutions are statistically independent, whereas Qij = ±1
means that both solutions exist of the same data samples and thus are statistically de-
pended. EUS compares the diversity between a candidate chromosome and the previously
best chromosomes from each generation. As Q-statistics is a pairwise measure, a global
maximum Q of all Qij is considered to aggregate the pairwise comparisons.

Q = max
i=1,...,t

Qi,j (4.4)

4.3 Statistical Testing of Algorithms 43

where Vj is the candidate solution and Vi represent all previous solutions from the first to
the current one (t). The authors of [30] also introduce a weighting factor β that changes
every iteration and the imbalance ratio (IR = N−/n+) to further increase the diversity
(more information in can be found in [2]). The weighting factor and the new fitness
function using all diversity evaluation steps can be defined as follows:

β = N − t− 1
N

(4.5)

fitnessEUSQ = fitnessEUS ·
1.0
β
· 10.0
IR
−Q · β (4.6)

The first iteration needs special consideration, as there are no vectors to compare with
the actual candidate solution. For this reason, the fitness value for t = 1 is calculated
by the original Equation (4.2). After that, this fitness function can be used as stated in
(4.6).

With all the underlying classification and sampling background now explained, the actual
performance evaluation would be possible. However, to check the results for any statisti-
cally significant difference, several statistical tests need to be performed to draw reliable
results from the calculated performance evaluation. These tests will be the focus of the
next section to prepare for the implementation part of this thesis.

4.3. Statistical Testing of Algorithms
In order to compare two classifiers, the typical approach would be to study their average
performance measures. However, reliable conclusions can only be drawn if sufficient sta-
tistical evidence is found that the two algorithms of interest have or have not achieved
different performances in relation to the chosen score. The main goal is to decide whether
the differences between algorithms are due to chance or real. The natural question to
ask would be: How representative is the empirical difference of two classifiers on a given
dataset, using the difference between their mean performances? This question can be
answered by using a method called statistical hypothesis testing which is an analysis in
which a hypothesis, also referred to as the null hypothesis or H0, is assumed. Statistical
tests are then used to reject or accept this assumption. H0 states that both algorithms
perform equally well based on the selected score and, a priori, is assumed to be true. The
alternative hypothesis, or H1, on the other hand, states that the two algorithms behave
differently. The statistical test can result in a correct or incorrect decision (see Table 4.2).
A type I error is the probability of deciding that H0 is rejected when, in fact, H0 is true.
This error is called the level of significance (α) and is frequently set to 0.05. In practical
terms, this α means that there is a 95% chance that the resulting statistical difference
is real and not due to chance [42]. In order to make a statistical decision, the p-value
needs to be calculated. This p-value resembles the probability of obtaining the statistic’s
observed value, assuming that H0 is true. In other words, a small p-value (smaller than
α) means that the observed outcome is possible, but very unlikely under the assumed null

4.3 Statistical Testing of Algorithms 44

Decision
Do not reject H0 Reject H0

R
ea
lit
y H0 is true Correct

Type I error
α = P (reject H0|H0 is true)

H0 is false
(H1 is true)

Type II error
β = P (do not reject H0|H0 is false)

Correct
Power = P (reject H0|H0 is false)

Table 4.2.: Errors in the decision of statistical tests, by [43]

hypothesis. Therefore, it is assumed that H0 was a wrong initial assumption, which leads
to a rejection of the null hypothesis.

However, some assumptions have to be considered when using statistical tests, depend-
ing on the test used. Two broad classifications of statistical tests exist, parametric and
nonparametric tests. Parametric statistical tests are used when the distribution of the
underlying population from which the sample was taken can be assumed. The most
commonly used parametric assumptions are that the data is approximately normally
distributed and has homogeneity of variance. As mentioned in Section 3.3, a common
validation type in the class imbalance problem is to use k-fold-cross-validation. The re-
sult of a k-fold-cross-validation is not completely independent, ultimately leading to a
set of classification results that neither presents a normal distribution nor a homogeneity
of variance [28]. According to the recommendations made in [28, 44, 45], nonparametric
tests are used in this thesis and will be presented in the following parts. Figure 4.8 illus-
trates an overview of different statistical tests, this is by no means a comprehensive list
of all available statistical tests, but it represents the more appropriate tests for the use in
classification problems [46].

All Machine
Learning &
Data Mining
 Problems

Tukey Post hoc Test

Bonferroni-Dunn
Post hoc Test

Nemeny Test

2 Algorithms
1 Domain

2 Algorithms
Multiple Domains

Multiple Algorithms
Multiple Domains

Two-Matched-Samples
t Test

McNemar’s Test
Wilcoxon’s Signed-Rank
Test for Matched Pairs

Sign Test

Repeated Measures
One-way ANOVA

Friedman’s Test

parametric test nonparametric test parametric and nonparametric

Figure 4.8.: Overview of statistical tests, by [46]

4.3 Statistical Testing of Algorithms 45

For the nonparametric statistical tests considered in this thesis, there are two different
types of comparison: pairwise comparisons and multiple comparisons. As the authors
of [2] suggest, multiple comparisons will be executed with the Friedman Test to detect
significant differences between a set of algorithms. If differences are found, a post hoc
test can determine where those differences are. For instance, the best algorithm could be
checked against all the others (1 × n comparison) if it is significantly different under the
Friedman Test. In order to test pairwise comparisons, an altered form of the Wilcoxon
Signed-Rank Test will be chosen to determine whether there are significant differences
between a pair of algorithms.

4.3.1. Nonparametric Statistical Tests
The Friedman Test is a nonparametric statistical test to compare more than two related
samples with each other. The null hypothesis states that all algorithms are equivalent,
therefore, a rejection of this hypothesis would mean that at least one of the tested algo-
rithms performance measures is different from the others. This test ranks the algorithms
for each dataset separately according to the used performance measure (rji), from the best
performing algorithm to the worst in ascending order. After obtaining these ranks, the
Friedman Test uses the algorithms’ average ranks (Rj) to check against the null hypoth-
esis. As H0 states that the algorithms are equal, this test assumes that the average ranks
should be equal as well. The equations used by the Friedman Test are:

Average ranks : Rj = 1
N

∑
i
rji (4.7)

Friedman Statistics : χ2
F = 12N

k(k + 1)

k∑
j=1

(
R2
j −

k(k + 1)2

4

)
(4.8)

where N and k are the rows and columns of the input matrix. For the EUS example,
these inputs can be explained with this example: N undersamplers each rate k different
classifiers. Do any of the k classifiers perform consistently higher or lower than the
others?

This Friedman statistic follows a Chi-squared distribution (χ2) with k − 1 degrees of
freedom for large N and k. Due to this distribution, a smaller N (usually ≤ 10) and k
(usually ≤ 5) the χ2

F and the resulting p-value starts to get less reliable and should be
avoided.

A rejection of H0, solely states that there is a significant difference between at least two
of the tested algorithms. In order to pinpoint the specific differences, so-called post-hoc-
tests are needed. The authors of [28] use the Holm’s method, a procedure for multiple
comparisons for a candidate algorithm. Usually, the best algorithm is chosen as the
candidate algorithm compared with all other algorithms in the test. The statistics used

4.3 Statistical Testing of Algorithms 46

for the comparison is:

z = (Ri −Rj)√
k(k+1

6N

(4.9)

This z value is then used to find a corresponding probability from the table of a normal
distribution, which is then compared with an appropriate α. Unlike the more common
and easier to perform Benferroni-Dunn test, the α is recalculated for each comparison,
leading to a test result that controls the family-wise error rate (FWER) and rejects more
hypotheses. The FWER is the probability of making false discoveries when performing
multiple hypotheses tests. As a consequence, despite the higher implementation complex-
ity, there is never any reason to use the simpler Bonferroni-Dunn correction, since it is
always outperformed by the slightly more elaborate Holm correction [28].

Finally, the Wilcoxon Signed-Ranks Test can be used for pairwise comparison. It aims to
detect any significant differences between the two investigated algorithms. It is a pairwise
comparison procedure that can be briefly explained in the following steps [43]:

1. Formulate a H0 and a H1, e.g., “The median difference of the algorithms in obser-
vation is zero.” Also, the significance level (usually α = 0.05) and the number of
measurements (n) for each algorithm should be noted for a later step.

2. The differences of each measurement are calculated (di).

3. After that, the absolute values of the differences are created.

4. The absolute values are ranked, starting with the smallest to the largest value (1 to
n). In case of ties between two or more di’s, each value receives a rank equal to the
average of the ranks they span.

5. These ranks are then summed up for differences that resulted in a positive value to
get T+. The same is done with the negative values for T−. The used equations are:

T+ =
k∑
i=1

I(di > 0) · rank(di) + 1
2

k∑
i=1

I(di = 0) · rank(di) (4.10)

T− =
k∑
i=1

I(di < 0) · rank(di) + 1
2

k∑
i=1

I(di = 0) · rank(di) (4.11)

6. Calculate the Wstat by finding the minimum of both values min(T+, T−).

7. Finally,Wstat is compared with a critical value (Wcrit) taken from aWilcoxon Signed-
Ranks table. This table provides critical values for different number of measurements
and significance levels for Wcrit up to N = 25.

However, the Wilcoxon Signed-Rank Test is only considered for paired samples, meaning
that the samples compared need to be related or matched samples. For instance, repeated
measures on the same subjects can be used. As the results calculated from different

4.4 Dataset 47

classifiers are not paired, an altered form of the Wilcoxon Signed-Rank Test can be used.
The “Mann-Whitney U Test” (also called “Wilcoxon Rank-Sum Test”) is a nonparametric
test that considers independent samples for statistical testing and is therefore used in this
thesis’ implementation part.

The mentioned tests and methods are by no means a complete and comprehensive list
of every available statistical test but are sufficient to present the general idea behind
statistical testing. All the above mentioned EUS steps and subsequent statistical testing
methods from this section will be used in the implementation part of this thesis. The
next section presents the dataset being used.

4.4. Dataset
Testing the methods mentioned above for intrusion detection systems is a difficult task.
Popular benchmarking datasets in the field of IDS research, such as the KDD-99 [47]
and the MIT Lincoln Laboratory’s DARPA [48], are becoming obsolete for several rea-
sons. Although they were extremely relevant for the time of publication, they are now
too old for modern IDS and have lost their relevance over time. The KDD-99 dataset
was created using a Solaris-based system to collect a wide range of data. One problem
was that the Solaris Operating System had a minimal market share compared to other
operating systems, such as Unix or Windows. The most significant problem is that the
technology used in the late 1990s has very little resemblance to the technology used in
current times. Changes such as the conversion from 32-bit to 64-bit systems had a far-
reaching impact on modern systems’ exploitability. At the time of the creation of these
pioneering IDS datasets, there was no standardized way of evaluating IDS performances;
another concern with various researchers [49]. Various artifacts found in those datasets
led to significant variations of classification results with modern algorithms. Since there
was no viable alternative, they are still used as the basis for many IDS validations by
many researchers.

To overcome this long stretch without modern datasets for IDS research, the Australian
Defence Force Academy created several new datasets, one of which this thesis will take
a deeper look at, called the Australian Defence Force Academy - Linux Dataset (ADFA-
LD) (downloadable at [50]). This dataset was chosen because of a variety of reasons.
First, this dataset was generated based on modern computing infrastructure, namely the
Ubuntu Linux Server Version 11.04 [51]. It also contains up-to-date attack methodologies
and can thus reflect on the latest characteristics and realistic performance of state-of-the-
art attacks. This dataset was made specifically for AIDS; accordingly, different attack
vectors for the Ubuntu operating system were chosen. Those attack vectors are dependent
on various software running on the underlying operating system. For instance, to enable
web-based attacks, the webserver Apache Version 2.2.17 [52] running PHP Version 5.3.5
[53] had to be installed and enabled. Other exploits used a web-based collaborative tool
called Tiki Wiki [54]. The services FTP, SSH and MySQL Version 14.14 [55] were started
as services on their default ports to add several commonly used vulnerabilities. This fully
patched local Linux server represented a reasonable generalization of a server, offering

4.4 Dataset 48

commonly used tasks such as file sharing, database services, remote access, and web
server functionality [56].

Different payloads were used to generate malicious traffic in the ADFA-LD dataset to
exploit the available known vulnerabilities. These payloads consist of password brute
force, adding new superusers, Java, and Linux Based Meterpreter C100 Webshell. The
vectors used for each payload are shown in Table 4.3.

Payload/Effect Vector
Password brute force FTP by Hydra [57]
Password brute force SSH by Hydra [57]
Add new superuser Client side poisoned executable
Java Based Meterpreter Tiki Wiki vulnerability [58]
Linux Meterpreter Payload Client side poisoned executable
C100 Webshell PHP Remote File Inclusion vulnerability

Table 4.3.: ADFA Linux Dataset Attack Structure from [59]

The dataset creators have carefully considered contemporary methods used by penetration
testers and hackers and have found a delicate compromise between the vulnerability of the
target system and the required realism. As remote exploits are a relatively rare find in fully
patched systems, only the TikiWiki remote code execution vulnerability was engineered
into the dataset. This small flaw represents a realistic vulnerability in an otherwise
well-configured server. Datasets with overly porous and trivially exploitable servers are
considered to be utterly artificial, thus not desirable in the field of IDS. Meterpreter are
payloads generated by the most commonly used open-source hacking toolkit available
called Metasploit. It is widely used by penetration testers, security professionals, and
hackers; therefore, it is used to create multiple payloads mentioned in Table 4.3, such as
adding new superusers, Java and Linux based meterpreter payloads. The C100 shell is
part of the webserver and enables the attacker to use an illicit GUI interface through a
web browser to manipulate the underlying operating system. This collection of attacks
allowed the creators to model a representative dataset for IDS evaluation with current
practices and recent attack sets [56].

The ADFA-LD dataset consists of a set of system call traces, recorded with the Unix
program auditd. System call traces are considered as the most accurate way to detect
malicious activities for anomaly-based systems and are widely used in the IDS research
community [60]. The activities recorded to create the dataset, ranging from normal web
browsing to document preparation. They are separated into normal training data traces
with a file size of 300 Bytes to 6 Kilobytes and normal validation data traces that range
from 300 Bytes to 10 Kilobytes. This differentiation of file sizes was done to create an
effective trade-off between processing time and data fidelity. Since this thesis questions
if EUS is a suitable substitution to other undersampling methods, the authors of [20]
suggest combining all data traces to get a better-suited dataset. As a result, 5206 normal
behavior traces are used and will be denoted as the majority or the negative class. In

4.4 Dataset 49

order to create the attack data, ten attacks per attack vector shown in Table 4.3 were
executed. This resulted in a total of 746 attack data traces denoted as the minority or
positive class. Together, these 5952 system traces form a dataset with an imbalanced
ratio of 1:6.98 [56]. The dataset is structured in subfolders separating attack data and
normal data. Every activity is stored in other subfolders within these folders, containing
multiple text files that represent system calls traces. These traces refer to a sequence of
single system calls for a privileged process. For every system call, there is a unique ID,
called system call identification [61].

This presentation of system calls cannot be used directly for a pattern recognition pro-
cess. Since the system call traces are different in length, they need to be preprocessed
beforehand. The authors of [61] proposed three different ways to bypass this problem:
considering the trace lengths, usage of common patterns, and counting the frequencies.
However, since trace lengths tend to be an inefficient way to find anomalies and the us-
age of common patterns is too time consuming, the authors suggest using a frequency
based counting method. The implementation of this method will be presented in Section
6.1.

5. Implementing Evolutionary
Undersampling

This chapter provides an overview of the steps necessary to implement the EUS algorithm.
Starting with the tools and environment used in Section 5.1, the implementation is then
explained by using the prepared ADFA-LD dataset in Section 5.2.

5.1. Preliminary: Environment
The eintire process of EUS preprocessing and the subsequent steps explained in Section
2.3.2 are implemented with the Python programming language. Python has emerged over
the last couple of years as the first choice for many scientific computing tasks due to the
vast amount of packages and the active ecosystem that has emerged around the data
science community. Third-party packages such as NumPy, Matplotlib, and IPython are
just a few examples of the tools that lead to success in scientific computing [62]. As it
is often difficult to keep track of all the used packages and versions of these packages in
Python, it is recommended to use virtual environments (venv) in large Python projects.
A venv can be explained as a directory that contains a specific collection of packages
used for a Python project. This is especially important when different projects need
different versions and dependencies of packages. A common solution for this problem
is the Anaconda Distribution, which was used as this project’s environment manager.
For actual code development, a mix of the JetBrains PyCharm integrated development
environment (IDE) (mainly for debugging) and JupyterLab was used. JupyterLab, the
successor of IPython, is a web-based user interface for live runnable code with narrative
text, equations, images, and interactive visualizations. It can be used to write a program
iteratively, and test and debug each part of the code one by one. Variables can be stored,
visualized, and interactively manipulated. The files are called Jupyter notebook files (or
IPython files), and are structured with simple JSON, which contains text, source code,
rich media output, and metadata. When debugging more complex functions, PyCharm
was the superior software to use in this study. Table 5.1 shows the software used, and the
Python libraries alongside their version and literature remarks.

A combination of Python libraries was used in this thesis to make implementing certain
parts easier; these are explained in the following paragraph. First, NumPy (short for
Numerical Python) is one of the most important packages for numerical computing and,
thus, data science. It provides an easy-to-use and efficient C API for multidimensional
array operations used to store all dataset information, preprocessing, and classifier results.
NumPy also provides different array algorithms, such as sorting, unique, set, merging, and

5.1 Preliminary: Environment 51

Software Version Literature
JetBrains PyCharm IDE 2019.3.3 [63]
JupyterLab 1.2.6 [64]
conda 4.8.2 [65]
python 3.8.1 [66]
numpy 1.18.1 [64]
matplotlib 3.2.0 [67]
pandas 1.0.1 [64]
scikit-learn 0.22.2.post1 [68]
imbalanced-learn 0.6.2 [33]
scipy 1.4.1 [69]
statsmodels 0.11.1 [70]
pickleshare 0.7.5 [71]
Python Intrusion Detection 0.1dev [20]

Table 5.1.: Details on version information of software utilized in this thesis

joining. Next, the matplotlib library was used for plotting two-dimensional data visualiza-
tions, including under- and oversampling data, ROC plots, and other performance-related
plots. Pandas provides high-level data structures and functions to simplify working with
structured and tabular data in an easy, fast, and expressive way. Scikit-Learn has become
the go-to library for Python machine learning purposes since the start of its development
in 2010. It includes submodules for problems including classification, regression, cluster-
ing, dimensionality reduction, model selection, and preprocessing. The imbalanced-learn
package deals with imbalanced datasets and offers different under-, over- and hybrid
sampling methods. Scypi provides a collection of packages addressing different scientific
problem domains. These problems contain differential equations, linear algebra, inter-
polation, and various statistical tests. Together, NumPy and SciPy form a well-suited
computational foundation for most of the traditional computing applications. Statsmodel,
adds a wider variety of statistical tests to the available toolset. Finally, pickleshare was
used to store results of time-consuming calculations to the local file system. This built-
in Python package stores variables efficiently in binary format (also called serialization)
[64].

In addition to the different publicly available Python libraries mentioned above, some
parts of the “Python Intrusion Detection” repository by the author of [20] were utilized
in this implementation. Christian Promper’s work helped implement several parts of this
work, such as preprocessing the ADFA-LD dataset and comparing different classifiers on
this particular dataset. It also provided a solid foundation on which classifiers parameters
to choose for classifiers in the evaluation part of this thesis.

Google Cloud Platform (GCP) was chosen as a cloud provider in order to gain more
computing power. This service offers many sub-services such as App Engine, Compute

5.2 Algorithm Implementation 52

Engine, Kubernets Engine, and different other tools and programs. For this project, the
Compute Engine was used. This service allows the creation of Virtual Machines within the
GCP infrastructure. GCP offers 300$ for the first project created on the platform, which
can then be used with a wide variety of services; the maximum VM that can be created
was a ten core processor machine with 8GB RAM. More powerful machines require an
upgrade from the free credit version; therefore, this maximum configuration was chosen
for the implementation, making it possible to create a JupyterLab instance directly with
one click. As the underlying Operating System, Ubuntu 18.04 was chosen.

5.2. Algorithm Implementation
This section will present how EUS is implemented with the prepared Python toolset
mentioned before. To do so, it is important do understand the underlying steps of genetic
algorithms, as they are an essential component of EUS. As a reminder, GAs are heavily
inspired by the Darwinian theory of evolution, where the fittest individual’s survival
leads to the passing on the fittest genes to the next generation. These algorithms follow
the basic steps of every EA, including initialization, evaluation, selection, crossover and
mutation, as shown in Figure 5.1. Several key components need to be adjusted so that
the GA can work as an EUS algorithm and are explained thoroughly in the following
section of this thesis. This algorithm’s main goal is to generate a new dataset that has
removed any imbalance between the two class samples. In the following, the minority class
samples are denoted as n+, and the majority class samples are referred to as N−. The
final implementation is included in the code repository on the storage medium attached
to this thesis.

Dataset

Initial Population Evaluate

Optimum or
Generations reached?

End

ResultSelection

CrossoverEvaluate

Mutation

Create new Generation

yes
no

Figure 5.1.: Evolutionary undersampling process

5.2.1. General Steps
As mentioned in Section 4.1.1, every GA starts by creating an initial population. In gen-
eral, a population is a set of multiple solutions called chromosomes. These chromosomes

5.2 Algorithm Implementation 53

consist of n genes (one for each instance in the majority class) with two different states:
either 0 or 1. A solution in EUS stands for a readily undersampled majority class. In
EUS, only the majority class is considered for sampling; therefore, a binary value for
each majority class sample is added to the chromosome. If an instance of the majority
class is included in the undersampled solution, it is represented by a 1; otherwise, this
gene’s state is 0. In order to form a perfectly balanced dataset, it is assumed that there
should be exactly as many data samples in both of the classes; in other words, the initial
population creates a m×n matrix, where each m represents a solution in the population,
and n represents each majority class sample of the used dataset. Figure 5.2 illustrates
these different subparts for the ADFA-LD dataset. For his dataset, a chromosome would
consist of 5026 genes representing the occurrence of data samples in the undersampled
majority class. The index of a gene represents the row of the system call trace in the
prepared dataset. The sum of each chromosome results in the amount of the minority
class samples, or in case of the ADFA-LD dataset in 746 (∑n+

i=1 N
−
i).

1 1 1 010 00 0...
1. undersampled majority class

0 1 0 000 00 0...
2. undersampled majority class

0 0 0 101 00 0...
3. undersampled majority class

Population

1 1 1 0 10 00 0

Chromosome

Index 1 2 3 4 6 ... 52067 8 9
...

Dataset
row

1
2
3

...
5026

Trace 1
Trace 2
Trace 3

Trace 5026
...

Traces with 177 features
Gene 1
Gene 2
Gene 3

Gene 5026
...

Figure 5.2.: Population, chromosomes, and genes in the implementation

To generate this initial population, the method initial_population() was created. This
method makes sure that each N−sample is represented in the solution space of the initial
population. A randomly permuted index array was used to assign each chromosome in
the population a randomly chosen N−samples. After assigning every majority sample at
least once, the remaining chromosomes were then filled with randomly chosen majority
samples.

The next component in an GA is the evaluation. This step is one of the most crucial
parts of the algorithm, as it is responsible for deciding how “fit” or “good” the solution is,
concerning the problem in consideration. In the case of pattern recognition, the objective
of finding a suitable solution is generally to maximize or minimize a measurement that
helps with the evaluation of classification. A straight-forward method for a fitness func-
tion would be to maximize the geometric mean with imbalanced class distributions. As
mentioned in Section 3.3, the GM (

√
TPrate · TNrate) takes both the accuracy of the ma-

jority and minority class into consideration. Therefore, an improvement of the GM would

5.2 Algorithm Implementation 54

lead to better classification results in both classes, respectively. This fitness function is
the one component that makes EAs highly adaptive to different problems.

One limiting factor of this implementation is that the fitness function needs to be cal-
culated often, illustrated in Figure 5.1. To further improve the fitness function’s perfor-
mance, twice as many chromosomes are generated from each generation as needed and
the best-suited chromosomes according to the fitness function will be picked. However, a
time-intensive consequence of this method is that these new solutions need to be ranked
separately to be able to pick the best-suited ones. After the best chromosomes are picked
and mutated, the next evaluation is needed to check if the newly created and mutated
solutions have reached the optimum. The number of fitness_function() calls is highly
dependent on the population size and the number of generations used in the EUS algo-
rithm. The number can be calculated with this equation:

fitnessfunctioncalls = npinitial + ng · (npgeneration + 2npchild) (5.1)

For a chosen population of np = 25 and generations of ng = 500 this would result in
37525 calculations of the fitness function. As a result of calculating the GM each time,
a considerable amount of processing power is needed to run through the fitness func-
tion’s classifying steps. These steps include combining the chromosome majority samples
with the minority samples, splitting dataset into training and testing data, training the
classifier, using the trained classifier to predict testing data, and finally calculating the
predicted data results. To find a trade-off between processing time and classification
performance, the authors of [30] suggested a 1NN classifier, as it is fast and relatively
resource friendly. To verify this statement, several test runs were made with different
k-nearest-neighbor values. A brief overview of this process is shown in Table 5.2 for 500
generations and population size of 25. It was found that increasing the kNN value leads
to increased processing time with no significant changes in the achieved GM. Therefore,
the 1NN classifier was chosen for further implementation of the algorithm.

k = 1 k = 2 k = 3 k = 4 k = 5
Average GM reached 0,9786 0,9812 0,9831 0,9678 0,9732
Processing time in sec 3308,19 3640,43 3876,58 3914,07 4129,38
Average time \ generation in sec 6,62 7,28 7,75 7,83 8,26

Table 5.2.: Different kNN values used in the fitness function

By using the fitness function introduced in Section 4.2, a maximum value can be reached.
Except for the GM, every variable of the equation (4.2) is a constant. Therefore, if no
class samples are misclassified and thus the GM resulting in 1 (when TPR and TNR are
both 1, so

√
1 · 1), the maximum fitness value is reached. There is no reason to continue

generating new chromosomes at this point because other solutions cannot improve this
maximum. There may be other solutions that also result in the maximum; however, to
save processing time, the algorithm stops generating new solutions when the maximum

5.2 Algorithm Implementation 55

value is achieved. Another form to improve the processing time is to include a forced
stop of the algorithm after a certain amount of generations were not able to improve
the fitness value. For the implementation, the forced stop of the algorithm is chosen as
follows: stop = generations · (1

4).

The next step in EUS is the selection of potential chromosomes for creation of the next
generation. This involves the roulette wheel selection method mentioned in Section 4.1.1.
To decide which chromosomes are chosen for reproduction, this method assigns each
chromosome a probability to be chosen by the roulette wheel proportional to their fitness
value. The better the fitness value, the higher the chance to pass the genes to the next
generation. In the implementation, elitism was used to ensure that the best performing
chromosomes were automatically picked for the creation of the next generation. To keep
the stochastic and explorative approach of EUS, it is essential to use a small number
of elite individuals. The crossover with lesser suited chromosomes was used to create a
wider variety of solutions and therefore, positively effecting the explorative side of this
algorithm.

Once the different chromosomes are chosen by the selection() method, the crossover
component begins its work. In order to avoid overfitting, undersampling methods try to
prevent duplicated data points in the dataset. For the implementation, an altered uniform
crossover technique was chosen as illustrated in Figure 5.3.

1 0 0 100 00 0... 1 1 1 010 00 0...P1 P2

1 1 1 110 00 0...P1 ∪ P2

1 0 1 010 00 0...Child

union

random pick n+

Figure 5.3.: Crossover of two chromosomes

In this method, both parents are first combined (P1 ∪ P2), and then the number of
n+samples is randomly selected from this union to create a child. This process is repeated
until twice the population size has been created. After that, the new population is ranked,
and only the population size is picked for the next steps, thus rejecting the worst fitness
values from the newly created generation. This step was included in the implementation
to optimize the GM. The algorithm starts with the mating of the elite chromosomes, then
the rest of the selected elements are crossed.

The final step when creating a new generation is mutation. This is a way to intro-
duce more variation in the undersampled population by randomly swapping genes within
chromosomes. The function mutate() has a fixed chance that it will be applied to the
chromosome. For this implementation, a mutation rate of 5% was chosen, as it has shown
the best results in providing a good trade-off on diversity and randomization. Section
4.1.1 explained that the mutation rate is set to a relatively low threshold in order to

5.2 Algorithm Implementation 56

prevent too much randomization. Figure 5.4 illustrates the mutation component.

1 0 1 010 00 0... 1 0 0 110 00 0...
mutate

Figure 5.4.: Chromosome mutation in EUS

Finally, the new generation is created and can be re-evaluated. The best fitness value
alongside with its chromosome is stored for the entire runtime of the EUS process. Subse-
quently, it is checked if the maximum fitness value or the maximum number of generations
is reached. The best chromosome is returned and the resampled dataset is then used for
the pattern recognition process’ next steps.

5.2.2. Promotion of Diversity in the Fitness Function
During the process of implementing EUS, two different versions were created: one without
considering diversity between chromosomes (denoted as EUSnorm), and the other one with
adjustments to the fitness function to promote diversity (denoted as EUSdiv). When
considering diversity, additional steps need to be included in the fitness function. The
general idea was already mentioned in Section 4.2. As a reminder in [30], the authors
stated a relation between diversity and single-class performance measures. Diversity has
a positive impact on the minority class classification and global performance measures
such as the AUC. Since EUS is a preprocessing algorithm, it cannot directly impact the
diversity of the classification output. For this reason, it is assumed that diversity among
different chromosomes is preferable. Base classifiers learned from these chromosomes are
therefore considered to be more diverse. To simplify explanation in subsequent parts,
again the adapted Equation (4.6) is shown: fitnessEUSQ = fitnessEUS · 1.0

β
· 10.0
IR
−Q ·β

To provide this diversity in undersampled solutions, the global Q-Statistic (4.4) over all
generations is considered. The Q-statistic is a pairwise comparison (4.3) that compares
the diversity of the candidate chromosome with all previous solutions (maxi=1,...,tQi,j)
and results in a value between -1 and 1. As shown in Equation (4.6), this Q is subtracted
from the original fitness value fitnessEUS. Thus, it is handled as a penalty, meaning if
Q = 0, it is not penalized because it is statistically independent of previous solutions and,
therefore, a diverse solution. The weighting factor β (4.5) changes with every iteration,
penalizing later generations less than earlier ones.

With a higher number of generations, this method’s consequence is increased processing
time because the calculation of all previous solutions quickly compounds. Despite the
slower processing time, tests have shown that resulting performance measures of the
EUSdiv algorithm are superior compared to the EUSnorm; therefore, this method was
used for the following parts of this thesis. The differences between the two methods are
illustrated in Table 5.3.

As a result of the preprocessing steps in EUS, an undersampled dataset is created that
promotes diversity throughout generations, and the fittest individual was chosen as the

5.2 Algorithm Implementation 57

AUC ACC F1 GM
EUSdiv 0,9337 0,9198 0,7486 0,9335
EUSnorm 0,9320 0,9130 0,7339 0,9317
Difference 0,0017 0,0069 0,0147 0,0018

Table 5.3.: Comparison of two different EUS implementations

best possible solution for the particular problem. To illustrate the results, two plots similar
to Section 3.2 were created in Figure 5.5. Figures 5.5a and 5.5b represent the same dataset
with different results from EUS. As these solutions are based on a stochastic process, the
solutions vary between multiple runs of the algorithm. Therefore, it is recommended to
use a k-fold-cross-validation mechanism to get a robust result. This process should be
repeated multiple times and the average performance should be reported.

(a) (b)

Figure 5.5.: Different undersampling results of EUS, side by side

6. Evaluation

This chapter will deal with the evaluation of the implemented EUS algorithm in im-
balanced datasets. As this algorithm is just a small part of a classifier’s performance
evaluation, several additional methods need to be taken into consideration to obtain the
desired result. Figure 6.1 illustrates the entire process to gather performance results that
can subsequently be used for statistical testing. The next section will explain those meth-
ods and classifiers that are going to be used. Performance metrics are an essential factor
to consider in evaluation results, as not all of them are suitable for unbalanced datasets.
Therefore, the performance metrics used are explained in this section. To illustrate the
impact of sampling methods, the ADFA-LD dataset will first be classified without any
undersampling applied. Then different undersampling methods will be used to show the
positive effects of preprocessing. Finally, this chapter will apply various statistical tests
to the evaluation results to see how EUS performs compared to traditional undersampling
methods.

Dataset

Preprocess
Dataset

Preprocessed
Dataset Split Data

Training
Data

Testing
Data

Under-
sampling

Undersampled
Training Data

Predict
Testing Data

Train
Classi�er

Trained
Classi�er

Predictions
for Testing Data

Evaluate
Performance

Predictions
for Testing Data

5-fold-cross-validation

Mean 5fcv
Results

Figure 6.1.: Big picture of the undersampling and classification process

6.1. Used Methods, Classifiers and Performance Metrics
The following section will present the underlying subcategories that are applied in the
steps preprocessing data, splitting data, undersampling data, training classifiers, predicting
test data, and evaluation of performance, all shown in Figure 6.1. The general idea when
evaluating a classifier can be divided into some basic actions. First, to obtain a more

6.1 Used Methods, Classifiers and Performance Metrics 59

robust result, it is always recommended to run the executed test multiple times and
average results to eliminate certain arbitrariness, and eliminate any possible outliers.
Second, as mentioned above, to avoid any bias that can arise when splitting data, cross-
fold validation should be used. When dealing with imbalanced class distributions, the
training data should then be sampled for every fold. This sampled data will be used
to train the chosen classifier and subsequently predict classes in the testing data. The
achieved results are then recorded and, at the end of the k-fold-cross-validation, averaged
to get the unbiased performance measure. With the iterations of this process mentioned
above, a robust result can be achieved and the best overall model chosen. If there are no
obvious models that perform better than others, statistical tests will then be used to find
significant differences.

Preprocessing and Evaluation Methods
The first step in the pattern recognition cycle is the preprocessing of the available data.
To gain a useable data representation of the ADFA-LD dataset, the authors of [20] used
a frequency-based counting method for the system trace calls, in which the goal is to
find a common sample length. Therefore, the adapted dataset will consist of the same
number of features as there are system call IDs. The highest appearing system call ID
in ADFA-LD is 340; therefore, 341 features per data sample are created. Initially, for
each system call trace, a row with 341 zero values is created. Then, each occurrence of a
system call ID found in the trace files increases the feature value by 1. After processing
a complete trace, the row is added to a matrix containing normal data or attack data.
Ending this process, two n × m matrices are created with m as the number of data
instances and n as the number of features. The authors of [20] also found that certain
system call IDs never occurred within all system call traces. Consequently, the generated
matrices included redundant information. After removing redundant feature IDs with the
column sums equal 0, the number of features could be reduced to 177. This adjustment
had no negative effects on the detection rate, but the reduced feature space resulted in
higher performance. The final extracted data is illustrated in Figure 6.2 for both normal
and attack data. The implementation of this data extraction was used from the above
mentioned “Python Intrusion Detection” Python repository by [20].

530 0

feature

0 6 0 ... 12602848

0 0 0 125 0 ... 00025

175 0 5 0 0 ... 0012276

1 2 3 4 5 ... 177176175174data
sample

1

...

5206

Figure 6.2.: Extracted data samples from the ADFA-LD

In the implementation, this extracted normal and attack matrices are concatenated to
create the features variable used for all classification procedures. Alongside, a target
variable is created that represents the ground truth necessary for supervised learning,

6.1 Used Methods, Classifiers and Performance Metrics 60

where each row represents the class of the data sample in the feature’s variable (0 for
N−and 1 for n+). As mentioned in Section 4.4, the final dataset consists of 5952 data
samples.

Another preprocessing step in pattern recognition is scaling the data to remove possible
noise and increase performance by decreasing the variability between features. There-
fore, three scaling methods mentioned in Section 3.3 are utilized in the implementation.
Tests showed no significant differences between the scaling methods, and this result also
corresponds to the test results of those found in [20]. Overall, minor improvements in
performance values can be achieved with the arctan scaling method; therefore, arctan
scaling will be used for all the following evaluation steps in this thesis. Contrary to inter-
val and z-score scaling, arctan scaling is not directly implemented into the sklearn Python
library. To use this scaling method, the dataset is first standardized with the sklearn

y

.preprocessing.StandardScaler() method and then scaled by the arctangent equation,
a = 2/π · tan−1(datastandardized).

As it is important to remove any possible bias from split data, a 5-fold-cross-validation is
implemented in the evaluation process. Five folds were chosen based on discussions with
supervisors as well as a trade-off between processing time and performance robustness.
After the data preprocessing steps, the data is split into five folds of each training and test
data. This splitting is done with stratified sampling, meaning that 70% training data and
30% test data is created with each split, while the original class distribution in both test
sets is maintained. This is illustrated in Figure 6.3. When using the ADFA-LD dataset,
this results in approximately 1190 data samples in each split.

5206 Majority
class samples

746 Minority
class samples

1190 1190 1190 1191 1191

Random strati�ed sampling

Test Data Train Data

Split 1

Split 2

Split 3

Split 5

Split 4

5-fold-cross-validation

Data set

Figure 6.3.: 5-fold cross-validation process after data splitting

The built-in function “StratifiedKFold” from Scikit-Learn in the module “model_selection”

6.1 Used Methods, Classifiers and Performance Metrics 61

was used to execute this task. After processing the five-folds, this process is repeated ten
times, and the average value of the performance measures is then taken. The data sam-
ple is shuffled to ensure that there are different splits. For further evaluation purposes,
each round’s results are stored in a separate variable alongside the average performance
measures. These individual results for each iteration are used in the statistical evaluation
in Section 6.2.

Undersamplers and Classifiers
In order to evaluate and compare the performance of EUS, several state-of-the-art un-
dersampling methods are used to preprocess the split training data before classifica-
tion. The methods used are implemented with the help of the ImbalancedLearn Python
package. This package focuses on imbalanced dataset and provides an implementation
for common undersampling algorithms and is widely used in scientific work related to
this topic. Therefore, the provided methods AllK-Nearest-Neighbor (AllKNN), Edited-
NearestNeighbor (ENN), NeighborhoodCleaningRule (NCR), OneSidedSelection (OSS),
RandomUnderampler (RUS), RepeatedEditedNearestNeighbor (RENN) and TomekLinks
(TL) are used with their standard parameters.

Several common single classifiers and ensemble classifiers were chosen based on previous
research. For every classifier, some parameters are used to alter the classification boundary
called hyper-parameters, which can be chosen freely to tune a model and to improve its
classification. To find the best parameters, a grid search was used, which results in the
most accurate predictions. This grid search was carried out in [20]; the results of this
work were considered and individual classifiers with their parameters were selected and
are presented in Table 6.1.

Type Classifier Parameters
Single DT default

MLP default and
solver=“lbfgs”, hidden_layer_sizes=500

k-NN default and
n_neighbors=3, weights=“distance”

SVM default linear and
default rbf kernel

Ensemble Bagging
base_estimator=DT(criterion=“entropy”)
n_estimators=80

AdaBoost
base_estimator=DT(criterion=“entropy”)
n_estimators=90

RandomForest
criterion=“entropy”, max_features=0.4,
n_estimators=70

Table 6.1.: Used classifiers with their parameter, from [20]

6.2 Evaluation on a Real-world Dataset 62

Some classifiers are used multiple times with different parameters, to generate more vari-
ation between classifiers. These classifiers are, Multi Layer Perceptrons (MLP), kNN and
SVM. More information about the parameters for each classifier and the definitions of
those can be found in [72].

Performance Metrics
There exist different performance metrics, and some are better suited to compare particu-
lar datasets than others. In this thesis, metrics suitable for imbalanced data distributions
are selected. As mentioned in Section 3.3, it is not recommended to compare classifica-
tion results with standard metrics, such as true positive (TP), true negative (TN), false
positive (FP) and false negative (FN). These metrics lead to misleading results when used
with skewed datasets. Therefore, the AUC, ACC, GM, F1-Measure (denoted as F1), FPR
and FNR were used. The FPR and FNR were chosen because they allow a better com-
parison of each detected class, whereas the other measures combine and therefore conceal
the class-dependent detection rate results.

6.2. Evaluation on a Real-world Dataset
The previously mentioned sampling methods are used to create results to evaluate. First,
it is shown if undersampling can improve the traditional classification process. This is
done by presenting the results of those classifiers without any undersampling applied first.
The results gained by the evaluation will then be further investigated by statistical tests to
show how EUS is performing, compared to other state-of-the-art sampling methods.

6.2.1. Performance Evaluation
All results shown in this process are applied with the 5-fold-cross-validation (5fcv) and
20 iterations to gain a robust result. The first table presents the classification results of
chosen classifiers with no undersampling executed during the steps shown in 6.1. The
classifiers are denoted with an additional “_d” when the default parameters are used and
without “_d” when the grid search parameters are used.

One interesting fact that can be seen in Table 6.2 is that the FNR is relatively high,
meaning that a minority class sample was misclassified in 15 out of 100 times on average.
Consequently, in an IDS system, this could mean that there is a high chance of malicious
network traffic that was classified as normal traffic, which is an undesirably high amount.
In the ADFA-LD dataset, this translates to 112 attack traces classified as normal traces.
Otherwise, the results are mostly as expected as those classifiers are already optimized
for the dataset by the above mentioned grid search. The relatively high accuracy shows
again that misclassified classes are not correctly reflected in the accuracy performance
measure. Since the primary goal of IDS is to classify all minority class samples correctly,
this result is not desirable and needs to be addressed.

6.2 Evaluation on a Real-world Dataset 63

Classifier AUC ACC F1 GM FNR FPR
DT_d 0,8970 0,9541 0,8175 0,8938 0,1790 0,0269
k-NN 0,9282 0,9684 0,8741 0,9267 0,1254 0,0181
k-NN_d 0,9196 0,9642 0,8576 0,9177 0,1399 0,0209
MLP 0,9254 0,9682 0,8727 0,9237 0,1317 0,0174
MLP_d 0,9265 0,9693 0,8765 0,9248 0,1306 0,0164
linSVM 0,8964 0,9537 0,8161 0,8931 0,1800 0,0272
rbfSVM 0,9000 0,9623 0,8446 0,8962 0,1831 0,0168
DTBagg 0,9207 0,9712 0,8814 0,9182 0,1469 0,0118
DTBoost 0,9119 0,9676 0,8663 0,9089 0,1625 0,0138
RForest 0,9230 0,9733 0,8893 0,9206 0,1440 0,0099
Average 0,9149 0,9652 0,8596 0,9124 0,1523 0,0179

Table 6.2.: Performance metrics of used classifiers without undersampling

To compare those non-undersampled results with the results of different undersampling
methods, the classification is calculated once again, with the same parameters and itera-
tions. Presenting ten classifiers for the eight undersampling methods would result in an
overly complex table, therefore Table 6.3 only shows two undersampling methods (the
full table is attached in the appendix). Presented are EUS, as it is the main focus of this
thesis, and NCR because the it performed well and it offers a good balance between the
different classifiers.

Positive development can be observed for the before criticized FNR. For the EUS algo-
rithm, there are only 5% misclassified minority samples, which is a significant improvement
compared to the average 15% with the unsampled ADFA-LD dataset. However, this was
achieved at the expense of decreasing the accuracy by almost 7%. On the other hand,
performance values such as the AUC, GM were improved by using this algorithm. As a
result of decreasing the FNR, the FPR was raised, as these measures are typically related.
When observing the results of the NCR, an overall improvement of the desired perfor-
mance measures can be found. Even though the FNR is still relatively high, a reduction
of 5% compared to the non-sampled dataset is a promising development. In order to get
an general overview of the rest of the undersampling algorithms, the averages of all 10
classifiers are shown per undersampler in Table 6.4.

It is shown that the results are relatively similar with each undersampling method. How-
ever, major differences can be observed between the ACC, FNR, and FPR on both RUS
and EUS compared to the other sampling methods. This result can most likely be due to
using too much randomization in the mutation and crossover steps in the EUS, leading to
a result close to the RUS. This problem was identified at a later stage of the project. Since
the computing power and the time to complete this work was limited, it was necessary
to continue working with the calculated results. Therefore, it was noted and needs to
be addressed in future work. However, this result does not interfere with the rest of the

6.2 Evaluation on a Real-world Dataset 64

Sampler Classifier AUC ACC F1 GM FNR FPR
EUS DTBagg 0,9294 0,9146 0,7359 0,9292 0,0509 0,0903

DTBoost 0,9127 0,9034 0,7060 0,9126 0,0749 0,0997
DT_d 0,9124 0,9042 0,7073 0,9124 0,0765 0,0986
MLP 0,9287 0,9216 0,7499 0,9287 0,0617 0,0809
MLP_d 0,9310 0,9143 0,7361 0,9307 0,0468 0,0912
RForest 0,9337 0,9198 0,7486 0,9335 0,0478 0,0848
k-NN 0,9238 0,8976 0,7013 0,9232 0,0412 0,1112
k-NN_d 0,9102 0,8780 0,6620 0,9092 0,0467 0,1328
linSVM 0,9246 0,9005 0,7067 0,9240 0,0433 0,1076
rbfSVM 0,9259 0,9008 0,7081 0,9253 0,0405 0,1076
Average 0,9233 0,9055 0,7162 0,9229 0,0532 0,1006

NCR DTBagg 0,9343 0,9644 0,8629 0,9334 0,1058 0,0256
DTBoost 0,9209 0,9528 0,8236 0,9199 0,1217 0,0365
DT_d 0,9119 0,9455 0,7995 0,9108 0,1330 0,0433
MLP 0,9407 0,9573 0,8436 0,9404 0,0816 0,0371
MLP_d 0,9405 0,9587 0,8477 0,9402 0,0838 0,0352
RForest 0,9367 0,9665 0,8705 0,9359 0,1030 0,0235
k-NN 0,9419 0,9533 0,8327 0,9418 0,0733 0,0429
k-NN_d 0,9317 0,9524 0,8264 0,9313 0,0958 0,0407
linSVM 0,9206 0,9498 0,8149 0,9198 0,1184 0,0404
rbfSVM 0,9215 0,9604 0,8464 0,9201 0,1304 0,0266
Average 0,9302 0,9560 0,8368 0,9293 0,1047 0,0351

Table 6.3.: Performance metrics of used classifiers with EUS and NCR

Undersampler AUC ACC F1 GM FNR FPR
AllKNN 0.9304 0.9480 0.8138 0.9302 0.0928 0.0463
ENN 0.9300 0.9531 0.8280 0.9293 0.1013 0.0392
EUS 0.9233 0.9055 0.7162 0.9229 0.0532 0.1006
NCR 0.9302 0.9560 0.8368 0.9293 0.1047 0.0351
OSS 0.9189 0.9637 0.8561 0.9167 0.1414 0.0212
RUS 0.9247 0.9077 0.7213 0.9245 0.0525 0.0980
RENN 0.9308 0.9436 0.8028 0.9307 0.0862 0.0521
TL 0.9188 0.9644 0.8578 0.9165 0.1422 0.0206
Overall avg 0.9259 0.9428 0.8041 0.9250 0.0968 0.0516

Table 6.4.: The average performance of undersampling methods

6.2 Evaluation on a Real-world Dataset 65

evaluation, therefore the next steps are executed as planned.

In order to illustrate the differences between non-sampled and undersampled dataset
performance measures, the average of EUS is compared with the non-sampled performance
measures in Table 6.5.

AUC ACC F1 GM FNR FPR
ADFA-LD no resampling 0,9149 0,9652 0,8596 0,9124 0,1523 0,0179
ADFA-LD with EUS 0,9235 0,9157 0,7402 0,9228 0,0661 0,0869
Difference 0,0086 -0,0495 -0,1194 0,0105 -0,0862 0,0690

Table 6.5.: Comparison of unsampled and EUS performance measures

As shown in the table, the average AUC and GM values increased by almost 1% with
EUS. This result was expected because these performance measures are calculated using
undersampling methods. The sole purpose of these sampling methods is to reduce the
imbalance ratio and, therefore, to improve classification results. Another measure that
changed drastically is FPR and FNR. As mentioned before, it is desired to lower the FNR
in order to classify the minority class correctly.

6.2.2. Statistical Testing
Finally, the gathered results in the previous chapters are now processed by different statis-
tical tests. These steps are a necessity to prove the correctness of claims made in scientific
research. The previous section showed that EUS achieved reasonably close results com-
pared to other undersampling methods, and Table 6.4 presented the average results of
all undersamplers used in this thesis and showed that the difference to other undersam-
pling methods is fairly marginal. To ensure that this assumption is correct and does not
happen by chance, statistical tests are performed. As mentioned in Section 4.3, scientific
work, such as [2, 28, 30, 44] suggest using non-parametric tests for statistical comparison
of classifiers. Consequently, the Friedman Test, Wilcoxon Rank-Sum Test, and the Holm
method are used for the following parts. The general process of statistical testing is shown
in Figure 6.4. All statistical tests used for the implementation are provided either through
the scipy or statsmodels.stats.multitest.multipletests python module.

6.2 Evaluation on a Real-world Dataset 66

Dataset Classi�cation Performance
Metrics

Friedman Test
undersampling

Methods

yes
no

H0 rejected?
All Under-
sampler
are equal

Undersampler
are di�erent

Pairwise Wilcoxon
Rank-Sum Test

EUS against
all other US

p-valuesHolm method
p-value correction

EUS signi�cantly
better/worse than
Undersampler X

Repeat for every performance measure

Figure 6.4.: Statistical evaluation process after classification

The resulting performance measures from previous classification steps are now used to
execute the Friedman Test. This test is a non-parametric test to compare more than
two results with each other. The null hypothesis of this test states that all algorithms are
performing equivalent. In order to compare the different undersampling methods, multiple
Friedman Tests need to be executed. For each performance metric, every undersampling
method is compared with each classifier. The inputs for this test are illustrated in Figure
6.5.

AUC EUS NCL OSS

Classi�ern AUC1 AUC2 AUCn AUC1 AUC2 AUCn AUC1 AUC2 AUCn Friedman Results

ACC EUS NCL OSS

Classi�ern ACC1 ACC2 ACCn ACC1 ACC2 ACCn ACC1 ACC2 ACCn Friedman Results

GM EUS NCL OSS

Classi�ern GM1 GM2 GMn GM1 GM2 GMn GM1 GM2 GMn Friedman Results

Figure 6.5.: Friedman Test input variables

For every performance measure, a Python dictionary is created containing every classifier’s
iteration result to compare each undersampling method. In this evaluation, 20 iterations of
the performance classification process are used as the classification inputs. Each classifier
in every undersampling method is compared to each other, and the results are stored.
As an example of the performance measure AUC, the results of the Friedman Test are
presented in Table 6.6.

6.2 Evaluation on a Real-world Dataset 67

Classifier Friedman score Friedman p-value H0 rejected
DTBagg 81.6500 6.3447e-15 True
DTBoost 40.0500 1.2314e-06 True
DT_d 87.3000 4.4303e-16 True
MLP 92.1667 4.4384e-17 True
MLP_d 107.9167 2.4830e-20 True
RForest 84.3833 1.7530e-15 True
k-NN 110.2833 8.0200e-21 True
k-NN_d 118.0167 1.9824e-22 True
linSVM 107.4833 3.0534e-20 True
rbfSVM 111.5833 4.3090e-21 True

Table 6.6.: Friedman Test results for AUC

These test results show that all undersamplers for each classifier result in a p-value lower
than the level of significance of α = 0.05. Therefore, H0 is rejected for each classifier for
the performance measure AUC.

As explained in Section 4.3, when the Friedman Test is rejected, the only knowledge
gained is that the tested undersampling methods show a significant difference between at
least two sampling methods. To pinpoint the sampling methods that are different, fur-
ther investigation is necessary. The Python plugin statsmodels.stats.multitest.multipletests
provides an implementation of the Holm method. The input needed for this method are
the p-values of comparison results between undersamplers. To calculate the comparison
results for every performance measure, the Wilcoxon Rank-Sum Test was used.

The aim of this thesis is to show if EUS is comparable to other undersampling methods;
therefore, EUS will be used as the candidate algorithm for comparison. The input values
are illustrated in Figure 6.6. As an example, the Wilcoxon Rank-Sum Test results for the
AUC are shown in Table 6.7.

AUC

Classi�ern

EUS

Wilcoxon Rank-Sum Test
Pairwise Comparison

NCLvs.
Classi�ern

Classi�ern

EUS RENNvs.
Classi�ern

Classi�ern

EUS OSSvs.
Classi�ern

p_value

p_value

p_value

Holm Methods
p_value correction

p_value
AUC

p_value p_value Holm Results

ACC
p_value p_value p_value Holm Results

Figure 6.6.: Input values for the Wilxocon Rank-Sum Test and the Holm method.

6.2 Evaluation on a Real-world Dataset 68

Comparison Wilcoxon Rank Wilcoxon p-value H0 rejected
EUS - AllKNN 27 0.0442 True
EUS - ENN 30 0.0699 False
EUS - NCR 31 0.0807 False
EUS - OSS 42.5 0.2979 False
EUS - RUS 43 0.3108 False
EUS - RENN 24 0.0267 True
EUS - TL 42.5 0.2980 False

Table 6.7.: Wilcoxon Rank-Sum Test for the AUC

This result reveals that the AUC shows no significant statistical difference besides AllKNN
and RENN. However, the more hypotheses checked, the higher the probability of obtaining
Type I errors or false positives, which is not desirable. Generally, the solution to this
problem is to use p-value correction controls for either the FWER or false discorvery rate
(FDR). This can be done with the Holm method, and its results are presented in Table
6.8.

Compare p-value corrected avg difference H0 rejected
EUS - AllKNN 0.2651 -0.0071 False
EUS - ENN 0.3493 -0.0067 False
EUS - NCR 0.3493 -0.0069 False
EUS - OSS 0.8938 0.0044 False
EUS - RUS 0.8938 -0.0014 False
EUS - RENN 0.1871 -0.0075 False
EUS - TL 0.8938 0.0045 False

Table 6.8.: Corrected p-values with Holm method for AUC

The Holm method shows the corrected p-values, which changed the results for AllKNN and
RENN. Additionally, the average difference in performance measurements between EUS
and the other undersampling method is shown. The results for all undersampling methods
are presented in Table 6.9. As a reminder, H0 states: there is no significant difference
between both undersampling methods. Whereas, H1 states that: there is a significant
difference between both undersampling methods. An “a” in this Table denotes that H0
is accepted, and a “r” refers to a rejection of the null hypothesis, meaning that there are
significant statistical differences. As EUS is the algorithm to compare, a rejection with a
+ symbol implies that the EUS model performs better than the algorithms in comparison.
In contrast, a rejection with a - symbol implies that the EUS model performed worse than
the method compared.

6.2 Evaluation on a Real-world Dataset 69

Comparison AUC ACC F1 GM FNR FPR
EUS - AllKNN a - r (-0.043) - r (-0.098) a + r (-0.040) - r (0.054)
EUS - ENN a - r (-0.048) - r (-0.112) a + r (-0.048) - r (0.061)
EUS - NCR a - r (-0.050) - r (-0.121) a + r (-0.051) - r (0.066)
EUS - OSS a - r (-0.058) - r (-0.140) a + r (-0.088) - r (0.079)
EUS - RUS a a a a a a
EUS - RENN a - r (-0.038) - r (-0.087) a + r (-0.033) - r (0.048)
EUS - TL a - r (-0.059) - r (-0.142) a + r (-0.089) - r (0.080)

Table 6.9.: Holm method overview of all performance measures

This final Holm method result indicates that evolutionary undersampling is comparable
to other undersampling methods when the AUC and the GM are investigated. EUS seems
to provide worse results in ACC, F1-Measure and FPR. As a result of the worse FPR, the
FNR is better compared to almost all undersamplers except RUS. Indeed, between EUS
and RUS, there is no significant statistical difference, which undermines the statement
mentioned above that there is too much randomization within the implementation of EUS.
The promising performance in GM results points towards the optimizing of the GM in
EUS. As the algorithm is trying to improve the GM in its fitness function.

7. Conclusion and Outlook

This thesis summarizes the work and research conducted on evolutionary undersampling
(EUS) during the five-month stay at the Bowling Green State University, Ohio. In par-
ticular, the performance of EUS and other undersampling methods has been compared
and evaluated in the field of intrusion detection.

The main problem in a modern computer network is that the encountered data distribu-
tion of malicious and benign traffic is extremely unbalanced, significantly increasing the
difficulty of classification. Based on a real-world intrusion detection dataset, it was shown
that the EUS algorithm used during the pattern recognition process is capable of increas-
ing the detection performance of malicious traffic in an IDS. This was demonstrated by
using various traditional supervised classification algorithms with the relatively novel and
highly imbalanced ADFA-LD dataset. This imbalance was reflected in the test results
and addressed by applying preprocessing steps on the dataset before classification. The
underlying techniques and methods for both resampling and classification of these imbal-
anced datasets were presented thoroughly in a state-of-the-art literature review. While
the skewed distribution of the dataset was removed or eliminated, these methods were
able to keep the features necessary for malicious traffic classification. To compare the EUS
algorithm, the implementation of this GA based on the Darwinian theory of evolution was
presented and used to improve classification alongside other well-known undersampling
algorithms. This resulted in the improvement of the performance for most performance
measures, primarily desired in IDS. Moreover, non-parametric statistical tests were pre-
sented and used to analyze the achieved results for any significant differences between
the used undersampling methods. The implemented EUS algorithm showed a high re-
semblance to the RUS algorithm and showed no significant difference for the performance
measures AUC and GM. The evaluation of the statistical tests also revealed that EUS
performed worse when compared to other performance measures, such as F1-measure,
accuracy, and false-positive rate.

However, several open ends remain in this thesis. The implementation of the EUS led to
unforeseen issues during the evaluation that could not be addressed with the prevailing
time constraints. The similarity between RUS and EUS indicates too much randomiza-
tion during the evolutionary steps of the GA, which could be overcome by changing the
implementation of several methods in the code. The components executing mutation and
crossover are especially prone to randomization; therefore, methods to overcome this issue
could be implemented, such as a reinitialization of the whole population or lowering the
mutation rate. The improvement of the processing time required for undersampling would
be another extension to this work.

A field that has not been covered in this thesis is the evaluation of additional datasets.

71

Especially datasets that are not in the field of intrusion detection but still extremely
imbalanced, including medical or financial datasets. As long as there are imbalanced data
distributions present, EUS would be a suitable method for increasing their classification
performance. Furthermore, to increase the performance of EUS other supervised and
unsupervised learning techniques such as clustering or outlier detection would be natural
extensions to this work.

Concluding and briefly answering the formulated research question mentioned in Chapter
1, the EUS algorithm is a well-performing alternative to other commonly used under-
sampling methods. The results presented in this thesis support this claim with several
methods; however, the implementation of this thesis still needs some attention to fix
the shortcomings mentioned above. The overwhelmingly positive results in the literature
on EUS is why this algorithms’ improvement will be a goal worth striving for in future
projects.

Bibliography

[1] D. A. Cieslak, N. V. Chawla, and A. Striegel, “Combating imbalance in network
intrusion data sets,” in 2006 IEEE International Conference on Granular Computing,
pp. 732–737, 2006.

[2] M. Galar, A. Fernández, E. Barrenechea, et al., “EUSBoost: Enhancing ensembles for
highly imbalanced data-sets by evolutionary undersampling,” Pattern Recognition,
vol. 46, no. 12, pp. 3460–3471, 2013.

[3] B. Schneier, Schneier on Security. Wiley, 2009.

[4] J. Andress, The Basics of Information Security: Understanding the Fundamentals of
InfoSec in Theory and Practice. Syngress basics series, Elsevier Science, 2014.

[5] Isaca, CSX Cybersecurity Fundamentals Study Guide, 2nd Edition. Information Sys-
tems Audit and Control Association, 2017.

[6] “Understanding difference between Cyber Security & Information Security - CISO
Platform - CISO Platform.” https://www.cisoplatform.com/profiles/blogs/
understanding-difference-between-cyber-security-information. [Accessed:
2020-06-08].

[7] L. Wang, “Big Data in Intrusion Detection Systems and Intrusion Prevention Sys-
tems,” Journal of Computer Networks, vol. 4, no. 1, pp. 48–55, 2017.

[8] A. Khraisat, I. Gondal, P. Vamplew, et al., “Survey of intrusion detection systems:
techniques, data sets and challenges,” Cybersecurity, vol. 2, no. 1, pp. 1–22, 2019.

[9] Symantec, “Internet Security Threat Report ISTR.” https://www.symantec.com/
content/dam/symantec/docs/reports/istr-22-2017-en.pdf, 2017. [Accessed:
2020-06-10].

[10] H. Liu and B. Lang, “Machine Learning and Deep Learning Methods for Intrusion
Detection Systems: A Survey,” Applied Sciences, vol. 9, no. 20, p. 4396, 2019.

[11] M. Friedman and A. Kandel, Introduction to Pattern Recognition: Statistical, Struc-
tural, Neural, and Fuzzy Logic Approaches. Series in machine perception and artificial
intelligence, World Scientific, 1999.

[12] A. R. Webb and K. D. Copsey, Statistical pattern recognition. Wiley, 3rd ed., 2011.

[13] Z. Zhou, Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC
Data Mining and Knowledge Discovery Serie, Taylor & Francis, 2012.

https://www.cisoplatform.com/profiles/blogs/understanding-difference-between-cyber-security-information
https://www.cisoplatform.com/profiles/blogs/understanding-difference-between-cyber-security-information
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf

Bibliography 73

[14] V. Dutt, V. Chadhury, and I. Khan, “Different approaches in pattern recognition,”
IEEE Computer, vol. 1, pp. 32–35, 2012.

[15] “Difference Between Supervised, Unsupervised, & Reinforcement Learning.” https:
//blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning.
[Accessed: 2020-06-10].

[16] R. Duda, P. Hart, and D. Stork, Pattern Classification. Wiley, 2012.

[17] C. M. Bishop, Pattern Recoginiton and Machine Learning. Springer-Verlag New York,
2006.

[18] R. Polikar, “Ensemble based systems in decision making,” Circuits and Systems
Magazine, IEEE, vol. 6, no. 3, pp. 21–44, 2006.

[19] L. Mohammadpour, T. C. Ling, C. S. Liew, and C. Y. Chong, “A convolutional
neural network for network intrusion detection system,” Proceedings of the Asia-
Pacific Advanced Network, vol. 46, pp. 50–55, 2018.

[20] C. Promper, D. Engel, and R. C. Green, “Anomaly detection in smart grids with
imbalanced data methods,” in 2017 IEEE Symposium Series on Computational In-
telligence (SSCI), pp. 1–8, 2017.

[21] V. López, A. Fernández, S. García, et al., “An insight into classification with imbal-
anced data: Empirical results and current trends on using data intrinsic characteris-
tics,” Information Sciences, vol. 250, pp. 113–141, 2013.

[22] J. Ha and J.-S. Lee, “A New Under-Sampling Method Using Genetic Algorithm for
Imbalanced Data Classification,” in Proceedings of the 10th International Conference
on Ubiquitous Information Management and Communication, IMCOM ’16, pp. 95:1–
95:6, ACM, 2016.

[23] M. Kubat and S. Matwin, “Addressing the curse of imbalanced training sets:
one-sided selection,” in Proc. 14th International Conference on Machine Learning,
pp. 179–186, Morgan Kaufmann, 1997.

[24] I. Triguero, M. Galar, D. Merino, J. Maillo, et al., “Evolutionary undersampling
for extremely imbalanced big data classification under apache spark,” in 2016 IEEE
Congress on Evolutionary Computation, CEC 2016, pp. 640–647, Institute of Elec-
trical and Electronics Engineers Inc., 2016.

[25] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[26] A. Fernández, S. García, M. Galar, et al., Learning from Imbalanced Data Sets.
Springer International Publishing, 2018.

[27] M. Galar, A. Fernandez, E. Barrenechea, et al., “A review on ensembles for the class
imbalance problem: Bagging-, boosting-, and hybrid-based approaches,” 2012.

https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning
https://blogs.nvidia.com/blog/2018/08/02/supervised-unsupervised-learning

Bibliography 74

[28] S. García and F. Herrera, “Evolutionary Undersampling for Classification with Im-
balanced data sets: Proposals and Taxonomy,” Evolutionary Computation, vol. 17,
no. 3, pp. 275–306, 2009.

[29] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of imbalanced data: A review,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 23, no. 4,
pp. 687–719, 2009.

[30] B. Krawczyk, M. Galar, and L. o. Jelen, “Evolutionary undersampling boosting
for imbalanced classification of breast cancer malignancy,” Applied Soft Computing,
vol. 38, pp. 714–726, 2016.

[31] S. Shekarforoush, R. Green, and R. Dyer, “Classifying commit messages: A case
study in resampling techniques,” in Proceedings of the International Joint Confer-
ence on Neural Networks, vol. 2017-May, pp. 1273–1280, Institute of Electrical and
Electronics Engineers Inc., 2017.

[32] C. Cernuda, On the Relevance of Preprocessing in Predictive Maintenance for Dy-
namic Systems, pp. 53–93. Springer International Publishing, 2019.

[33] G. Lemaître, F. Nogueira, and C. K. Aridas, “Imbalanced-learn: A python toolbox
to tackle the curse of imbalanced data sets in machine learning,” Journal of Machine
Learning Research, vol. 18, no. 17, pp. 1–5, 2017.

[34] “imbalanced-learn 0.5.0 documentation.” https://imbalanced-learn.
readthedocs.io. [Accessed: 2020-06-15].

[35] A. N. Sloss and S. Gustafson, “2019 Evolutionary Algorithms Review,” in Genetic
Programming Theory and Practice XVII, pp. 307–344, Springer, Cham, 2020.

[36] J. H. . Holland, “Genetic Algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73,
1992.

[37] S. Mirjalili, “Genetic algorithm,” in Studies in Computational Intelligence, vol. 780,
pp. 43–55, Springer Verlag, 2019.

[38] D. J. Drown, T. M. Khoshgoftaar, and N. Seliya, “Evolutionary sampling and soft-
ware quality modeling of high-assurance systems,” IEEE Transactions on Systems,
Man, and Cybernetics Part A:Systems and Humans, vol. 39, no. 5, pp. 1097–1107,
2009.

[39] L. J. Eshelman, “The CHC Adaptive Search Algorithm: How to Have Safe Search
When Engaging in Nontraditional Genetic Recombination,” in Foundations of Ge-
netic Algorithms (G. J. E. Rawlins, ed.), vol. 1, pp. 265–283, Elsevier, 1991.

[40] S. Wang and X. Yao, “Relationships between diversity of classification ensembles
and single-class performance measures,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 25, pp. 1 – 1, 2011.

https://imbalanced-learn.readthedocs.io
https://imbalanced-learn.readthedocs.io

Bibliography 75

[41] G. U. Yule, “On the association of attributes in statistics: With illustrations from the
material of the childhood society,” Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical or Physical Character,
vol. 194, pp. 257–319, 1900.

[42] G. Corder and D. Foreman, Nonparametric Statistics for Non-Statisticians: A Step-
by-Step Approach. Wiley, 2011.

[43] G. Santafe, I. Inza, and J. A. Lozano, “Dealing with the evaluation of supervised
classification algorithms,” Artificial Intelligence Review, vol. 44, no. 4, pp. 467–508,
2015.

[44] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,” J. Mach.
Learn. Res., vol. 7, p. 1–30, 2006.

[45] S. Garcia and F. Herrera, “An extension on “statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons,” Journal of machine learning
research, vol. 9, no. Dec, pp. 2677–2694, 2008.

[46] N. Japkowicz and M. Shah, Evaluating Learning Algorithms: A Classification Per-
spective. Cambridge University Press, 2011.

[47] “KDD Cup 1999 Data.” http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html. [Accessed: 2020-06-22].

[48] “1999 DARPA Intrusion Detection Evaluation data set.” https://www.ll.mit.edu/
r-d/datasets/1999-darpa-intrusion-detection-evaluation-dataset. [Ac-
cessed: 2020-06-22].

[49] M. V. Mahoney and P. K. Chan, “An analysis of the 1999 DARPA/Lincoln Labora-
tory evaluation data for network anomaly detection,” 2003.

[50] “The ADFA Intrusion Detection data sets.” https://www.unsw.adfa.edu.au/
unsw-canberra-cyber/cybersecurity/ADFA-IDS-datasets. [Accessed: 2020-06-
22].

[51] “Ubuntu Operating System.” https://ubuntu.com. [Accessed: 2020-06-22].

[52] “The Apache Software Foundation.” http://www.apache.org. [Accessed: 2020-06-
22].

[53] “PHP: Hypertext Preprocessor.” https://www.php.net. [Accessed: 2020-06-22].

[54] “Tiki Wiki CMS Groupware.” https://info.tiki.org. [Accessed: 2020-06-22].

[55] “MySQL.” https://www.mysql.com. [Accessed: 2020-06-22].

[56] G. Creech and J. Hu, “Generation of a new IDS test data set: Time to retire the
KDD collection,” in 2013 IEEE Wireless Communications and Networking Confer-
ence (WCNC), pp. 4487–4492, 2013.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.ll.mit.edu/r-d/data sets/1999-darpa-intrusion-detection-evaluation-data set
https://www.ll.mit.edu/r-d/data sets/1999-darpa-intrusion-detection-evaluation-data set
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-IDS-data sets
https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-IDS-data sets
https://ubuntu.com
http://www.apache.org
https://www.php.net
https://info.tiki.org
https://www.mysql.com

[57] van Hauser, “Thc hydra.” https://github.com/vanhauser-thc/thc-hydra, 2019.

[58] “Tiki Tikiwiki Cms/groupware: List of security vulnerabilities.”
https://www.cvedetails.com/vulnerability-list/vendor{_}id-12391/
product{_}id-23390/Tiki-Tikiwiki-Cms-groupware.html. [Accessed: 2020-06-
22].

[59] G. Creech, “Developing a high-accuracy cross platform host-based intrusion detection
system capable of reliably detecting zero-day attacks,” 2014.

[60] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using system
calls: Alternative data models,” in Proceedings - IEEE Symposium on Security and
Privacy, vol. 1999-Janua, pp. 133–145, Institute of Electrical and Electronics Engi-
neers Inc., 1999.

[61] M. Xie and J. Hu, “Evaluating host-based anomaly detection systems: A preliminary
analysis of ADFA-LD,” in Proceedings of the 2013 6th International Congress on
Image and Signal Processing, CISP 2013, vol. 3, pp. 1711–1716, 2013.

[62] J. VanderPlas, Python Data Science Handbook: Essential Tools for Working with
Data. O’Reilly Media, Inc., 1st ed., 2016.

[63] “PyCharm.” https://www.jetbrains.com/pycharm. [Accessed: 2020-06-23].

[64] W. McKinney, Python for Data Analysis: Data Wrangling with Pandas, NumPy, and
IPython. O’Reilly Media, Inc., 2nd ed., 2017.

[65] “Anaconda.” https://www.anaconda.com. [Accessed: 2020-06-23].

[66] “Python.” https://www.python.org. [Accessed: 2020-06-23].

[67] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science and
Engineering, vol. 9, no. 3, pp. 99–104, 2007.

[68] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine Learning in
Python,” Journal of Machine Learning Research, vol. 12, p. 2825-2830, 2011.

[69] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: fundamental algorithms
for scientific computing in Python,” Nature Methods, vol. 17, no. 3, pp. 261–272, 2020.

[70] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling with
python,” in 9th Python in Science Conference, 2010.

[71] “pickle — Python object serialization.” https://docs.python.org/3/library/
pickle.html. [Accessed: 2020-06-23].

[72] “API Reference — scikit-learn 0.23.1 documentation.” https://scikit-learn.org/
stable/modules/classes.html. [Accessed: 2020-06-26].

https://github.com/vanhauser-thc/thc-hydra
https://www.cvedetails.com/vulnerability-list/vendor{_}id-12391/product{_}id-23390/Tiki-Tikiwiki-Cms-groupware.html
https://www.cvedetails.com/vulnerability-list/vendor{_}id-12391/product{_}id-23390/Tiki-Tikiwiki-Cms-groupware.html
https://www.jetbrains.com/pycharm
https://www.anaconda.com
https://www.python.org
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/classes.html

A. Additional Results

Listed hereafter are the complete classification results for all used undersampling methods
and different performance measures (PM). All classifiers in Table A.1 were trained using
the settings defined in Section 6.1.

Undersampler Classifier AUC ACC F1 GM FNR FPR
AllKNN DTBagg 0.9326 0.9550 0.8341 0.9321 0.0973 0.0375

DTBoost 0.9220 0.9437 0.7992 0.9215 0.1070 0.0490
DT_d 0.9170 0.9392 0.7854 0.9166 0.1125 0.0534
MLP 0.9377 0.9460 0.8114 0.9377 0.0733 0.0512
MLP_d 0.9401 0.9500 0.8230 0.9400 0.0732 0.0466
RForest 0.9368 0.9588 0.8468 0.9364 0.0926 0.0338
k-NN 0.9365 0.9407 0.7973 0.9364 0.0692 0.0579
k-NN_d 0.9270 0.9419 0.7965 0.9268 0.0928 0.0532
linSVM 0.9273 0.9456 0.8063 0.9269 0.0973 0.0482
rbfSVM 0.9275 0.9577 0.8403 0.9266 0.1129 0.0321
Average 0.9304 0.9479 0.8140 0.9301 0.0928 0.0463

ENN DTBagg 0.9334 0.9608 0.8515 0.9327 0.1032 0.0300
DTBoost 0.9206 0.9487 0.8119 0.9199 0.1168 0.0419
DT_d 0.9146 0.9437 0.7959 0.9138 0.1241 0.0466
MLP 0.9390 0.9534 0.8319 0.9388 0.0802 0.0418
MLP_d 0.9402 0.9551 0.8371 0.9400 0.0797 0.0399
RForest 0.9362 0.9640 0.8622 0.9355 0.1008 0.0267
k-NN 0.9377 0.9485 0.8179 0.9376 0.0767 0.0479
k-NN_d 0.9275 0.9485 0.8142 0.9271 0.1005 0.0444
linSVM 0.9247 0.9490 0.8142 0.9242 0.1076 0.0429
rbfSVM 0.9246 0.9594 0.8443 0.9234 0.1218 0.0289
Average 0.9299 0.9531 0.8281 0.9293 0.1011 0.0391

EUS DTBagg 0.9294 0.9146 0.7359 0.9292 0.0509 0.0903
DTBoost 0.9127 0.9034 0.7060 0.9126 0.0749 0.0997
DT_d 0.9124 0.9042 0.7073 0.9124 0.0765 0.0986
MLP 0.9287 0.9216 0.7499 0.9287 0.0617 0.0809
MLP_d 0.9310 0.9143 0.7361 0.9307 0.0468 0.0912
RForest 0.9337 0.9198 0.7486 0.9335 0.0478 0.0848
k-NN 0.9238 0.8976 0.7013 0.9232 0.0412 0.1112
k-NN_d 0.9102 0.8780 0.6620 0.9092 0.0467 0.1328
linSVM 0.9246 0.9005 0.7067 0.9240 0.0433 0.1076
rbfSVM 0.9259 0.9008 0.7081 0.9253 0.0405 0.1076
Average 0.9232 0.9055 0.7162 0.9229 0.0530 0.1005

NCR DTBagg 0.9343 0.9644 0.8629 0.9334 0.1058 0.0256
DTBoost 0.9209 0.9528 0.8236 0.9199 0.1217 0.0365
DT_d 0.9119 0.9455 0.7995 0.9108 0.1330 0.0433

78

Undersampler Classifier AUC ACC F1 GM FNR FPR
MLP 0.9407 0.9573 0.8436 0.9404 0.0816 0.0371
MLP_d 0.9405 0.9587 0.8477 0.9402 0.0838 0.0352
RForest 0.9367 0.9665 0.8705 0.9359 0.1030 0.0235
k-NN 0.9419 0.9533 0.8327 0.9418 0.0733 0.0429
k-NN_d 0.9317 0.9524 0.8264 0.9313 0.0958 0.0407
linSVM 0.9206 0.9498 0.8149 0.9198 0.1184 0.0404
rbfSVM 0.9215 0.9604 0.8464 0.9201 0.1304 0.0266
Average 0.9301 0.9561 0.8368 0.9294 0.1047 0.0352

OSS DTBagg 0.9256 0.9711 0.8823 0.9236 0.1352 0.0137
DTBoost 0.9171 0.9663 0.8636 0.9148 0.1485 0.0173
DT_d 0.9007 0.9521 0.8133 0.8981 0.1680 0.0307
MLP 0.9298 0.9668 0.8692 0.9285 0.1195 0.0208
MLP_d 0.9305 0.9673 0.8712 0.9292 0.1186 0.0204
RForest 0.9277 0.9728 0.8887 0.9258 0.1324 0.0122
k-NN 0.9313 0.9639 0.8605 0.9302 0.1123 0.0252
k-NN_d 0.9226 0.9622 0.8522 0.9211 0.1302 0.0246
linSVM 0.8998 0.9534 0.8167 0.8970 0.1716 0.0287
rbfSVM 0.9019 0.9620 0.8443 0.8983 0.1783 0.0179
Average 0.9187 0.9638 0.8562 0.9167 0.1415 0.0211

RUS DTBagg 0.9313 0.9171 0.7417 0.9311 0.0498 0.0877
DTBoost 0.9164 0.9083 0.7171 0.9163 0.0729 0.0944
DT_d 0.9131 0.9043 0.7078 0.9130 0.0751 0.0987
MLP 0.9289 0.9239 0.7552 0.9289 0.0644 0.0777
MLP_d 0.9330 0.9172 0.7430 0.9328 0.0459 0.0880
RForest 0.9358 0.9225 0.7551 0.9356 0.0464 0.0820
k-NN 0.9255 0.8998 0.7061 0.9249 0.0403 0.1087
k-NN_d 0.9118 0.8796 0.6654 0.9108 0.0453 0.1311
linSVM 0.9257 0.9026 0.7112 0.9251 0.0436 0.1051
rbfSVM 0.9263 0.9023 0.7109 0.9257 0.0416 0.1058
Average 0.9248 0.9078 0.7213 0.9244 0.0525 0.0979

RENN DTBagg 0.9337 0.9514 0.8245 0.9334 0.0901 0.0426
DTBoost 0.9189 0.9375 0.7821 0.9186 0.1059 0.0562
DT_d 0.9172 0.9355 0.7764 0.9169 0.1073 0.0583
MLP 0.9369 0.9408 0.7979 0.9369 0.0682 0.0579
MLP_d 0.9409 0.9452 0.8104 0.9409 0.0648 0.0534
RForest 0.9371 0.9554 0.8368 0.9368 0.0872 0.0385
k-NN 0.9360 0.9345 0.7822 0.9360 0.0621 0.0660
k-NN_d 0.9279 0.9366 0.7837 0.9278 0.0838 0.0605
linSVM 0.9281 0.9422 0.7978 0.9279 0.0907 0.0530
rbfSVM 0.9314 0.9563 0.8374 0.9308 0.1018 0.0354
Average 0.9308 0.9435 0.8029 0.9306 0.0862 0.0522

79

Undersampler Classifier AUC ACC F1 GM FNR FPR
TL DTBagg 0.9247 0.9709 0.8814 0.9226 0.1370 0.0137

DTBoost 0.9169 0.9667 0.8649 0.9145 0.1495 0.0167
DT_d 0.8998 0.9527 0.8146 0.8970 0.1708 0.0296
MLP 0.9302 0.9671 0.8703 0.9289 0.1191 0.0206
MLP_d 0.9307 0.9680 0.8736 0.9293 0.1192 0.0195
RForest 0.9278 0.9730 0.8896 0.9259 0.1325 0.0119
k-NN 0.9325 0.9659 0.8672 0.9314 0.1122 0.0229
k-NN_d 0.9236 0.9625 0.8536 0.9222 0.1283 0.0245
linSVM 0.9000 0.9536 0.8175 0.8971 0.1716 0.0284
rbfSVM 0.9009 0.9619 0.8437 0.8972 0.1806 0.0176
Average 0.9187 0.9642 0.8576 0.9166 0.1421 0.0205

Table A.1.: Full table of tested undersamplers and classifier results

In the evaluation part of this thesis only the Friedman Test results for the performance
metric AUC have been presented. Table A.2 shows the results of the remaining perfor-
mance measures.

PM Undersampler Friedman score Friedman p-value H0 rejected
AUC AllKNN 159.273 1.05e-23 True

ENN 162.589 2.15e-24 True
EUS 158.356 1.63e-23 True
NCR 164.215 9.88e-25 True
OSS 154.287 1.14e-22 True
RUS 153.284 1.84e-22 True
RENN 163.440 1.43e-24 True
TL 155.356 6.84e-23 True

ACC AllKNN 167.321 2.23e-25 True
ENN 166.066 4.07e-25 True
EUS 164.302 9.47e-25 True
NCR 171.994 2.37e-26 True
OSS 166.429 3.42e-25 True
RUS 162.622 2.12-24 True
RENN 169.375 8.33e-26 True
TL 169.287 8.69e-26 True

F1 AllKNN 168.589 1.21e-25 True
ENN 166.920 2.70e-25 True
EUS 157.549 2.40e-23 True
NCR 172.178 2.17e-26 True
OSS 163.942 1.13e-24 True
RUS 158.716 1.37e-23 True
RENN 169.004 9.95e-26 True

80

PM Undersampler Friedman score Friedman p-value H0 rejected
TL 167.946 1.65e-25 True

FNR AllKNN 157.500 2.45e-23 True
ENN 161.493 3.64e-24 True
EUS 143.667 1.80e-20 True
NCR 170.330 5.27e-26 True
OSS 163.082 1.70e-24 True
RUS 137.378 3.59e-19 True
RENN 165.430 5.52e-25 True
TL 164.463 8.77e-25 True

FPR AllKN 163.760 1.23e-24 True
ENN 161.103 4.38e-24 True
EUS 168.480 1.28e-25 True
NCR 168.315 1.38e-25 True
OSS 170.484 4.89e-26 True
RUS 166.164 3.88e-25 True
RENN 167.496 2.05e-25 True
TL 173.232 1.31e-26 True

GM AllKNN 159.426 9.78e-24 True
ENN 162.349 2.41e-24 True
EUS 158.509 1.52e-23 True
NCR 164.727 7.73e-25 True
OSS 154.189 1.19e-22 True
RUS 155.095 7.75e-23 True
RENN 162.655 2.08e-24 True
TL 156.753 3.51e-23 True

Table A.2.: Full table of Friedman Test results

The Wilcoxon Ranked-Sum Test results for all performance measures are shown in Table
A.3.

PM Comparison Wilcoxon Rank Wilcoxon p-value H0 rejected
AUC EUS vs. AllKNN 27 0.0442 True

EUS vs. ENN 30 0.0699 False
EUS vs. NCR 31 0.0807 False
EUS vs. OSS 42.5 0.2979 False
EUS vs. RUS 43 0.3108 False
EUS vs. RENN 24 0.0267 True
EUS vs. TL 42.5 0.2980 False

ACC EUS vs. AllKNN 0 0.0001 True
EUS vs. ENN 0 0.0001 True
EUS vs. NCR 0 0.0001 True

81

PM Comparison Wilcoxon Rank Wilcoxon p-value H0 rejected
EUS vs. OSS 0 0.0001 True
EUS vs. RUS 41 0.2599 False
EUS vs. RENN 0 0.0001 True
EUS vs. TL 0 0.0001 True

F1 EUS vs. AllKNN 0 0.0001 True
EUS vs. ENN 0 0.0001 True
EUS vs. NCR 0 0.0001 True
EUS vs. OSS 0 0.0001 True
EUS vs. RUS 37 0.1718 False
EUS vs. RENN 0 0.0001 True
EUS vs. TL 0 0.0001 True

FNR EUS vs. AllKNN 6 0.0005 True
EUS vs. ENN 0.5 0.0001 True
EUS vs. NCR 2 0.0002 True
EUS vs. OSS 0 0.0001 True
EUS vs. RUS 44.5 0.3525 False
EUS vs. RENN 6.5 0.0006 True
EUS vs. TL 0 0.0001 True

FÜR EUS vs. AllKNN 0 0.0001 True
EUS vs. ENN 0 0.0001 True
EUS vs. NCR 0 0.0001 True
EUS vs. OSS 0 0.0001 True
EUS vs. RUS 42.5 0.2981 False
EUS vs. RENN 0 0.0001 True
EUS vs. TL 0 0.0001 True

GM EUS vs. AllKNN 27 0.0441 True
EUS vs. ENN 31 0.0807 False
EUS vs. NCR 32.5 0.0988 False
EUS vs. OSS 38.5 0.2018 False
EUS vs. RUS 42 0.2846 False
EUS vs. RENN 24.5 0.0292 True
EUS vs. TL 38 0.1909 False

Table A.3.: Full table of all Wilcoxon Ranked-Sum Test pairwise comparisons

82

Table A.4 shows the obtained results of the Holm p-value correction method for all cal-
culated performance measures.

PM Comparison H0 rejected Corrected p-value AVG Difference
AUC EUS vs. AllKNN False 0.4926 -0.0066

EUS vs. ENN False 0.5621 0.0000
EUS vs. NCR False 0.6037 -0.0068
EUS vs. OSS False 10.000 0.0045
EUS vs. RUS False 10.000 -0.0015
EUS vs. RENN False 0.3456 -0.0076
EUS vs. TL False 10.000 0.0045

ACC EUS vs. AllKNN True 0.0011 -0.0476
EUS vs. ENN True 0.0011 0.0000
EUS vs. NCR True 0.0011 -0.0506
EUS vs. OSS True 0.0011 -0.0583
EUS vs. RUS False 0.4963 -0.0023
EUS vs. RENN True 0.0011 -0.0381
EUS vs. TL True 0.0011 -0.0588

F1 EUS vs. AllKNN True 0.0011 -0.1119
EUS vs. ENN True 0.0011 0.0000
EUS vs. NCR True 0.0011 -0.1206
EUS vs. OSS True 0.0011 -0.1400
EUS vs. RUS False 0.3258 -0.0051
EUS vs. RENN True 0.0011 -0.0867
EUS vs. TL True 0.0011 -0.1414

FNR EUS vs. AllKNN True 0.0026 -0.0481
EUS vs. ENN True 0.0011 0.0000
EUS vs. NCR True 0.0011 -0.0516
EUS vs. OSS True 0.0011 -0.0884
EUS vs. RUS False 0.7055 0.0005
EUS vs. RENN True 0.0026 -0.0331
EUS vs. TL True 0.0011 -0.0890

FPR EUS vs. AllKNN True 0.0011 0.0613
EUS vs. ENN True 0.0011 0.0000
EUS vs. NCR True 0.0011 0.0653
EUS vs. OSS True 0.0011 0.0793
EUS vs. RUS False 0.5967 0.0025
EUS vs. RENN True 0.0011 0.0483
EUS vs. TL True 0.0011 0.0799

GM EUS vs. AllKNN False 0.4926 -0.0064
EUS vs. ENN False 0.6529 0.0000
EUS vs. NCR False 0.6945 -0.0065
EUS vs. OSS False 10.000 0.0062

83

PM Comparison H0 rejected Corrected p-value AVG Difference
EUS vs. RUS False 10.000 -0.0015
EUS vs. RENN False 0.3456 -0.0077
EUS vs. TL False 10.000 0.0063

Table A.4.: Full table of Holm method results with corrected p-values

	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Information Security
	Intrusion Detection Systems
	Pattern Recognition
	Approaches and Learning
	Steps in Pattern Recognition
	Classification
	Common Classifier Modeling Algorithms

	The Class Imbalance Problem
	State-of-the-art Approaches
	Data Level
	Algorithm Level
	Cost-sensitive Learning
	Ensemble-based

	Resampling to Combat Class Imbalance
	Undersampling
	Oversampling

	Performance Analysis

	Methodology
	Evolutionary Algorithms
	Genetic Algorithms

	Evolutionary Undersampling
	Statistical Testing of Algorithms
	Nonparametric Statistical Tests

	Dataset

	Implementing Evolutionary Undersampling
	Preliminary: Environment
	Algorithm Implementation
	General Steps
	Promotion of Diversity in the Fitness Function

	Evaluation
	Used Methods, Classifiers and Performance Metrics
	Evaluation on a Real-world Dataset
	Performance Evaluation
	Statistical Testing

	Conclusion and Outlook
	Bibliography
	Additional Results

