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ABSTRACT 
 
The urban heat island (UHI) effect, which is caused by the physical characteristics of cities, 
raises temperatures unnaturally in urban areas. Urban and rural surface temperature 
differences can vary significantly on a daily and seasonal basis. For many studies 
evaluating the state of the land's surface, such as those looking at urban climate, 
evapotranspiration, and vegetation stress, the importance of land surface temperature 
(LST) is rising. Therefore, the purpose of this study is to detect UHI in twelve distinct cities 
located in various climate performance zones. The analysis is based on land cover (LC) 
classification since the UHI effect is a typical urban climatic phenomenon and the creation 
and intensity of these phenomena are directly tied to the type of LC (urban, blue, green, 
cropland and bare areas). This study uses computing Landsat LST code that is provided 
by (Ermida, et al., 2020) for the year 1990, 2005, and 2021 to extract LSTs maps and 
compare with LC maps to extract the effects of different LC classes on the LST based on 
Landsat-5, 7, and 8 remote sensing images of the selected test sites within Google Earth 
Engine (GEE). 
According to the results, there is a considerable UHI effect since the LST of urban 
impervious surfaces is significantly higher than that of vegetation-covered areas by a 
difference of 6–8 K. The temperature difference between urban areas and blue areas varies 
from 1 to 13 K, between urban areas and cropland areas from 2 to 8 K, between urban 
areas and bare areas from 11 to 18 K, and between bare and cropland areas from 13 to 
30 K. The temperature difference between cropland and green areas varies from 10 to 18 
K. Each of the LC classes had different LST values, and certain regions within the five 
classes had lower or higher LST values than those inside other categories. As a result, 
when compared to other categories, one category may not necessarily have the greatest 
LST value. 
This work contributes to our understanding of how to improve urban landscapes and 
reduce the UHI effect. The findings of this study may also provide useful recommendations 
for urban planners who want to lessen the consequences of UHI in urban areas. 
 
 
 
Keywords: urban heat island (UHI), remote sensing (RS), climate change, google earth 
engine (GEE)
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CHAPTER 1 
1 INTRODUCTION 
1.1 MOTIVATION 
 
Because of the increasing in the concentration of greenhouse gases (GHGs), such as water 
vapor, methane, ozone, carbon dioxide, chlorofluorocarbons, and nitrous oxide, global 
warming is defined as "the increase in the surface average temperature of the world." 
Without GHGs, the world's surface temperature would be too low, making it impossible for 
life to exist on the planet. The greenhouse effect is the primary factor that makes the earth 
habitable. However, the increase in GHGs in the atmosphere is what caused this disastrous 
phenomena, or global warming (Al-Ghussain, 2019). 
Cities, which make up approximately 1% of the world's land area, use 85% of the world's 
resources, consume 75% of its energy, and emit around 80% of its greenhouse gas 
emissions (Huang, et al., 2021). By 2050, it is expected that 9.8 billion people will live in 
cities, up from the current level of more than 50% of the world's population. According to 
estimates, there will be 6.7 billion more people living in cities than in rural areas (3.1 
billion) (Ritchie & Roser, 2018). Cities will experience increased environmental pressure 
and a conflict between the supply and demand of resources as urbanization continues  
(Huang, et al., 2021). Urbanization can have major influence on the local weather and 
climate, as is widely known and well-documented  (Liu & Zhang, 2011). Living in an urban 
area restricts one's access to nature and can increase environmental risks like air and 
noise pollution, urban extreme heat exposure, and so on. Numerous urban areas are under 
increasing pressure due to rising population, resource scarcity, and the escalating effects 
of climate change (WHO, 2017). Additionally, this has increased both the degree and 
frequency of extreme high-temperature weather as well as the trend of global warming 
(Chen, et al., 2020). Physical, social, neighborhood, land-use regulation, and urban 
planning elements all have an impact on urban expansion, and their effects vary depending 
on the location and the development process (Chen, et al., 2020). 
Urban regions have higher heat storage during the daytime due to increased impervious 
surfaces, lower albedo, and increased heat conduction and heat capacity. This 
phenomenon is known as the urban heat island (UHI) effect, which worsens urban air 
pollution and has an impact on human health (Chen, et al., 2020). Cities are currently 
confronting challenges with sustainable development due to the significant rise in the 
global mean surface temperature since the late 19th century (Chen, et al., 2006). To 
develop surroundings that are healthy and sustainable, these issues must be addressed 
(WHO, 2017). Given the ongoing changes in the global climate and the need to reduce 
and adapt to these changes, urban sustainability and resilience are thus more crucial than 
ever. 
Furthermore, high temperatures put additional strain on human physiology, especially in 
populations that are already fragile, and increase their vulnerability to stress. Residents 
who reside in or relatively close a UHI region have higher health risks (Tomlinson, et al., 
2011). Therefore, the UHI is a significant urban planning issue that needs monitoring as 
well as focused initiatives to lessen its effects (Mirzaei, et al., 2020). According to certain 
research, residents of UHI areas are more likely to experience infectious infections 
(Méndez-Lázaro, et al., 2018) as well as heat-related disorders such nervous system 
problems, sleeplessness, depression, and mental illnesses (Huynen, et al., 2001) (Tan, et 
al., 2009). 
This study's purpose is to use an improved methodology to address the following 
questions:  

§ How can the spatiotemporal patterns of UHI be determined by a generic model?  
§ How can UHI be detected using remote sensing image-based analysis? 
§ What is the relationship between UHI and LC variations over various metropolitan 

regions according to a remote sensing image-based analysis? 
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§ What urban planning strategies can be employed to mitigate the effects of UHI? 
 
1.2 GENERAL OBJECTIVES 
 
The proposed study uses remote sensing methods to detect spatiotemporal urban heat 
patterns. The particular objectives of this study are to:  

1. Establish a thermal remote sensing system through data collection and integration, 
allowing for more accurate measurements of the earth's surface temperature, 

2. Create a mixed-method framework (quantitative and qualitative substudy) using 
the data collected in objective 1 as input in order to assess the heat in cities,  

3. Map Landsat LST using GEE and obtain additional urban heat data,  
4. Determine how temperature distribution and LC pattern relate,  
5. Apply the framework created in objective 2 in a few selected sites. 

 
1.3 METHODOLOGICAL CONSIDERATIONS 
 
Based on the large-scale analytic capabilities of GEE, an intuitive methodology is developed 
in this work to evaluate the temporal fluctuations of the UHI impacts. Figure 1 depicts the 
workflow that must be followed to complete the various tasks required to achieve the 
primary goal of the suggested research.  
The first step of this research is a thorough assessment of the relevant literature with a 
focus on UHI, its impacts and causes, Geography Information (GI) technology to detect 
this issue, thermal remote sensing, and potential UHI remedies. In addition to serving as 
a foundation for future study, a thorough understanding of previous UHI literature is 
essential for developing effective UHI mitigation and adaptation methods. The limitation 
observed in the traditional monitoring of UHIs has been effectively addressed by the 
introduction of thermal remote sensing systems. The distribution characteristics of UHIs 
as well as the periodic and dynamic changes in urban thermal environments may be 
objectively and efficiently monitored using such methodologies. So, for the purpose of 
identifying and investigating UHI impacts, thermal remote sensing has emerged as a key 
approach (Tuholske, et al., 2021). Using GEE, a cloud-based platform for planetary-scale 
geospatial analysis, a prototype analysis model will be implemented based on a thorough 
requirement analysis and a conceptual workflow (Gorelick, et al., 2017). Researchers can 
rapidly and easily access more than thirty years of free and public data archives, including 
historical images and scientific datasets, enabling worldwide and extensive remote sensing 
applications by using a dedicated high-performance computing (HPC) infrastructure 
(Ravanelli, et al., 2018). Along with raw Landsat thermal data, the Earth Engine data 
catalog also contains land and sea surface temperature products obtained from a number 
of satellite sensors, including as MODIS, ASTER, and AVHRR. With the help of GEE, we can 
instantly process, visualize, analyze, and download a variety of global and regional climate 
and remote sensing data and products in real-time. Over a number of test sites, the annual 
median of the LST will be computed using GEE from the Landsat Top of Atmosphere 
Reflectance Data for each year of the temporal span between times t0 and tn. Achieving 
the objective of sustainable development also requires the use of fine-scale, up-to-date 
urban land-cover maps for urban planning, spatial governance, and sustainability 
assessment. To do this, it will be used Landsat, MODIS, and higher-resolution images to 
obtain the urban extent with less than 30 m resolution on the same test sites for times t0 
and tn, respectively. This will enable the creation of fine scape maps. The evaluation of 
urban planning mitigation actions to lessen the impact of UHIs comes after LST estimation 
at selected test sites and a spatial-temporal analysis of hot islands in the city.  
In order to do this, the workflow in Figure 1 provides an illustration of the general approach 
used in this research. In order to examine UHI's impact on population health, it is essential 
to first identify the areas where heat islands are existent. Therefore, satellite-based remote 
sensing temperature data with good adaption and high performance in LST estimation will 
be employed to identify the UHI's location in test sites. Second, Geodata evaluates to do 
some spatiotemporal analysis for detecting UHIs, visualizing the outcome, and identifying 
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a pattern of UHIs at selected test sites. Finally, this analysis enables an evaluation of UHI 
mitigation strategies through the simulation of various urban planning scenarios.
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Figure 1 Workflow of the proposed project. 
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1.4 RELEVANCE AND EXPECTED RESULTS 
 
It is expected that the suggested approach would be capable of efficiently and precisely 
detecting the UHI phenomena. Results show how urbanization affects the UHI magnitude 
with appreciable increases in LST, but they also assess the effects of various land cover 
types on UHI. The following is a list of anticipated outcomes:  

§ To develop spatiotemporal patterns for UHIs, LC changes, and available resolution 
of remote sensing data,  

§ To develop a general model for UHI detection using GEE tool. 
§ To compare the outcomes of different time periods at selected test sites. 
§ To provide practical urban spatial planning measures that will mitigate and lessen 

the impacts of UHI 
 
1.5 INTENDED AUDIENCE AND THESIS STRUCTURE 
 
The target groups of this project are urban planners, policy makers, environmental 
specialists, and other groups who care about climate change and do research about its 
effects. This thesis with the above-mentioned research objectives is organized in 8 
chapters. The next chapter covers the study of the UHI with definition, characteristics, 
causes and effects. Then a literature review on the criteria to mitigate UHI and the possible 
remedies is presented. The 3rd chapter discusses the research approach including the 
software tool and data which lead to creating of a conceptual model to detect UHIs. In 
chapter 4, the selected test sites and geo database are introduced to analyze data and 
validate LST estiamtes. In the following chapter, results from visualization and model 
performance are followed with a discussion of some issues. Finally, some short and long -
term solutions are receomended for the test sites in chapter 6. The 7 and 8 chapters 
present the summary and possible future works and conclusion, respectively.
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CHAPTER 2 
2 USING REMOTE SENSING TO DETECT URBAN HEAT ISLAND (UHI) IN THE LITERATURE 

OVERVIEW 
 
“Remote sensing provides global, timely, objective observations to detect UHI over time” 
(NASA, 2022). The major benefit of RS sensors is their continuous spatial coverage and 
the research area's temporal repeatability (Stathopoulou & Cartalis, 2007). Furthermore, 
the application of RS data/techniques onboard satellites, drones, or aircrafts allows for the 
determination of LST (Almeida, et al., 2021). Regarding the use of RS data for 
investigating UHI, the most widely employed sensors in RS in relation to the studies 
reviewed in this project are thermal sensors, which detect emitted and/or reflected 
terrestrial radiation. Thermal mapping from satellites can be used to measure LST, whilst 
optical data acquired from satellites can indicate where and when LC has changed over 
time and can be used to approximate air temperatures. 
 
2.1 UNDERSTANDING THE CONNOTATION OF UHI 
2.1.1 DEFINITION OF UHI 
 
Heat islands, or reverse oasis areas with hotter air and surface temperatures than their 
rural surroundings, have long been noted in urban and suburban areas. The heat island 
phenomenon has been observed in cities all around the world (Gartland, 2008). This 
phenomenon is known as a UHI, and it has been reported since Howard. The first mention 
of urban heat appears in 1818, when Luke Howard's landmark research of London's climate 
discovered an artificial excess of heat in the city as compared to the country (Howard, 
1818). During the second part of the nineteenth century, Emilien Renou made comparable 
discoveries about Paris, while Wilhelm Schmidt discovered similar conditions in Vienna 
early in the twentieth century. Heat island research in the United States began in the first 
half of the twentieth century (Gartland, 2008). 
Heat islands grow in cities and suburbs because many typical construction materials 
absorb and retain more of the sun's heat than natural materials in rural areas.  (Gartland, 
2008) claimed that this heating is caused by two basic factors. First, because most urban 
building materials are impermeable and impervious, moisture is not readily available to 
dissipate the heat of the sun. Second, dark materials, when combined with canyon-like 
structure and pavement arrangements, capture and trap more of the sun's energy. During 
the day, dark and dry surfaces in direct sunlight may attain temperatures of up to 88°C, 
but vegetated surfaces with damp soil may only reach 18°C under the same conditions. 
Anthropogenic heat, or heat created by humans, slower wind speeds, and urban air 
pollution all contribute to heat island formation (Gartland, 2008). 
(Oke, 1982) distinguishes three categories of UHIs: 

1. Surface heat islands: Surface heat islands may be identified in a city by measuring 
the infrared radiation emitted and reflected by surfaces.  

2. Canopy layer heat islands: The canopy layer is the layer of air between the ground 
and treetops, or the roofs of buildings, where most human activity occurs. 

3. Boundary layer heat islands: The boundary layer is placed above the canopy layer. 
Air temperature is referred to this by canopy and boundary layer heat islands. 

The earth's surface and the atmospheric air higher above the city have different 
temperatures. Because of this, the United States Environmental Protection Agency (U.S. 
EPA, 2008) distinguishes between two types of heat islands: surface heat islands and 
atmospheric heat islands. They differ in terms of how they are generated, how they are 
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identified and measured, how they affect things, and to some extent how they may be 
cooled. 

1. Surface Heat Islands: Compared to most natural surfaces, urban surfaces like roads 
and roofs absorb and emit heat to a larger extent. Conventional roofing materials 
may go up to 60°F warmer than air temperatures on a hot day with a 91°F 
temperature. During the daytime when the sun is shining, surface heat islands 
frequently reach their peak intensity. 

2. Atmospheric Heat Islands: These heat islands form when the air in urban areas is 
warmer than the air in rural areas, which is colder. The intensity of atmospheric 
heat islands varies significantly less than that of surface heat islands. 

These differences in temperature are referred to as heat islands inside cities. Urban parks, 
ponds, and residential areas are cooler than downtown areas in the heat island effect 
diagram (Figure 2).  

Figure 2 Variations of Surface and Atmospheric Temperatures. Adopted from: (EPA, 2008: 
4, Fig. 2). 

2.1.2 CHARACTERISTICS OF UHI 
 
UHI characteristics and Weather patterns varies across different geographic regions 
(Almeida, et al., 2021). The difference in temperature between cities in relation to their 
surroundings is typically used to calculate heat islands. Within a city, the temperature can 
also change. The uneven distribution of heat-absorbing pavements and buildings makes 
some locations hotter than others, while trees and other vegetation keep other areas cool. 
(Gartland, 2008) lists the following five characteristics that describe the UHI effect: 

1. Heat islands frequently become warmer compared to their rural surroundings at 
night and cooler before day. It is possible for urban air to be up to 6°C warmer 
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than rural air in the canopy layer, which is the area beneath the tops of trees and 
buildings. 

2. Since many man-made surfaces absorb more solar heat than do natural vegetation, 
urban surfaces heat up and thus heats the air. 

3. When the weather is calm and clear, these differences in air and surface 
temperatures are amplified.  

4. Heat islands tend to intensify as cities get larger, and therefore tend to be hotter 
in areas with less greenery and more urbanization. 

5. The boundary layer, a layer of air up to 2000 meters altitude, also exhibits warmer 
air in heat islands. Large plumes of warmer air are frequently produced by heat 
islands above cities, and temperature inversions (warmer air over colder air) are 
frequently brought on by heat islands. 

 
2.1.3 UHI CONTRIBUTING FACTORS 
 
Previous research has examined the causes and elements that influence the formation of 
UHIs in great detail (factors affecting UHI are illustrated in Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Factors that cause Urban Heat Island Effect. Adopted from: (Wai, et al., 2022: 
2, Fig. 1). 

(Oke, 2006) claims that there are four main contributing reasons to the UHI effect:  
Thermal capacities, albedo coefficients, heat conductivities, and moisture levels can all 
vary as a result of human actions that alter natural LCs. Urban land usage can result in 
local air and surface temperatures that are several degrees higher than the surrounding 
environment's temperatures (Mirzaei, et al., 2020). Because they create changes in the 
physical properties of the surface (albedo, thermal capacity, heat conductivity, and 
moisture), as well as changes in radiative fluxes and the near surface flow, urbanization 
and anthropogenic activities are among the causes of UHI. These two variables are 
responsible for the significant replacement of soil and vegetation with pavement, building 
structures, and dark surfaces with urban materials (concrete, asphalt, and metal), which 
causes a rise in heat radiation and changes the surface energy balance, increasing LST 



 

15 
 

 
 

(Ngie, et al., 2014). Eventually, this causes the sensible heat flow to rise at the expense 
of the latent heat flux (Wang et al., 2007). 
Due to its canyon geometry, which is characterized by narrow streets and tall buildings 
that block airflow, urban geometry is another important contributor to UHI. Through wind 
flow, geometry also influences this outcome. Wind and cloud cover are the two main 
meteorological factors that influence UHI development. UHIs typically develop when the 
winds are calm, and the sky is clear because these conditions increase the amount of solar 
radiation that reaches urban surfaces and reduce the amount of heat that can be 
convectively transported away. Strong winds, on the other hand, and cloud cover, 
respectively, reduce UHIs by convecting warm air away or reflecting it. The creation of 
UHI is influenced by topography and climate, both of which are influenced by the location 
of a city. Large bodies of water, for instance, can provide winds that convect heat away 
from towns and reduce temperatures. A city may have wind patterns that blow through it 
or that are blocked from reaching it by nearby mountain ranges. When larger scale factors, 
like prevailing wind patterns, are comparatively weak, the significance of local terrain for 
heat island creation increases. Large water bodies and steep terrain nearby can have an 
impact on local wind patterns and UHI formation (Ngie, et al., 2014). 
The intensity and spatial distribution of the UHI effect are also influenced by changes in 
the LC pattern in response to urbanization (Chen, et al., 2006). Urban bare concrete cover, 
urban woods or the shade of trees, urban water areas, and urban lawn were chosen as 
the four types of LC to study their microclimate, and the UHI was also analyzed using air 
temperature data measured at four fixed observation spots in Nanjing, China (Huang, et 
al., 2008). This demonstrates how various land uses have distinct effects on UHI.  
In addition, (Oke, 2006) claimed that the UHI effect was mostly caused by urban structure, 
surface cover, urban fabric, and metabolism. 
 

§ Urban structure, which modifies the balance of heat exchange in the built 
environment by influencing shadow and wind patterns. It has an impact on the 
amount of sunlight that materials are exposed to and the subsequent heat storage 
in thermal mass. The strength and patterns of airflow in urban canyons can also be 
altered by this complex heat radiation exchange between the atmosphere around 
and the building mass. 

§ Urban cover and surface materials, which have an impact on the rate of heat 
absorption and reflection in the built environment. The heat flux in outdoor spaces 
can be altered in factors are variables by the thermodynamic specification, color, 
texture, and density of materials, as well as their exposure to sunlight.  

§ Urban fabric, which has a greater impact on the built environment's water and 
heat exchange balance than its natural surrounds. The processes of photosynthesis 
and evaporation in urban vegetation help to lower the air temperature. Lower 
atmospheric air turbulence is also influenced by the type, distribution, and intensity 
of urban vegetation. 

§ Urban metabolism and anthropogenic waste heat in cities, which are mostly 
associated with the amount of energy consumed for motorized transportation and 
indoor air conditioning (see Figure 4). 
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Figure 4 Urban structure, cover, fabric and metabolism contribute to the UHI effect in 
highly developed areas; adopted from: (Soltani & Sharifi, 2017: 531, Fig. 2). 

2.1.4 UHI EFFECT 
 
The UHI effect and its effects are projected to be increasingly severe in a world that is 
rapidly urbanizing and experiencing a warming climate (Zhou, et al., 2019). The effects of 
this phenomena that are the most regressive are:  

§ Influence on the local microclimate, 
§ Thermal discomfort 
§ Impacts on public health 
§ Changes in hydrological behavior, with a displacement of water masses, for 

instance. 
UHI can have a greater negative influence on human health when paired with natural 
occurrences like heat waves, which can lead to an increase in mortality. Most likely, climate 
change will lead to an increase in air temperatures, amplifying the harmful consequences 
of UHI (Almeida, et al., 2021). 
Due to meteorological, geographical, and urban characteristics, the extent of the 
temperature differential changes throughout time and place (Kleerekopera, et al., 2012). 
The heat island effect is frequently evaluated by the difference in air temperatures between 
urban and rural areas, sometimes known as the strength or intensity of the heat island. 
This level of intensity changes throughout the day and night. The difference in temperature 
between urban and rural areas is typically the smallest in the morning and increases during 
the day as urban surfaces heat up and warm the urban air. Since urban surfaces continue 
to contribute to the high and slow the process of nighttime cooling, the heat island's 
intensity is typically highest at night (Gartland, 2008). 
Figure 5 shows the air temperature and heat island intensity for typical summer and winter 
days in a heat island. Due to the solar gain of urban surface materials, the urban-rural 
temperature differential begins to grow throughout the daytime under a clear sky. Warm 
air is retained in the built environment for a longer period of time when the weather is 
calm (Soltani & Sharifi, 2017). 
Moreover, negative impacts of UHI have a hugely broad range of effects on many people. 
The UHI has influenced a veriety of environmental changes, including regional 
temperature, vegetation growth, and water and air quality. These variables, in turn, have 
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a significant impact on human health and wellbeing and have the potential to raise illness 
and mortality, energy consumption, and even violent incidents in urban areas, where 55% 
of the world's population currently reside (Zhou, et al., 2019).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 The UHI effect peaks at the clear and calm weather at winter nights. It also peaks 
earlier during winter Schematic representation; adopted from: (Soltani, et al., 2017: 530, 
Fig. 1). 

2.1.5 UHI METRICS 
 
(Oke, 2006) represented UHIs in three different scales:  

§ Urban surface material scale (surface layer), 
§ Building and public space scale (canopy layer), 
§ City scale (boundary layer). 

The thermal behavior of surface materials and their exposure to solar radiation have a 
significant impact on the UHI effect. The air temperature above urban surfaces are 
impacted by the heat that is emitted from urban surfaces and is mixed by convection. 
Urban canopy layer is the region of the city that is bounded by surface cover and building 
skylines. Heat accumulation in the canopy layer is influenced by the geometry and 
orientation of open spaces, aspect ratio (height to width), sky view factor (the fraction of 
the sky visible from the ground up), LC material (asphalt, hard-landscapes, grass cover, 
water, tree, etc.), and wind flow (Soltani & Sharifi, 2017). 
As the geographic scale is enlarged, temperature differences become less, as seen in Table 
1. It is more probable to notice temperature differences between a building's north and 
south sides than between two separate land uses in a precinct (building block versus park). 
 
Table 1. As the scale increases, the UHI effect gets moderated by air turbulence; adopted 

from: (Soltani, et al., 2017: 532, Table 1). 
Scale layer Focused temperature Focused elements Dimension range 

(approximate) 

Micro Surface Surface temperature 
Open Space skin 

1–10 m Building rooftops 
Building facades 

Local Canopy Air temperature 

Spaces between 
buildings 

10–103 m Public spaces 
Streetscapes 
Urban precincts 

Macro Boundary Surface and air temperature Land use classes 103–105 m Citywide 
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2.2 GI TECHNOLOGY TO DETECT UHI 
 
“Remote sensing technology is an important source of Earth observation from different 
platforms and sensors, and it offers work on a large scale with cheap, accurate (depending 
on the research design), and faster results compared to the conventional methods” 
(Sekertekin & Bonafoni, 2020). P. Krishna Rao, a research physical scientist of the National 
Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric 
Administration (NOAA), launched the satellite remote sensing era of UHI investigations in 
1972 (Zhou, et al., 2019). While surface temperatures have a slight but considerable 
indirect impact on air temperatures, they, both, can be used to identify UHIs (Almeida, et 
al., 2021). Therefore, there are different amounts and types of sensors used to measure 
UHI. The percentage of investigations using various sensors or satellite images is shown 
in Table 2 for the reviewed studies. Since the sensors are passive, they can detect and 
quantify both shortwave radiations reflected back from the Earth's surface and atmosphere 
(non-thermal spectral bands) and longwave radiation emitted by it (thermal spectral 
bands). This is crucial for UHI investigations because determining the relationship between 
two important parameters, such as a region's LST intensity and the underlying LC 
composition and configuration that are connected, is a foundational step in understanding 
the causes of UHI (Zhou, et al., 2019). 
 
Table 2. Proportion of thermal sensors in UHI studies. Adopted from: (Zhou, et al., 2019: 

7, Table 1). 
 
 
 
 

There are various methods for evaluating the thermal behavior of a site, including remote 
sensing, information from stationary weather stations, information from authorized 
sources, in-situ campaigns using portable thermal cameras, etc. S ome studies use 
multiple data sources from the list above to supplement the information, both at the 
atmospheric and surface levels (Almeida, et al., 2021). Over the last few decades have 
seen a significant increase in the quantity and quality of UHI studies due to developments 
in remote sensing and spatial science  (Zhou, et al., 2019). 
The LST, a relevant variable that can be used to determine the radiative load of the earth's 
surface, can be calculated from the remote sensing data. The LST, also known as skin 
temperature or radiometric temperature, refers to the precise measurement of the earth's 
surface temperature. Unlike measurements made by meteorological stations that record 
the temperature close to the surface, the LST allows for a more detailed scale of analysis: 
in areas of dense vegetation, it will represent the temperature of the canopy's leaves; in 
areas of sparse vegetation, it will correspond to the entire canopy, subsurface, and ground 
surface; and on the bare ground, it will represent the temperature of the top (few 
micrometers) from the ground s surface. In addition, LST can be employed to retrieve 
important climatic variables as evapotranspiration, water-stressed vegetation, soil 
moisture, and thermal inertia. It has a wide range of applications and is useful in UHI 
research, global warming, cryosphere melting, insect infestation, vector-borne diseases, 
etc (Almeida, et al., 2021). In regards of using remote sensing data for UHI research, 
thermal sensors—which identify emitted and/or reflected terrestrial radiation—are the 
most often employed remote sensing sensors. Using thermal sensors can be difficult, 
especially when clouds are present. This might have an impact on the validity of the data 
and the temporal analysis of the chosen sites (Almeida, et al., 2021). 
 
2.2.1 THERMAL SENSORS 
 
One of the areas of study of remote sensing known as "thermal remote sensing" focuses 
on the collection, analysis, and interpretation of data mainly from the Thermal Infrared 
(TIR) portion of the electromagnetic spectrum. To measure the surface temperature, 
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thermal remote sensing collects the radiation emitted by the ground. The other important 
biophysical parameters derived from TIR data are surface emissivity, soil moisture, and 
evapotranspiration in addition to surface temperature. Since these variables control 
energy flows and interactions between the atmosphere and the land, it is crucial to 
accurately estimate them in order to comprehend how the Earth behaves (Sekertekin & 
Bonafoni, 2020). 
The thermal-infrared (TIR) region is the range of electromagnetic wavelengths between 3 
and 35 µm. This range's useable spectral bands are limited by the intensity of radiation 
and atmospheric windows (Ngie, et al., 2014). Thermal sensors operate in the 8–15 µm 
range (Almeida, et al., 2021), in which most remote sensors are set up to detect the 
thermal radiative properties of the ground materials (Ngie, et al., 2014). The radiation is 
translated into temperature data after being recorded as a Digital Number (DN) (Almeida, 
et al., 2021). So, the thermal infrared (TIR), which ranges in wavelength from 8 to 15 µm, 
is therefore the most useful wavelength for LST measurements within the EMR spectrum 
(Figure 6) (Tomlinson, et al., 2011). 

Figure 6 The electromagnetic spectrum arranged by wavelength. Thermal infrared 
highlighted in bold. Adopted from: (Tomlinson, et al., 2011: 297, Fig. 1). 

The ability and sensitivity of each sensor to provide data within the electromagnetic 
spectrum, which includes both visible and non-visible zones, is determined by its spectral 
resolution. In practice, the sensors are cooled to near-zero degrees so that their eventual 
emissions do not affect the targets' measurements and temperature records (Almeida, et 
al., 2021). 
According to Table 3, Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), 
and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) are the 
thermal sensors most often used in UHI investigations. Different geographical resolution 
and temporal coverage data from the available satellite TIR sensors may be used to derive 
LST. While the National Oceanic and Atmospheric Administration (NOAA), Advanced Very 
High-Resolution Radiometer (AVHRR), and Terra and Aqua Moderate Resolution Imaging 
Spectroradiometer (MODIS) have 1-km spatial resolutions, the Geostationary Operational 
Environmental Satellite (GOES) has a 4-km resolution in the TIR. In comparison to 
Landsat-5 Thematic Mapper (TM), which has a spatial resolution of 120 m, and Landsat-7 
ETM+, which has a resolution of 60 m in the TIR bands, the Terra-Advanced Space-borne 
Thermal Emission and Reflection Radiometer (ASTER), which has a spatial resolution of 90 
m, provides significantly better data. The spatial variation within coarser-resolution 
observations produced by MODIS and AVHRR, which provide more frequent 
measurements, may be explained using Landsat's better resolution and less frequent TIR 
observations. Recent satellite systems, like as MODIS and ASTER, have features that make 
calibration simpler and offer LST as standard products. This is not true for the Landsat 
data (Almeida, et al., 2021).  
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Table 3. Summary of the thermal sensors most applied in UHI studies; adopted from: 
(Almeida, et al., 2021: 4, Table 1). 

Sensor Satellite  
Platform 

Orbital  
Frequency 

Spatial  
Resolution 

Spectral 
Bands  
(µm) 

Number 
Band 

Data 
Available  

Since 

AATSR Envisat 35 days 1 km 
(approx.) 11 and 12 TIR 2002–2012 

ASTER Terra Twice daily 90 m 

8.125–8.475  
8.475–8.825  
8.925–9.275  
10.25–10.95  
10.95–11.65 

10  
11  
12  
13  
14 

1999 

AVHRR  
(Advanced Very  
High  
Resolution  
Radiometer) 

NOAA 6, 8 
10,  
TIROS-N 

Twice daily 1.1 km 
(approx.) 

10.3–11.3  
11.5–12.5 

4  
5 1978–2001 

AVHRR/2  
(Advanced Very  
High  
Resolution  
Radiometer/2) 

NOAA 7, 
9, 11,  
12, 13, 14 

Twice daily 1.1 km 
(approx.) 

10.3–11.3  
11.5–12.5 

4  
5 1981–2007 

AVHRR/3  
(Advanced Very  
High  
Resolution  
Radiometer) 

METOP-A, 
B, C 29 days 1.1 km 

(approx.) 
10.3–11.3  
11.5–12.5 

4  
5 2006 

AVHRR/3  
(Advanced Very  
High  
Resolution  
Radiometer/3) 

NOAA 15, 
16,  
17, 18, 19 

Twice daily 1.1 km 
(approx.) 

10.3–11.3  
11.5–12.5 

4  
5 1998 

ETM+ Landsat 7 16 days 

 
60 m  

(resampled 
to  

30 m) 

10.4–12.5 6 1999 

GOES Imager GOES Geostationary 4 km 
(approx.) 

10.2–11.2  
11.5–12.5 TIR 1974 

IRMSS  
(Infrared  
Multispectral  
Scanner) 

HJ-1B 31 days 300 m 10.5–12.5 TIR 2008–2018 

IRMSS  
(Infrared  
Multispectral  
Scanner) 

CBERS 1 26 days 160 m 10.4–12.5 4 1999–2003 

IRMSS  
(Infrared  
Multispectral  
Scanner) 

CBERS 2 26 days 160 m 10.4–12.5 4 2003–2009 

IRMSS  
(Infrared  
Multispectral  
Scanner) 

CBERS 2B 26 days 160 m 10.4–12.5 4 2007–2010 

IRMSS-2 (HJ)  
(Infrared  
Multispectral  
Scanner-2) 

HJ-2A and  
HJ-2B 4 days 300 m 10.5–12.5 TIR 2020 

IRS  
(Infrared 
Medium  
Resolution  
Scanner) 

CBERS 4 26 days 80 m 10.4–12.5 12 2014 
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IRS  
(Infrared  
Medium  
Resolution  
Scanner) 

CBERS 4A 31 days 80 m 10.4–12.5 12 2019 

MODIS Terra Twice daily 1 km 
(approx.) 

10.78–11.28  
11.77–12.27 

31  
32 1999 

MODIS Aqua Twice daily 1 km 
(approx.) 

10.78–11.28  
11.77–12.27 

31  
32 2002 

SEVIRI Meteosat-
8 Geostationary 3 km 

(approx.) 10.812 TIR 2005 

TIRS Landsat 8 16 days 

Collected at  
100 m and  
resampled 

to  
30 m 

10.6–11.2  
11.5–12.5 TIR 2013 

TIRS 2 Landsat 9 16 days 

Collected at  
100 m and  
resampled 

to  
30 m 

Similar TIRS Similar 
TIRS 

available 
from USGS 

in early 
2022 

TM Landsat 4 16 days 

Collected at  
120 m and  
resampled 

to  
30 m 

10.4–12.5 6 1982–1993 

TM Landsat 5 16 days 

Collected at  
120 m and  
resampled 

to  
30 m 

10.4–12.5 6 1984–2011 

 
2.2.2 CLASSIFICATION OF THERMAL SENSORS 
 
UHI is defined along space (urban/rural boundaries) so spatial resolution considers for 
classification of sensors. According to (Almeida, et al., 2021) the classification of these 
sensors according to the coarseness or fineness of a raster grid is what characterizes 
spatial resolution. 
 

§ High resolution: Thermal sensors are categorized as having a spatial resolution 
of 60 m. One of the most used sensors in this group for UHI investigations is 
Landsat. This is due to its readily available, high-quality multispectral data with 
global coverage for historical and multitemporal data.  

§ Medium resolution: 90 meters are thought to be the minimum spatial resolution 
for medium resolution. It is significant that the Terra-Advanced Space-borne 
Thermal Emission and Reflection Radiometer (ASTER), which has a 90 m spatial 
resolution, provides the medium-resolution data. In this category of sensors, it is 
one of the most often employed for UHI research. 

§ Low resolution: These sensors have a 250 m to 1 km spatial resolution range. 
The most common example of this type of data-generating instrument is MODIS. 
Given its spatial resolution, which extends from 250 to 1000 m, MODIS is ideally 
suited for UHI research across wide scene regions. Bands 24 (4.433-4.498 mm) 
and 25 in MODIS' hyperspectral range, which consists of 36 bands in total, cover 
the air temperature (4.482–4.549 mm). Since it concurrently collects data in four 
bands with a spatial resolution of 1.1 km in the VNIR and TIR regions of the 
spectrum, the NOAA AVHRR on board is another sensor being employed for UHI 
exploration. 

As MODIS is a low-resolution sensor, it has been employed over large regions, but Landsat 
and ASTER are better suited for studying specific cities or smaller areas due to its medium 
resolution (Kaplan, et al., 2018). 
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2.3 POSSIBLE REMEDIES FOR UHI 
 
In order to address the negative consequences of the UHI phenomena, local authorities 
throughout the world are using a variety of mitigation strategies and standards. 
 
2.3.1 EXISTING UHI MITIGATION STRATEGIES 
 
Criteria for mitigating the effects of UHI are included in major assessment methodologies 
like the Building Research Establishment Environmental Assessment Methodology 
(BREEAM), Leadership in Energy and Environmental Design (LEED), Comprehensive 
Assessment System for Built Environment Efficiency (CASBEE) and Building Environmental 
Assessment Method (BEAM). 
There have been several attempts to produce catalogues suggesting mitigation strategies: 
- In Quebec, the catalogue of UHI mitigation options (Giguère, et al., 2009) classifies 

the mitigation measures into four categories: vegetation, sustainable urban 
infrastructure, sustainable stormwater management, and reduction of anthropogenic 
heat. 

- The mitigating strategies are also categorized by scale (building and urban planning). 
Building mitigation strategies are divided into three categories: solar radiation 
protection, heat infiltration minimization, anthropogenic heat reduction, and 
maintaining a comfortable thermal environment. In contrast, urban planning and 
development strategies are divided into three categories: greening, urban 
infrastructure, and anthropogenic heat reduction. This catalogue comprises short term 
mitigation measures such as ensuring the access to the so called “cooling centers” 
which are any airconditioned public buildings that can accommodate public (shopping 
centers, schools, cultural centers...), the creation of air-conditioned shelters for 
outdoor workers or even the access to aquatic facilities (including pools and misters) 
in natural environment or public installations (Filho, et al., 2017). 

- The catalog was created by (Vienna University of Technology, 2014) as part of the UHI 
project of the Central Europe Program, which was co-financed by the ERDF and divided 
the actions into four packages: buildings, pavements, vegetation, and street 
morphology. 

- Its classification does not organize the mitigation actions by the immediacy of its effect 
(short-, medium- or long-term effect), and in turn in its introduction a clear distinction 
is made between adaptation measures and mitigation measures. Adaptation measures 
are considered measures where the direct intervention of users is necessary, clothing, 
air conditioning, and that do not have any positive effect on the outdoor thermal 
comfort, or even that have a negative one, heat released by air conditioning. In turn, 
the mitigation strategies are considered well prepared and consistently applied actions. 
This is the reason why the mitigation measures presented include less actions than 
other catalogues (Filho, et al., 2017). 

- The (Yamamoto, 2006) study organizes the mitigation strategies in three categories: 
reduction of anthropogenic heat release, improvement of artificial surface covers, 
improvement of urban structure. 

Although the layout of the catalogues differs, there is agreement about the nature of the 
UHI mitigation measures, according to the assessment of the aforementioned catalogues 
by (Filho, et al., 2017). Different mitigation actions can be categorized according to the 
scale of UHI studies which are mentioned below: 

§ At building scale: choice of roofing materials, change the black roofs into green 
roofs, and reduction of anthropogenic heat production, the use of geothermal 
energy and radiant cooling systems, are alternative solutions to conventional air 
conditioning systems. 

§ At city scale: More urban green vegetation which provides shade, thermal 
insulation to keep the interior cool, manage noise and air pollution (Roth, 2013), 
replacing pavement materials with new surface cover, urban structure by designing 
buildings with considering wind properties. Moreover, at city scale, anthropogenic 
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heat is produced either by buildings or by cars. Several measures can help reduce 
traffic anthropogenic: greener cars, improving public transit, reducing sprawl, 
increasing mixed-used development and by encouraging the use of electro-
mobility. 

§ At regional scale: the European Environment Agency urban adaptation document 
((EEA), 2012) suggests interventions to reinforce green infrastructure outside the 
city boundaries in order to manage the three main climate change phenomena 
threatening cities: heat waves, floods and droughts, which are projected to increase 
in frequency, intensity and duration. Furthermore, land use should be taken into 
consideration according to the average night-time LST of different land use patches 
which varies depending on the size, shape, and nature of the land use (forests, 
cropland, grassland, water surfaces, built areas and greenhouse areas). Other 
strategies in this level are catering for wind corridors (Echevarria, et al., 2016)  and 
using the ecological functions of water bodies (Hendel, et al., 2016). 

 
2.3.2 CRITERIA TO MITIGATE UHI PHENOMENON 
 
The criteria for mitigating the effects of UHI are included in major assessment methods 
like the Building Research Establishment Environmental Assessment Methodology 
(BREEAM), Leadership in Energy and Environmental Design (LEED), Comprehensive 
Assessment System for Built Environment Efficiency (CASBEE) and Building Environmental 
Assessment Method (BEAM). The largest number of UHI parameters belongs to CASBEE, 
with three toolkits: CASBEE for Urban Development, CASBEE for Home (Detached House), 
CASBEE for New Construction (O’Malley, et al., 2014). Although the criteria are 
represented differently by each of the aforementioned assessment techniques, there is 
agreement on the assessment criteria for all techniques, which can be summed up as 
follows: air circulation or passage, shading of buildings, the presence of greenery or roofs, 
the use of water, and external use of high-albedo materials on buildings' surfaces. 
Therefore, according to (Monsefi, et al., 2015), the following criteria to control UHI might 
be investigated (Monsefi, et al., 2015): 

§ H/W ratio: The ratio between the building height and street width is a prominent 
factor and effective on thermal comfort, especially in tropical climates.  

§ Orientation: Considering thermal comfort, the orientation of the street network in 
relation to the patterns of sun movement and prevailing winds is an important 
issue. 

§ Reflectivity: Varying materials used for the surface of the wall, street, and building 
roof that reflect light differently can have different impacts on warming the 
environment. 

§ Conductivity: The characteristics of the materials utilized in urban areas directly 
affect the regional microclimate. It is essential to look at the connection between 
thermal conductivity and people's comfort levels in the heat of the outdoors.  

§ Plot coverage: There are certain limitations for the location of a building within 
its land plot and the percentage of the plot that it covers. 

§ Balconies: The primary method for enhancing outdoor thermal comfort is the 
provision of shade. This may be accomplished by installing structures like balconies, 
colonnades, pergolas, and other things that cast shadows over public areas, 
particularly pedestrian routes. 

§ Vegetation: In the world of outdoor thermal comfort and reducing UHI, vegetation 
and green infrastructure of a city have also been mentioned as important elements  
(Monsefi, et al., 2015). 
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CHAPTER 3 
3 UHI DETECTION APPROACH 
3.1 DATA REQUIREMENTS FOR DETECTING UHIS 
 
There are two categories within the requirements for UHI detection. requirements for the 
program used, as well as for the data/map used for UHI detection. The precise data must 
be identified in order to detect UHIs. These specifications include identifying the 
temperature sensors, establishing time frames, and choosing test locations. The functions 
and methods of the application/software are relevant to the needs to demonstrate UHI 
maps. A requirement catalogue or requirement breakdown structure contains a summary 
of the needs (Figure 7). 
The two requirements also concentrate on the test locations and durations that are 
depicted in the work breakdown table (Table 4). 
 
Table 4. Work breakdown structure, describing approach and implementation steps which 

needs to fulfill by requirements. 
 
Level 1 Level 2 Level 3 

Detecting 
UHIs by 
using remote 
sensing 
technique 

1 Approach 

1.1 Define the conceptual model 
1.2 Define requirements (data requirement) 
1.3 Use Google Earth Engine as a tool (software 
requirement) 

2 
Implementation 

2.1 Define test sites according to the resolution of 
satellite 
2.2 Define requirements of Geodata evaluation 
2.3 Define data availability by using remote sensing 
technology 
2.4 Select time periods 
2.5 Setup the model 
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Figure 7 Requirement catalogue/requirement breakdown structure, describing needs on the project’s implementation. 

Detecting urban heat islands by using 
remote sensing

Thermal 
sensor

Landsat

L5

L7

L8

Spatial 
resolution

30 m

Tools

Google Earth 
Engine

QGIS

Time periods

1990

2005

2021

Test sites

Mega-
metropolitanTehran (IR)

New York (US)
Vienna (AT)

Metropolitan Quebec (CA)
Washington 

(US)
Helsinki (FIN)

Medium-size
urban area

Latur (IN)
Palma (ES)

Canberra (AU)

Small-size
urban area

Niihama (JP)
Springfield (US)

Villach (AT)

Collecting & integrating 
datasets
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3.2 SOFTWARE EMPLOYED_ GOOGLE EARTH ENGINE (GEE) 
 
 The focus of the two criteria is also on the locations and lengths of the tests as shown in 
the work breakdown table.  
Due to the use of big data and the cloud platform, global urban land mapping has 
significantly advanced toward finer-scale and higher spatiotemporal resolutions; for 
instance, GEE significantly increases the data-processing capacity (Kuang, et al., 2021). 
GEE is an online platform designed to make it simple for users of remote sensing to carry 
out large data analytics without having to download any data  (Ermida, et al., 2020). In 
other words, GEE is a website that offers access to cloud computing, global time-series 
satellite images, vector data, and software and methods for processing such data  
(Gorelick, et al., 2017). The data repository has more than 40 years' worth of satellite 
images for the whole planet, as well as a sizable collection of daily and sub-daily data. 
Many sites also include two-week repeat data for the entire time period. The data is derived 
from a variety of satellites, including the entire Landsat series, Moderate Resolution 
Imaging Spectrometer (MODIS), National Oceanographic and Atmospheric Administration 
Advanced very high-resolution radiometer (NOAA AVHRR), Sentinel 1, 2, and 3, Advanced 
Land Observing Satellite (ALOS), and others (the most popular thermal sensors in UHI's 
studies with highest resolution are listed in Table 3). 
For local and small-scale research, the Landsat series of satellites have the capacity to 
offer LST estimations at a high geographic resolution. GEE has direct access to all Landsat 
Level-1 and Level-2 data, including surface reflectance (SR) and top-of-atmosphere (TOA) 
data  (Ermida, et al., 2020). 
 
3.3 DERIVING CRITERIA FOR ASSESSMENT OF LAND SURFACE TEMPERATURE MEASUREMENT 
 
TOA brightness temperatures (BT), surface reflectance (SR), total column water vapor 
(TCWV), and correction of surface emissivity by NDVI are the four key factors used to 
extract LST.  
This study loaded and computed these criteria using Landsat data. Table 5 describes the 
spectral band characteristics for each Landsat. 
 
Table 5. Bands, GEE dataset, spatial resolution, equatorial crossing time (E.C.T.), and 

available date range for each Landsat satellite. Adopted from: (Ermida, et al., 2020: 3, 
Table 1). 
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3.3.1 LANDSAT DATA 
 
The spatial resolution of all TIR bands has been resampled to 30 m. The Normalized 
Difference Vegetation Index (NDVI), which is derived from the SR data, is also derived 
from the red and near-infrared (NIR) bands in addition to the TIR band (instead of the 
TOA values, which is less accurate). Thematic Mapper (TM) sensors are used by Landsat-
4, Landsat-5, and Landsat-7 to acquire data in the visible and infrared spectral areas, 
while Enhanced Thematic Mapper Plus (ETM+), an upgraded version of the TM, is used by 
Landsat-7. For Landsat-8, the Thermal Infrared Sensor (TIRS) provides the TIR data while 
the Operational Land Imager (OLI) collects data in the visible and short-wave infrared 
spectrum (Ermida, et al., 2020). 
The United States Geological Survey (USGS) provides TOA brightness temperatures for 
the Landsat thermal infrared (TIR) channels, which are accessible in GEE for Landsats-
5,7, and 8, collection 2. 
The USGS has made the SR data for each Landsat accessible in GEE as well. The Land 
Surface Reflectance Code (LaSRC) technique is used to create the SR data from Landsat-
8. It does atmospheric correction using a radiative transfer model, supplementary 
atmospheric data from MODIS, and aerosol inversion tests using the coastal aerosol band 
(Ermida, et al., 2020). The Landsat Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) method, which computes the radiative transfer for atmospheric data from 
MODIS and the National Center for Environmental Prediction (NCEP), is used to estimate 
SRs for Landsat-4 to 7 (Ermida, et al., 2020). 
Additionally, the quality assessment band (BQA), which is also made available by the USGS 
through GEE, can be used to acquire information about cloud coverage, including cloud 
shadowing (Ermida, et al., 2020). 
 
3.3.2 TOTAL COLUMN WATER VAPOR DATA 
 
In order to account accurately atmospheric contributions in the TIR measurements, 
information on the water vapor concentration of the atmosphere is needed. On GEE, you 
may find TCWV values using reanalysis data from NCEP and the National Center for 
Atmospheric Research (NCAR). Currently, the only global TCWV dataset on GEE that spans 
the entire Landsat series' operational life is the NCEP/NCAR reanalysis. The TCWV data 
have a six-hourly temporal resolution and a spatial resolution of 2.5 degrees, and they are 
accessible globally from 1948 to the present  (Ermida, et al., 2020). 
 
3.3.3 SURFACE EMISSIVITY 
 
In this investigation, the GEE codes that were just recently developed by (Ermida, et al., 
2020)  to recover LST were employed to compute the surface emissivity. The ASTER Global 
Emissivity Dataset (ASTER GEDv3), created by JPL, is included in this code.   
This dataset, which was obtained using a Temperature-Emissivity Separation (TES) 
technique from all clear-sky ASTER photos, contains the emissivity for the five ASTER 
bands in the TIR region. The reported precision of the emissivity data is 0.01, and it has 
a spatial resolution of 100×100 m2 (Ermida, et al., 2020). 
This code makes a vegetation correction using mean ASTER GEDv3 NDVI and Landsat-
derived NDVI, which is frequently used to calculate surface emissivity by calculating the 
proportion of vegetation cover (FVC). More information is available in (Ermida, et al., 
2020). 
 
3.3.4 RETRIEVAL OF LAND SURFACE TEMPERATURE (LST) 
 
commonly known as skin temperature, is the temperature of the Earth's surface (Martin, 
et al., 2019). Applications of LST data sets in climate research are numerous. Improved 
knowledge of the climatic impacts of changing land use and LC, monitoring of droughts, 
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LC and energy balance changes, heatwave monitoring, estimation of evapotranspiration, 
examinations of UHIs, and daily cycles of UHIs are some examples of this  (Martin, et al., 
2019). LST is one of the crucial variables that affects surface energy balance, regional 
climates, heat fluxes, and energy exchanges. It is the radiative temperature of any land 
surface, including soil, grass, pavements, asphalt, and building roofs. Numerous 
researchers have looked at the significance of LST and its effects on a variety of subjects, 
such as urban climate and Surface Heat Island (SHI) studies, evapotranspiration, 
monitoring of forest fires, geological study, and geothermal studies  (Sekertekin & 
Bonafoni, 2020), (Alahmad, et al., 2020). In order to assess land surface conditions, high-
resolution satellite derived LST is increasingly used in a variety of applications. These 
applications include mapping the extent of urbanization and the intensity of urban 
microclimates, estimating high-resolution evapotranspiration for the management of 
water resources, and determining the stress of vegetation (Ermida, et al., 2020). So, from 
radiance readings taken by meteorological stations, LST can be approximated. However, 
because it is a point-based measurement, this method typically does not permit a large-
scale monitoring. Additionally, not all-weather stations continuously produce data. These 
factors have led to the adoption of remotely sensed data for UHI analysis in numerous 
research.  (Wang, et al., 2016). LSTs are usually measured by remote sensing techniques 
that retrieve satellite thermal infrared data (Alahmad, et al., 2020). 
Thermal energy is emitted in wavelengths from all surfaces. These wavelengths can be 
recognized and measured by equipment on satellites and by other remote sensing 
techniques, which can then be used to determine temperature. Thus, measurements of 
the energy reflected and emitted from the land surface, including roofs, pavements, 
vegetation, bare ground, and water, can be obtained from satellite photos. It is simple to 
gather a large number of surface observations using radiometers placed on an aircraft or 
a satellite (Ngie, et al., 2014). For instance, heat islands can be located using Landsat 
satellite data [Enhanced Thematic Mapper plus (ETM+) band 6 for LST].  
As a result of the equipment's preference for observing emissions from horizontal surfaces 
like streets, rooftops, and treetops, surface measurements made by remote sensing have 
some limitations. For example, they do not completely capture radiant emissions from 
vertical surfaces like a building's wall. In addition, since wavelengths travel from the sun 
to the earth as well as from the earth to the atmosphere, remotely sensed data represent 
radiation that has passed through the atmosphere twice. In order to predict surface 
attributes like temperature and solar reflectance accurately, the data must be rectified. 
Remotely sensed temperature readings, however, offer a broader regional coverage and 
greater temporal resolution (Ngie, et al., 2014). This study has investigated the spatial 
distribution of LST at a few chosen test sites using historical satellite data on daytime and 
nighttime LST. 
 
3.3.5 CONCEPTUAL MODEL OF LAND SURFACE TEMPERATURE ESTIMATION 
 
The algorithm developed by (Ermida, et al., 2020) is used to extract the Landsat LST data 
and define fine-scale spatiotemporal trends in UHI studies. This approach is used to rebuild 
the LST time-series. LST data is specifically derived from scenes acquired by Landsat-5, 
7, and 8, which have spatial resolutions of 120, 60, and 100 m, respectively. 
The statistical mono-window (SMW) algorithm, built on the GEE platform, is used by the 
Landsat LSTs  (Gorelick, et al., 2017). To guarantee consistency of the recovered LSTs 
among satellites, this mono-window technique uses an identical calibration database. It is 
decided to use the method proposed by (Ermida, et al., 2020) to derive the Landsat LSTs 
rather than the LST products offered by the United States Geological Survey (USGS). 
Because we could efficiently perform the analysis on the GEE platform and the Root Mean 
Square Error (RMSE) of the LSTs estimated by this method has been demonstrated with 
an acceptable Root Mean Square Error (RMSE) which is an standard way to measure the 
error of a model in predicting quantitative data, of around 2.0 K (Li, et al., 2022). 
Figure 8 illustrates the processing chain for generating Landsat LSTs by (Ermida, et al., 
2020). The date range, the Landsat satellite, the processing region of interest, and an 
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NDVI flag designating the application of the NDVI-based emissivity correction are first 
provided. Landsat LST loads the appropriate collections of Surface Reflectance and TOA 
Brightness Temperatures (BT) based on this information (SR). The quality information 
bands are used while a cloud mask is applied. Two of the TCWV NCEP analysis times that 
are closest to the Landsat observation time are chosen for each TOA BT image and 
interpolated. To get the fractional vegetation cover (FVC) values, the SR data are used to 
calculate the NDVI. These FVC values are then used to calculate the equivalent Landsat 
emissivity, which is then compared to previously computed ASTER emissivity values for 
bare ground. Finally, the Landsat TOA TB of the TIR band is subjected to the SMW 
algorithm; the algorithm coefficients are overlaid into the Landsat image based on TWVC 
from NCEP (Ermida, et al., 2020). 
 

Figure 8 GEE processing chain for retrieving Landsat LST. The blue text indicates coded 
functions in modules. The gray text indicates GEE datasets used in the production; adopted 
from: (Ermida, et al., 2020: 6, Fig. 1). 
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CHAPTER 4 
4 IMPLEMENTATION OF THE UHI DETECTION MODEL 
 
This work uses multi-spectral and multi-temporal satellite data to determine the LST and, 
consequently, the development of UHIs as well as mitigation suggestions in four different 
classes of cities based on city size. Utilizing the GEE platform, the LSTs are extracted from 
remote sensing photos.  
In this study, spatial and temporal LST data are taken from three summer seasons (1990, 
2005, and 2021) and are evaluated for changes in temperature distribution throughout 
space using Landsat photos. UHI fluctuations are analyzed, mapped, and evaluated using 
high spatial and temporal resolution data from Landsat-5 Enhanced Thematic Mapper 
(ETM+), Landsat-7 Operational Land Imager (OLI), and Landsat-8 OLI/TIRS. The summer 
season was the main focus of this investigation. 
 
4.1 STUDY AREA 
 
Physical and human characteristics together define places. Their topography, climate, 
soils, and hydrology are some of their physical features. Human traits include things like 
language, religion, political and economic systems, and population distribution ((NGE), 
2013).  
 
4.1.1 HUMAN CHARACTERISTICS 
 
One of the major geographic biases of the cities under investigation is the distribution of 
the population. Europe has received the most of attention in the chosen area (33%). 
Following the US, which had the second-highest number of studies (25%) and was followed 
by Iran, India, Australia, Japan, and Canada, which had about 10% of the studies, these 
cities were primarily included in global-scale studies without a specific focus. 
Mega-metropolitan, metropolitan, medium-sized, and small urban areas are the four 
categories used to categorize the cities seen in this study. These cities include New York, 
Washington D.C., and Springfield in the United States; Vienna and Villach in Austria; 
Tehran in Iran; Quebec in Canada; Helsinki in Finland; Canberra in Australia; Palma in 
Spain; Latur in India; and Niihama in Japan (see Figure 9). The summer season defines 
them. Between June and August, throughout the summer, temperatures between 290 and 
330 k. With the exception of Latur, which enjoys two summer months each year (April and 
May), Canberra's summer months are December, January, and February. 

Here is a list of the four kinds of functioning urban areas, organized by country, that the 
Organisation for Economic Cooperation and Development (OECD) determined using the 
approach stated in its study. 
Test sites in this study are presented on the map as following (see Figure 9). 

 

 

§ Small urban areas, with population between 50,000 and 200,000 
§ Medium-sized urban areas, with population between 200,000 and 500,000 
§ Metropolitan areas, with population between 500,000 and 1.5 million 

Large metropolitan areas, with population above 1.5 million ((OECD), 2022). 
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Table 6. City classification based on the size for the study area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
4.1.2 PHYSICAL CHARACTERISTICS 
 
In order to not only show LST changes during chosen time series (1990, 2005, 2021), but 
also to identify the differences in LST changes between various urban areas around the 
world, test sites from all over the world with various climatic characteristics (see Figure 9) 
and urban forms (see Figure 10) were chosen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 9 Distribution of selected test sites. 

Country Name of functional 
urban area Class type Total population in 2021 

Iran Tehran Mega-metropolitan area 9,381,546 

US New York Mega-metropolitan area 8,823,559 

Austria Vienna Mega-metropolitan area 1,691,468 

US Washington D.C. Metropolitan area 718,355 

Finland Helsinki Metropolitan area 558,457 

Canada Quebec Metropolitan area 528,595 

Australia Canberra Medium-sized urban area 462,984 

Spain Palma Medium-sized urban area 401,270 

India Latur Medium-sized urban area 382,754 
Ehime, 
Japan Niihama Small urban area 123,059 

Ilinois, 
US Springfield Small urban area 113,394 

Austria Villach Small urban area 61,879 

Latur (IN) 

New York (US) 

Washington (US) 

Quebec (CA) 

Springfield (US) 

Helsinki (FIN) 

Tehran (IR) 
 

Canberra (AU) 

Niihama (JP) 

Vienna (AT) 
Villach (AT) 

Palma (ES) 
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Figure 10 Administrative boundaries of selected test sites. 

New York 

Tehran 

Vienna Washington 

Helsinki Quebec 
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Figure 10 (continued) 

Canberra Palma 

Latur Niihama 

Springfield Villach 
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The research region, comprising the twelve cities, is classified in six classes by Koppen-
Geiger  (Kottek, et al., 2006) as follows: Humid subtropical climate (Cfa), Marine west 
coast climate (Cfb), Mediterranean climate (Csa), Humid continental climate (Dfa, Dfb), 
and Tropical wet-dry climate (Aw) (see Table 7). Summertime is a feature of the test 
locations. The summer months are from June to August. Two exclusions apply. There are 
differences between Canberra in Australia and Latur in India during the summer. In Latur, 
it begins at the end of March and lasts through the end of May, whereas in Canberra, it 
lasts through the end of February. The summer months have very little precipitation. The 
summer months are from June to August. Two exclusions apply. There are differences 
between Canberra in Australia and Latur in India during the summer. In Latur, it begins 
at the end of March and lasts through the end of May, whereas in Canberra, it lasts through 
the end of February. The summer months have very little precipitation. Some coastal 
cities, like New York City, can experience simultaneous temperature increases of more 
than 300 K and relative humidity levels of up to 70%. 
 
4.2 GEO DATABASE 
 
This study uses remote sensing and GIS data to compare LSTs in twelve different cities 
which are classified based on their size. The study is conducted using multi-spatial and 
multi-temporal Landsat satellite (collection 2) data acquired from a Landsat-5 (TM) for 
years 1990 and 2005, and Landsat-8 Thermal Infrared sensors (OLI/TIRS) for year 2021. 
This study uses Landsat-5 instead of Landsat-7 to avoid scan line error in Landsat-7. There 
are some exceptions; Landsat-7 (ETM) was used for year 2005 in Tehran, Canberra, and 
Latur. Because Landsat-5 has no images for these cities in a certain time. In Landsat-8, 
band 10 is used for calculating surface temperature, while band 6 is used for Landsat-5 
and 7. 
Refers to (Ermida, et al., 2020) Landsat LST code repository, cloud coverage information, 
including cloud shadowing which is retrieved from the quality assessment band (BQA), is 
available in GEE. The characteristics of images used for the analysis are summarised in 
Table 8 (Villach city as an example to show which information are used) and all other 
eleven selected sites are presented in appendix 1. 
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Table 7. Koppen-Geiger climate classifcation for the study area. 
 
 

City Climate 
classification 

Climate characteristics 

Average annual 
temperature (K) 

Warmest month Coolest month Average annual 
precipitation 

(mm) 

Average 
annual 

percentage of 
humidity (%) 

Month Temperature 
(K) Month Temperature 

(K) 

Tehran Csa 290.93 July 309.26 January 260.35 236.22 43.8% 

New York Cfa 286.21 July 302.76 January 273.15 1135.38 71% 

Vienna Cfb 284.54 July 294.87 January 274.37 548.6 80.8% 

Washington 
D.C. Cfa 287.71 July 299.71 January 275.37 1008.4 65% 

Helsinki Dfb 278.15 July 294.26 February 251.98 632.5 79.6% 

Quebec Dfb 277.59 July 292.59 January 260.93 1137.9 78% 

Canberra Cfb 285.93 January 293.71 July 278.71 629.9 67.5% 

Palma Csa 291.04 August 299.04 January 284.87 464.8 70% 

Latur Aw 299.93 May 305.71 December 295.21 797.6 48.1% 

Niihama Cfa 286.32 August 297.54 January 275.15 1839 78.4% 

Springfield Dfa 284.82 July 297.48 January 270.21 950 71.1% 

Villach Dfb 281.37 July 291.87 January 269.93 1074.4 90.1% 
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Table 8. Time, mission, resolution, path and row, acquisition date, sun azimuth, sensor, 

and cloud cover of the records of images used to extract information for Villach (Austria) 
as an example. 

 

 
When researching the effects of the spatial pattern of LC on LST, the spatial resolution of 
an imagery is crucial (Abulibdeh, 2021). High temporal resolution and wide time coverage 
of the air temperature UHI allow it to accurately characterize UHI's temporal volatility but 
fall short in illustrating its geographic variation. Surface temperature UHI, which can give 
continuous and simultaneous surface temperature for a whole city, can address this flaw 
in air temperature UHI (Li, et al., 2013). LST has been extensively used to analyze the 
spatial pattern of UHI and its relationship with LC. LST is retrieved from infrared remote 
sensing pictures.  
 
 
 

City Landsat Scene Identifier Time Mission Resolution 
(m) 

Path 
and 
Row 

Acquisition 
date 

Sun Azimuth 
angle Sensor Cloud 

Cover 

Villach LC81910272021166LGN00 9:51:37 L8 30*30 191×27 2021-06-15 142.76900404 OLI/TIRS 3,14 

 LC81910272021182LGN00 9:51:41 L8 30*30 191×27 2021-07-01 141.60374855 OLI/TIRS 99,91 

 LC81910272021214LGN00 9:51:51 L8 30*30 191×27 2021-08-02 145.23333874 OLI/TIRS 80,09 

 LC81910272021230LGN00 9:51:56 L8 30*30 191×27 2021-08-18 149.23620275 OLI/TIRS 83,88 

 LC81910282021166LGN00 9:52:01 L8 30*30 191×28 2021-06-15 140.31397837 OLI/TIRS 13,75 

 LC81910282021182LGN00 9:52:04 L8 30*30 191×28 2021-07-01 139.16456406 OLI/TIRS 65,99 

 LC81910282021198LGN00 9:52:06 L8 30*30 191×28 2021-07-17 140.21449440 OLI/TIRS 98,74 

 LC81910282021214LGN00 9:52:15 L8 30*30 191×28 2021-08-02 143.27834461 OLI/TIRS 69,92 

 LC81910282021230LGN00 9:52:20 L8 30*30 191×28 2021-08-18 147.60735077 OLI/TIRS 27,76 

 LT51910272005154KIS00 9:39:14 L5 30*30 191×27 2005-06-03 139.47096964 TM 6 

 LT51910272005170KIS00 9:39:21 L5 30*30 191×27 2005-06-19 137.15787149 TM 8 

 LT51910272005202KIS00 9:39:37 L5 30*30 191×27 2005-07-21 138.10590551 TM 54 

 LT51910272005218KIS00 9:39:46 L5 30*30 191×27 2005-08-06 141.44359826 TM 84 

 LT51910282005154KIS00 9:39:38 L5 30*30 191×28 2005-06-03 137.10213231 TM 5 

 LT51910282005170KIS00 9:39:44 L5 30*30 191×28 2005-06-19 134.67328898 TM 2 

 LT51910282005202KIS00 9:40:01 L5 30*30 191×28 2005-07-21 135.90748456 TM 36 

 LT51910282005218KIS00 9:40:10 L5 30*30 191×28 2005-08-06 139.53666557 TM 50 

 LT51910271990177FUI00 9:11:57 L5 30*30 191×27 1990-06-26 126.44418946 TM 12 

 LT51910271990193FUI00 9:11:55 L5 30*30 191×27 1990-07-12 126.94752318 TM 2 

 LT51910271990209FUI00 9:11:51 L5 30*30 191×27 1990-07-28 129.49816191 TM 6 

 LT51910271990225FUI00 9:11:46 L5 30*30 191×27 1990-08-13 133.61240714 TM 4 

 LT51910271990241FUI00 9:11:40 L5 30*30 191×27 1990-08-29 138.55194470 TM 11 

 LT51910281990177FUI00 9:12:21 L5 30*30 191×28 1990-06-26 124.07352076 TM 11 

 LT51910281990193FUI00 9:12:19 L5 30*30 191×28 1990-07-12 124.69842050 TM 2 

 LT51910281990209FUI00 9:12:15 L5 30*30 191×28 1990-07-28 127.46119445 TM 6 

 LT51910281990225FUI00 9:12:10 L5 30*30 191×28 1990-08-13 131.83456972 TM 3 

 LT51910281990241FUI00 9:12:03 L5 30*30 191×28 1990-08-29 137.03946203 TM 3 
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Different research on UHI produced different LC maps using remotely sensed image data 
with various spatial resolutions (Vannier, et al., 2011), (Liu & Weng, 2009), (Townsend, 
et al., 2009), (Wenga, et al., 2004). (Liu & Weng, 2009) for example, applied a spatial 
resolution of 90 m and 30 m, respectively, to study the connections between the LST and 
landscape level and pattern. (Wenga, et al., 2004) discovered that the 120 m is the optimal 
resolution for describing the link between LST and NDVI. (Li, et al., 2013) looked at the 
role of spatial resolution in defining the LST. Based on seven landscape indicators, they 
measured the spatial pattern of greenspace using three spatial resolutions (2.44 m, 10 m, 
and 30 m). They observed that photos with high spatial resolution allow for more accurate 
quantification of the greenspace spatial pattern, and as a result, the link between LST and 
the spatial configuration of greenspaces varies depending on the spatial resolution 
(Abulibdeh, 2021). 
Five LC classes are identifed within the selected test sites using unsupervised classifcation 
to investigate the LST and the UHI efect as shown in Table 9. 
 
Table 9. LC classifcation and defnitions are used in this study. Adapted from: (Abulibdeh, 

2021: 259, Table 4). 
Classes Definition 
Blue area All water areas (water bodies, perennial Ice and Snow, open water) 

Urban area All built-up areas (residential, commercial, industrial, roads, parking 
lots, paved areas, construction sites) 

Bare area All areas containing exposed and non-developed surfaces (sand, rocks, 
soil) 

Green area All areas of natural or vegetation (parks, trees, grasses, golf courses) 

Cropland area All areas of lands that crop is grown in addition to the area cultivated, 
headlands, ditches and other non-cultivated areas. 

 
4.3 SPATIOTEMPORAL ANALYSIS 
 
The findings, which are displayed as LST maps below, show that surface temperatures 
ranged between 290 and 330 K. 1990 is the year with the lowest remotely felt LST value, 
followed by 2005, which is higher than 2021 temps, although both years exhibit 
comparable spatiotemporal LST patterns across time for the eleven research locations 
(Figure 11). The only exception is Quebec City, Canada, where the temperature continues 
to drop over time. 
Additionally, between 1990 and 2021, LST maps for the five LC types display various 
spatial patterns. All cities share the following similarity: blue regions have the lowest mean 
LST values, followed by green areas with lower mean LST values than cropland areas, and 
cropland and urban areas with higher LST values than bare areas (Table 10), which 
emphasizes the impact of LC on LST values (Figure 11). 
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Figure 11 LST of the urban, blue, green, cropland, and bare areas in 1990 and 2021. 
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The LST comparison results show an inversion of the UHI phenomena in these cities since 
the major urban area's surface is impermeable, which absorbs more sunlight than blue or 
green areas due to the poor reflection of the pavement and buildings. Additionally, this 
pattern demonstrates a positive link between farmland, barren, and urban regions with 
mean LSTs and a negative correlation between green and blue areas and LST. 
According to Table 10, the twelve cities experienced the greatest differences in the mean 
LST values between the five types of LC throughout time. The table displays the 
temperature pattern as temperature data are subject to LC categories at the chosen time 
series (figure 12). 
 
Table 10. LST (K) and LC in 2021 and 1990. 
 

  count mean std min 0.25 0.5 0.75 max 

LC Classes Year         

Bare area 
1990 8 267.3 108.50 0 297 300 307 326 

2021 6 259.7 127.50 0 304.5 307 311 328 

Blue area 
1990 11 300 5.73 291 297 299 303.5 312 

2021 12 303 7.14 292 299 304 306.5 317 

Cropland area 
1990 11 308.7 9.95 296 302 306 315 328 

2021 11 312.2 9.38 299 306 310 320.5 326 

Green area 
1990 11 304.3 8.79 295 299.5 300 307.5 324 

2021 12 308.3 10.14 295 302.5 306 312.5 328 

Urban area 
1990 11 309 7.63 298 305 306 314 324 

2021 12 312.4 7.77 299 309 313 318.25 323 

  
Box and Whisker Plots were utilized in this study as an easy method of graphically 
exhibiting the results and explanatory data analysis to demonstrate the distribution of the 
data via their quartiles. 
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Figure 12 LST values for all twelve cities in two different time series. Boxes indicate the 
inter-quartile range, red lines indicate the median, and whiskers indicate the min and max 
LST values. 

In the year 1990, although Latur has no data, the diference in temperatures between the 
bare areas and the urban areas range between 2 and 18 K, between the urban areas and 
green areas ranges between 0 and 7 K, between the green areas and cropland areas 
ranges between 2 and 18 K, between the cropland areas and bare areas ranges between 
2 and 5 K (except Canberra city that has a huge difference temperature, around 30 K), 
between the blue areas and green areas ranges between 0 and 12 K, between green areas 
and bare areas ranges between 1 and 7 K (with this consideration that most of the selected 
test sites have no bare areas), bare areas and blue areas have a LST differences between 
1 and 18 K, between blue areas and urban areas ranges between 5 and 14 K, and between 
urban areas and cropland areas ranges between 1 and 6 K (except Canberra city that has 
a difference temperature, around 12 K). The year 2021 shows a similar trend with a slightly 
diferent range in temperature between the five areas compared to 1990 period (Figure 
13). 
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Figure 13 The difference in LST values between two time series (LST2021 - LST1990) in each 
LC classes.  

In mega-metropolitan cities (Tehran, New York, and Vienna), although the diference in 
temperatures between 1990 and 2021 ranges between 1 and 4 K in all three cities, but 
the point is that New York and Vienna have higher temperature in 2021 and this is vice 
versa about Tehran. It shows Tehran is a successful example in terms of lowering LST.  
In metropolitan areas, Washington D.C. and Helsinki have 2 to 9 K higher temperature in 
2021 in compare with 1990. While Quebec City has experienced lower temperature 
(between 0-7 K) in 2021 that it depicts Quebec is another successful case study to cool 
down the LST during the time series. 
The diferences in temperatures between the year 1990 and 2021 for medium-size and 
small-size urban areas range between 1 and 10 K. While there is Villach city as an 
exception in the class of small-size urban areas with the same LST’s value for each LC 
class. On the other hand, P-values of mean LST value (in K) between different LCs are 
listed in Table 11. P-value reported from t test is more than 0.05 that is said the result is 
insignificant means there is no relationship between each two LC classes being studied 
(one LC class does not affect the other). Table 11 states the results are due to chance and 
are not significant in terms of supporting this idea that there is a relashinship between 
each two LC classes. 
 
Table 11. P-value reported from t test to represent LC relationships. 
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4.4 LST VALIDATION 
 
For a meaningful scientific use of satellite LST, information about the quality of the data 
sets has to be available. This can be obtained in several ways, including validation against 
in-situ data, radiance-based validation, satellite-satellite intercomparisons, or time series 
analysis (Martin, et al., 2019). 
This study compares satellite data sets against in-situ measurements to validate them in 
order to learn more about the quality of the satellite data sets. Over one of the in-situ 
stations, which is situated in regions with various LC types, LST data sets obtained for a 
number of regularly used polar-orbiting and geostationary satellites are specifically 
compared. The in-situ station is: SURFRAD (Surface Radiation Budget Network) stations 
operated by the National Oceanic and Atmospheric Administration’s (NOAA’s) Office of 
Global Programs. SURFRAD stations provide hemispherical measurements of broadband 
infrared radiative flux. Despite offering high-quality data, a number of writers noted the 
SURFRAD measurements' limits for confirming satellite LST, chief among them a lack of 
spatial representativeness (Ermida, et al., 2020). One of the seven SURFRAD sites, which 
is mentioned in Table 12, is dispersed around the world. But due to surface heterogeneity 
difficulties that led to an incompatibility between ground and satellite footprints, we 
disqualified one of the SURFRAD sites. With in-situ LST derived from the Desert Rock, 
Nevada (DRA) site validation station, the quality of the derived Landsat LST is evaluated. 
In-situ data comparisons are only performed for Landsat-8 in the year 2021. 
Landsat LST data are only validated for Vienna, New York, and Washington in June 2021, 
Tehran, and Palma in June, July, and August due to a lack of the information needed to 
calculate broad band emissivity, LST at well-maintained Landsat satellites and in-situ 
SURFRAD sites in specified time series (2021). Towards the conclusion, it displays a sizable 
number of Landsat LST values that are significantly lower/higher than the in-situ 
estimates, which is likely due to cloud contamination, a lack of data for a few days 
throughout the entire month, as well as global average variables for DRA data. 
 
Table 12. Location, elevation, land cover type, and start date of the records of the 
SURFRAD stations used to assess the quality of the Landsat LST retrievals. Adapted from: 
Sekertekin, et al., 2019: 4, Table 1). 
 

ID Name Latitude Longitude Elevation Time 
Zone 

Installed 
Date 

DRA Desert Rock, 
Nevada 36.62373°N 116.01947°W 1007m 8 hours 

from UTC 
1-Mar-
1998 

 
4.4.1 IN-SITU LST DERIVATION 
 
With an error of around 5Wm^ (-2), the SURFRAD stations give broadband measurements 
of hemispherical upwelling and downwelling infrared brightness.  Every three minutes up 
to 2009, every minute following 2009, and every minute thereafter, two pyrgeometers 
measured upwelling and downwelling longwave radiations at a height of 10 m.  (Duan, et 
al., 2021). All information can be accessed for free at  
 (https://www.esrl.noaa.gov/gmd/grad/surfrad/). In this work, the Landsat LST product 
is validated using in-situ data gathered at the DRA site. Equation (1) uses the Stefan-
Boltzmann formula to determine in-situ LST using upwelling and downwelling longwave 
radiations. 
 
 
 
 
 

(1) 
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where LST is the in-situ LST, Lu and Ld are the upwelling and downwelling longwave 
radiations, respectively, σSB is the Stefan–Boltzmann constant, and εBB is the broadband 
emissivity, which can be calculated from the ASTER GEDv3 product using a regression 
relationship (Duan, et al., 2021): 
 
 
where εA10–εA14 are in ASTER bands emissivity 10-14, respectively. 
The respective broadband value for each Landsat pixel is then obtained with Equation (2). 
 
4.4.2. STATISTICAL ANALYSIS 
 
Analysis revealed variations between the in-situ and estimated Landsat LST products 
between 0 and 5 K. Comparisons of in-situ LST and Landsat LST over Dfb regions, 
however, show that satellite estimates considerably underestimate the LST and that the 
Landsat LST algorithm can produce considerable inaccuracies in the recovered LST over 
places with high atmospheric water vapor. Due to inaccurate emissivity characterisation, 
differences of up to 4 K were seen over Csa and Mediterranean climate regions. In contrast, 
differences of up to 15 K were seen over Cfb and Aw regions with high atmospheric water 
content. 
(Duan, et al., 2021) stated that there is a significant bias in the Landsat LST product at 
some vegetated sites because the land surface emissivity (LSE) estimation was flawed 
because LSE is independent of the normalized difference vegetation index (NDVI). A mean 
bias of the discrepancies between Landsat LST and in-situ LST is 1.0 K (2.1 K) over snow-
free land surfaces, 1.1 K (1.6 K) over snow surfaces, and 0.3 K (1.1 K) over water surfaces, 
with the exception of the sites with inaccurate LSE estimation (Duan, et al., 2021). Due 
to the summer's higher spatial LST heterogeneity and somewhat lower atmospheric 
transmittance, large LST differences are observed at the DRA location (Duan, et al., 2021). 
However, bare soil surfaces have greater error in LST retrieval than vegetated surface s 
due to factors other than atmospheric and surface variables, such as greater uncertainty 
in the LSE determination (Li, et al., 2013). 
The areas we chose for the time-series retrieval are far from the DRA stations, and the 
DRA station is situated in a desert region with little plant cover. These could be the cause 
of the significant bias between in-situ LST and LST computed by Landsat. 
 
Table 13. Statistical analysis: mean bbe (K), mean Landsat LST (K), and mean In-situ LST 

(K) and variation between Landsat LST calculation and In-situ LST calculation. 

June New York Tehran Vienna Washington Palma 
Mean bbe 0.97 0.98 0.97 0.97 0.65 
Mean Landsat LST 306.04 315.80 308.60 307.89 205.37 
Mean In-situ LST 311.95 311.75 311.90 311.84 207.89 
Landsat LST-In situ LST -5.90 4.05 -3.30 -3.94 -2.52 

July      

Mean bbe  0.98   0.97 
Mean Landsat LST  316.16   310.18 
Mean In-situ LST  314.94   315.02 
Landsat LST-In situ LST  1.22   -4.85 

August      

Mean bbe  0.98   0.97 
Mean Landsat LST  313.85   311.30 
Mean In-situ LST  314.50   314.59 
Landsat LST-In situ LST  -0.65   -3.29 

(2) 
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CHAPTER 5 
5 RESULTS 
5.1 UHI MAPS VISUALIZATION 
 
Using remote sensing and satellite images, the spatial LST value distributions are 
computed and visualized for each of the twelve cities. As illustrated in Figure 14, this is 
done to represent temperature differences and, consequently, the areas affected by UHIs 
for the years 1990, 2005, and 2021. 
 
 

 
 
 
 
 

 
 

 
 
 

 
 

 

Figure 14 Mean LST (K) for the twelve cities in the years 1990, 2005 and 2021 assessed 
in this study. 

Tehran_1990 Tehran_2005 Tehran_2021 

New York_1990 New York_2005 New York_2021 
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Figure 14 (continued) 

Vienna_1990 Vienna_2005 Vienna_2021 

Washington_1990 Washington_2005 Washington_2021 

Helsinki_1990 Helsinki_2005 Helsinki_2021 
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Figure 14 (continued) 

Quebec_1990 Quebec_1990 Quebec_1990 

Canberra_1990 Canberra_2005 Canberra_2021 

Palma_1990 Palma_2005 Palma_2021 
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Figure 14 (continued) 

Latur_2005 Latur_1990 Latur_2021 

Niihama_1990 

Niihama_2005 Niihama_2021 

Springfield_1990 Springfield_1990 Springfield_1990 

Niihama_1990 
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Figure 14 (continued) 
 
 
5.2 SPATIOTEMPORAL PATTERN OF LC DYNAMICS 
 
In Figure 15, the spatial LC maps of the twelve selected test sites are displayed. The 
observed changes show the percentage of each LC class that was converted to another LC 
between 1990 and 2021 (Table 14). 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 15 Spatial LC visual comparison for the twelve cities assessed in this study. 
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Figure 15 (continued) 
 
 
 

New York_2000 
New York_2020 
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Figure 15 (continued) 

Washington_2000 Washington_2020 

Helsinki_2000 Helsinki_2020 
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Quebec_2020 



 

51 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 15 (continued) 
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Figure 15 (continued) 
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Table 14 represents the area (in %) of each LC class in two different time series (1990 
and 2021) for the selected test sites. 
 
Table 14. Summary of the LC change (in %) from the maps (1990–2021) in twelve 

selected test sites. 
 
LC 
Classes 

Tehran New York Vienna 
1990 2021 1990 2021 1990 2021 

Urban 66.87 85.16 60.06 60.31 63.59 65.43 
Blue 0.05 0.24 35.48 35.54 2.71 2.67 
Green 19.88 9.75 3.99 3.45 24.47 24.28 
Cropland 1.45 1.59 0.48 0.71 9.23 7.62 
Bare 11.75 3.26 0.00 0.00 0.00   
       

 
Washington Helsinki Quebec 
1990 2021 1990 2021 1990 2021 

Urban 82.11 82.95 23.13 23.96 46.60 49.95 
Blue 8.79 8.58 70.24 70.05 5.82 5.83 
Green 8.12 7.63 5.39 4.84 40.82 37.52 
Cropland 0.98 0.83 1.23 1.15 6.76 6.70 
Bare         0.00   
       

 
Canberra Palma Latur 
1990 2021 1990 2021 1990 2021 

Urban 12.64 0.71 41.94 49.20 5.89 10.96 
Blue 0.63 15.26 0.52 0.19 0.88 1.19 
Green 85.44 82.22 45.35 40.34 15.20 7.53 
Cropland 1.30 1.80 12.17 10.25 78.03 80.33 
Bare 0.00 0.00 0.02 0.01     
       

 
Niihama Springfield Villach 
1990 2021 1990 2021 1990 2021 

Urban 14.90 15.97 68.89 72.47 23.69 29.12 
Blue 43.95 43.87 9.09 9.35 4.38 4.59 
Green 41.09 40.15 8.53 8.16 69.11 63.94 
Cropland 0.06   13.49 10.02 2.82 2.34 
Bare 0.00 0.00     0.01   
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Figure 16 gives a better insight not only about what is the relationship betwen different 
LC classes but also it depicts LC changes in different time periods.  
 

  

  

  

Figure 16 Description of area (in %) of LC statistics for twelve selected test sites in 1990 
and 2021. 
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Figure 16 (continued)  
 
 

Washington 1990

Urban Blue Green Cropland Bare

Washington 2021

Urban Blue Green Cropland Bare

Helsinki 1990

Urban Blue Green Cropland Bare

Helsinki 2021

Urban Blue Green Cropland Bare

Quebec 1990

Urban Blue Green Cropland Bare

Quebec 2021

Urban Blue Green Cropland Bare
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Figure 16 (continued) 
 
 

Canberra 1990

Urban Blue Green Cropland Bare

Canberra 2021

Urban Blue Green Cropland Bare

Palma 1990

Urban Blue Green Cropland Bare

Palma 2021

Urban Blue Green Cropland Bare

Latur 1990
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Latur 2021

Urban Blue Green Cropland Bare
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Figure 16 (continued) 
 
 

Niihama 1990

Urban Blue Green Cropland Bare

Niihama 2021

Urban Blue Green Cropland Bare

Springfield 1990

Urban Blue Green Cropland Bare

Springfield 2021

Urban Blue Green Cropland Bare

Villach 1990

Urban Blue Green Cropland Bare

Villach 2021

Urban Blue Green Cropland Bare
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5.3 UHIS SPATIAL PATTERNS AND TEMPORAL VARIATIONS 
 
As previously explained, LST is listed at five LC classes (urban, blue, green, cropland, and 
bare area) for the Landsat TM, ETM, and OLI/TIRS thermal bands. According to Table 15, 
the twelve cities experienced the greatest differences in the mean LST values between the 
five types of LC throughout time. For the five LC categories, each city displayed different 
LST spatial patterns. However, the majority of the selected test sites show that green and 
blue areas had lower mean LSTs than urban and bare areas, whereas cropland areas had 
higher mean LST values than bare areas (Table 15), which emphasizes the impact of LC 
on LST values. Additionally, this pattern reveals a negative relation between green and 
blue areas with mean LSTs and a positive relation between urban and bare areas with 
mean LSTs. 
 
Table 15. Mean surface temperatures (K) for the twelve cities assessed in this study. 
 

City 1990 2021 
Urban Blue Green Cropland Bare Urban Blue Green Cropland Bare 

Tehran 324 312 324 321 326 320 309 324 326 328 
New York 311 297 305 306 304 312 301 306 308 304 
Vienna 306 297 300 309   310 300 303 311   
Washington 305 299 299 303   314 304 306 310   
Helsinki 298 291 295 296   306 296 301 304   
Quebec 306 297 300 302 300 299 292 297 302   
Canberra 316 304 310 328 298 319 306 311 321 308 
Palma 315 305 314 316 316 318 308 317 320 312 
Latur           323 317 328 325   
Niihama 305 300 300 302 300 318 306 305   306 
Springfield 313 303 305 314   310 304 306 308   
Villach 300 295 295 299 294 300 293 295 299   

 
5.4 UHI REMEDIES RECOMMENDATIONS 
 
Urban planning aims to balance conflicts between the need for expansion, social equality, 
and the environment while managing the use and development of land. To mitigate the 
effects of UHI effects, moderate temperatures, and increase urban areas' capacity to adapt 
to a warming climate, a range of solutions, policies, and strategies had been proposed, 
advocated for, and implemented in various cities. Applying cooling materials, increasing 
the amount of vegetation and water in urban areas, and reducing anthropogenic heat and 
water have been some of these strategies. However, only some of the many factors that 
affect these strategies' adoption and success can be taken into account by urban planning 
policies or urban contexts (density, scale, design, geometry). Environmental factors 
including scale, geography, climatology, and surface morphology are also included 
(Abulibdeh, 2021). 
Therefore, the purpose of this chapter is to offer environmental experts’ evidence and 
valuable advice so that development strategies and projects may be adjusted to reduce 
the effects of UHIs and moderate urban microclimates in urban areas. Planning takes such 
measures into account in order to reduce city temperatures, particularly in the summer. 
And hence, the findings of this chapter can be used to establish the fundamental principles 
that urban designers, urban planners, architects, and landscape designers, as well as 
public health departments, should follow in order to reduce urban areas' UHI impressions 
and increase their thermal comfort. 
This can be done by highlighting how crucial green spaces are for minimizing the impacts 
of UHI. This necessitates analyzing the relationships between LC and LSTs in order to 
evaluate the city and its methods. These strategies not only help urban areas cool down, 
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but they also lower energy consumption and reduce on sources of air and water pollution, 
including greenhouse gas emissions (Giguère, 2009). 
“By diminishing the accumulation of heat and applying cooling techniques, cities can 
reduce the temperature difference between urban and rural areas" (Filho, et al., 2017). 
The result of this study indicates that Quebec is one of the selected test sites that is 
successful to cooling down the temperature over time. There have been the UHI Mitigation 
Strategies catalogue in Quebec that can be used to suggest mitigation strategies:  

§ Vegetation.  
§ Sustainable urban infrastructure.  
§ Sustainable stormwater management.  
§ Reduction of anthropogenic heat.  

The mitigating methods are then divided into groups according to magnitude (building and 
urban planning). The building mitigation measures are divided into three categories: 
protection from solar radiation, minimizing heat infiltration, reducing anthropogenic heat, 
and maintaining a comfortable thermal environment. In contrast, the urban planning and 
development measures are divided into three categories: greening, urban infrastructure, 
and anthropogenic heat reduction. The actions are arranged into four packages in the 
catalog created as part of the UHI project, which was carried out via the Central Europe 
Programme co-financed by the ERDF (Vienna University of Technology, 2014) structures 
the actions in four packages:  

§ Buildings.  
§ Pavements.  
§ Vegetation.  
§ Street morphology.  

Since the mitigation strategies must be considered well prepared and consistently applied 
actions, three blocks of mitigation techniques are used in the Yamamoto compilation 
research (Yamamoto, 2006).  

§ Reduction of anthropogenic heat release.  
§ Improvement of artificial surface covers.  
§ Improvement of urban structure.  

And introduces important characteristics for each mitigation strategy:  
§ Scale (individuals, buildings, ward, city).  
§ Period (short, medium, or long term).  
§ Degree of effect (on sweltering nights or on daytime temperature rise).  
§ Administrators of the actions (individuals, business institutions, local 

governments…). 
The analysis of the aforementioned catalogues led researchers to the conclusion that, 
despite differences in catalog format, the essence of UHI mitigation measures is generally 
agreed upon.  
 
5.5 SHORT TERM SOLUTIONS 
5.5.1 USE OF LIGHT-COLORED CONCRETE AND WHITE ROOFS 
 
Researchers have discovered that using white roofs and light-colored concrete can reflect 
up to 50% more light and lower the ambient temperature. It's been demonstrated that 
these strategies provide excellent ways to lessen the UHI effect. Massive volumes of solar 
heat are absorbed by black and dull colors, making surfaces warmer. Overall air 
conditioning requirements can be decreased by using white roofs and light-colored 
concrete. For instance, as part of the GAF Cool Community Project, 1 million square feet 
of asphalt on Los Angeles (L.A.) roadways are being painted with solar-reflective paint. 
The program spans parking lots, playgrounds, and roads, and it has already cooled the 
surface by 10 to 12 degrees. 
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5.5.2 GREEN ROOFS 
 
A great way to decrease the effects of UHIs is using green roofs. The concept of "green 
roofing" involves growing plants on roofs in a similar way to how plants grow in gardens. 
In the summer, plants on the roof act as great insulators and reduce the total UHI effect. 
Plants reduce the need for air conditioning by cooling the surrounding environments. 
Additionally, because the plants create fresh air and absorb carbon dioxide, the air quality 
is enhanced. Street trees, curbside planting, and open space planting are additional 
techniques that can be applied. All of these methods reduce the cost of cooling urban areas 
while producing a cooling impact. “Using green roofs in cities or other built environments 
with limited vegetation can moderate the heat island effect, particularly during the day. 
Green roof temperatures can be 272-278 K (30–40°F) lower than those of conventional 
roofs and can reduce city-wide ambient temperatures by up to 258 K (5°F)” (EPA., 2014). 
 
5.5.3 GREEN WALLS 
 
Vertical ecosystems called "green walls" significantly reduce the temperature of the 
building envelope and increase energy efficiency. By increasing the building's thermal 
mass, these walls enable to prevent significant temperature fluctuations (Giguère, et al., 
2009). 
Protecting the building envelope from UV rays, capturing suspended particulates, and 
shielding walls from graffiti are a few advantages of these green installations (Lepp, 2008). 
They can be installed on any kind of structure, including fences, phone poles, and light 
standards. 
 
5.5.4 PLANTING TREES IN CITIES 
 
Planting trees in and around cities is a great way to reflect solar radiation and reduce the 
UHI impact at the same time. Trees have cooling effects, release oxygen and fresh air, 
absorb carbon dioxide, and provide shade. The ideal trees for urban areas are deciduous 
ones since they don't block out the sun's warmth in the winter and have a cooling impact 
in the summer. In addition, several studies have found that urban greening is a powerful 
method for lowering LST and so minimizing the impacts of UHIs (Abulibdeh, 2021). 
Increased green space within the city is a crucial mitigating strategy. Evapotranspiration 
assists in keeping the air temperature between 1.6 and 3.3˚C  by intercepting solar energy 
before it is absorbed by the impermeable materials of the city, in addition to acting as a 
filter against wind currents. In addition, vegetation helps recharge groundwater and 
reduces surface temperature increases through evapotranspiration, which also applies to 
green roofs (Villanueva-Solis, 2017). 
 
5.5.5 GREEN PARKING LOTS 
 
The UHI effect is influenced by parking lots that are asphalt-paved because asphalt has a 
poor albedo (Rosenzweig, et al., 2005). It is advised that vegetation be grown within 
(vegetation medians) and around the perimeter of parking lots (vegetation strips) in order 
to lessen the heat retained in these asphalt surfaces and in the vehicles parked there. On 
paved areas, shade is to be produced. On paved areas, shade creation is the goal. 
According to (Giguère, et al., 2009), the shade provided by the trees will help shield the 
pavement from extreme heat fluctuations and increase its longevity.  
 
5.6 LONG TERM SOLUTIONS 
 
Characteristics of urban areas can affect how UHI effects arise. The lack of trees and 
vegetation, a large proportion of impervious surface area, less reflecting building and 
paving materials, and dense, compact construction that prevents heat loss can all 
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exacerbate the UHI impact. Consequently, a large part of the UHI impact is influenced by 
the built environment (U.S. EPA, 2008). When analyzing long-term UHI mitigation, it is 
preferable to take all possible alternatives into account. In order to mitigate UHI, this 
section will finish with a discussion of smart growth and nature-based solutions (NbS). 
Smart growth strategies assist protects the environment while improving the aesthetics, 
livability, and economic vitality of communities. The main objectives of these plans are to 
increase the effectiveness of the transportation system and to determine how and where 
to accommodate both new and redevelopment ((EPA), 2011). In 1991, the Local 
Government Commission created the Ahwahnee Principles for Resource-Efficient 
Communities, which established the basis for new urbanism efforts and provided 
development vision for smart growth programmes. The principles are intended to assist 
local government decision-makers in reducing sprawl and promoting efficient development 
((SMAQMD), 2019). 
Due to UHI's possible health consequences, NbS are also becoming more and more popular 
in recent years for addressing environmental problems, including air pollution and climate 
change. NbS is defined by the European Commission as "Solutions that are inspired and 
supported by nature, which are cost-effective, simultaneously provide environmental, 
social and economic benefits and help build resilience" ((EC), 2021). It means NbS are 
resource-effective ways to reduce the negative effects of pollution and climate change 
while also enhancing the health and well-being of city dwellers and promoting (Menon & 
Sharma, 2021). The following is the NbS for UHI mitigation and adaptation: 
 
5.6.1 VEGETATION COVER 
 
In metropolitan areas, increasing plant cover is one of the simplest strategies to reduce 
the impact of UHI. To assist reduce the consequences of UHI, several municipalities in the 
Capital Region have included this strategy into general plans, climate action plans, and 
other planning documents (WSP, 2019). Numerous studies have shown that vegetation 
cover has a great impact on moderating temperature, especially in urban areas (Chen, et 
al., 2020). It is proposed that increasing vegetation cover and greenery can reduce UHI, 
reduce air pollution, and enhance thermal comfort in cities. Native plant species with 
increased cooling capability and pollution tolerance provide excellent alternatives as a 
general solution to the issue of UHI. Thus, while developing mitigation strategies for urban 
heat, planners must pay attention to both the area covered by vegetation and its spatial 
distribution as well as the plant species that need to be planted. Green areas have effects 
on climate change mitigation and local and global adaptation (Menon & Sharma, 2021). 
Additionally, greenery and open areas have many positive environmental effects. They 
provide ground water recharge and reduce surface runoff, which both contribute to better 
hydrology (Zhang, et al., 2015), (Ramaiah & Avtar, 2019). (Bai, et al., 2018) claim that 
green cover might also serve as a buffer to severe events like floods and support in climate 
adaptation by serving as natural storm water drains, lowering the risks of climate-related 
disasters for urban areas. So, large green areas with a single composition have larger 
cooling effects in terms of morphology (Kong, et al., 2014). To comprehend the relevance 
of the morphology of the urban greens, many landscape matrices have been investigated. 
An essential element in characterizing the morphology of a city's green space is the 
Landscape Shape Index. The cooling intensity is often low or occasionally negative for 
small green areas with complicated forms (Jaganmohan, et al., 2016). The form of the 
green spaces, in addition to their size, affects how well they can keep cool. For instance, 
it's been discovered that circular green area absorbs heat more effectively than square 
green space (Yu, et al., 2018). The impact of the shape and arrangement of green space 
on temperature reduction has been extensively explored, and conflicting results have been 
recorded in various case studies, which are studied by (Lu, et al., 2020) as follows:  

§ It was discovered by (Li, et al., 2012) that LST increased significantly with higher 
patch density, given a constant quantity of greenspace in the Beijing metropolitan 
area. 
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§ (Peng, et al., 2016) stated a positive association between LST and the shape and 
fragmentation index of vegetated land in Beijing.  

§ In Isfahan, Iran, it was discovered by (Asgarian, et al., 2015) that a complex patch 
shape with extremely convoluted edges had higher moderating effects on LST.  

§ In Sacramento, CA, with a Mediterranean climate and hot and dry summers, (Ma, 
et al., 2016) found that mean patch size and edge density of trees had negative 
and positive effects on LST. They accomplished this by using analytical units with 
the greatest size of 1080 × 1080 m.  

§ (Masoudi, et al., 2019) used 240 × 240 m grids to analyze the complex relationship 
between green space pattern and LST in four major Asian cities. They discovered 
that while configuration was not a factor in Kuala Lumpur and Hong Kong, it was 
in Jakarta and Singapore where simply shaped, more aggregated, less fragmented 
patches of green space produced the best cooling effects. 

Furthermore, the vegetation configuration is also observed to influence the cooling 
capacity of the green spaces. Green spaces with trees have stronger cooling effect than 
grass. 
Planting trees has several advantages, but its shade, which helps prevent the low albedo 
surfaces that are common in urban areas from absorbing and releasing solar heat, is by 
far the most advantageous. Additionally, evapotranspiration—the term for the combined 
effects of transpiration and evaporation—has a very slight cooling impact. Water vapor is 
produced when water evaporates from a land surface and enters the atmosphere. Plants 
emit water vapor through a process called transpiration (WSP, 2019). 
Plants often cover their stomata to decrease water loss during hot weather, hence the 
cooling potential of evapotranspiration is frequently exaggerated. Although other local 
factors, such humidity, have an influence, most plants start to close their stomata at 
96.8°F (36°C), which limits evapotranspiration's ability to mitigate the effects of UHI 
(Giguère, et al., 2009).  
Two significant cooling processes for cooling urban forestry are the increase in surface 
roughness (variation in height between urban landscape features) and the decrease in air 
pollution concentrations (which can trap heat). Height variability enhances atmospheric 
convection, which increases the efficiency with which surface heat is transported to the 
higher atmosphere (Giguère, et al., 2009). 
A wider variety of transportation projects can combine the following green infrastructure 
strategies, which Georgetown Climate Center has studied ((GCC), 2022): 

§ Green roofs: Traditional roofs absorb sunlight and release heat into the 
atmosphere. On green roofs, vegetation provides shade for the roof and cools the 
air through evapotranspiration. In this approach, vegetation can make a green roof 
100 °F cooler than a typical black roof, and these cooler roofs transfer less heat to 
the surrounding air. Although green roofs don't take up any additional land and 
help keep building occupants cooler, they don't have as much of an impact on air 
temperatures as vegetation at ground level does. Green roofs aid in lowering 
energy use, enhancing air quality, and lowering heat in addition to managing 
stormwater. 

§ Permeable pavements: Permeable pavements feature gaps that air and water 
may pass through. These gaps enable water to seep into the ground, minimizing 
runoff. By leaving out the smaller stones that are typically included, porous asphalt 
and concrete can both be created. More specialized types of porous pavements 
include interlocking concrete pavers, in which water drains through the spaces 
between precast blocks, and grass or gravel pavers, in which fill materials are 
arranged on top of a plastic grid. Due to lower heat storage and evaporation, 
permeable pavements can offer cooling effects. Streets, parking lots, alleys, and 
sidewalks can all benefit from permeable pavements. Some concerns about 
whether permeable pavements are suitable for cold climates or high-traffic areas 
are currently being tracked and evaluated in cities like Chicago and Washington, 
DC, with encouraging results so far. 
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§ Bioretention and bioswales: Bioswales are a form of stormwater retention that 
employ vegetation and an open-channel shape to reduce runoff and filter 
pollutants, putting less load on stormwater infrastructure and enhancing water 
quality. By absorbing and storing part of the stormwater, bioswales—often 
incorporated into streetscapes or used to divert stormwater away from vital 
infrastructure—can help lessen the need for the installation of gray stormwater 
systems. Bioswales may lower temperatures, expand habitat for city animals, and 
enhance air quality. Moreover, they frequently have a positive aesthetic impact and 
may raise property prices. 

§ Green streets, alleys, and parking lots: Green streets, alleys, and parking lots 
can integrate all of the aforementioned strategies into a cohesive plan. Green 
streets and alleys can offer a number of advantages by combining the measures, 
including runoff and pollutant reduction, improved air quality, and UHI mitigation. 
Green parking lots can be constructed on both public and private property, although 
local governments often place them in the public right-of-way. 

§ Rain gardens: “Rain gardens are small gardens that are designed to survive 
extremes in precipitation and help retain or reduce stormwater runoff through 
infiltration or storage ((GCC), 2022)”. The gardens are frequently tiny and 
positioned purposefully in places where rainwater already overwhelms drainage 
capacity. They can be incorporated into a larger streetscape or into a general 
landscape design. Rain gardens may lower temperatures, provide habitat for 
wildlife, and enhance aesthetics in addition to managing runoff and lowering 
nutrient pollution. 

§ Urban forestry: Urban forestry is appropriate for both public and private lands, 
including rights of way and close to already-existing structures and dwellings for 
shade. Along with advantages to mental health and other social factors, urban trees 
can help to reduce heat and improve air quality. In addition to expanding the 
current canopy and planting new trees, urban forestry regulations can also include 
legislation to protect older trees that already exist since they are better for 
stormwater management and public health than young trees. Urban forestry may 
need to balance canopy aspirations with power utility considerations and ongoing 
maintenance and care, especially during extreme weather events. 

 
5.6.2 COOL PAVEMENT 
 
Cool pavements offer a chance to incorporate urban heat mitigation strategies, along with 
urban forestry, green roofs, rain gardens, and green streets. As a third of the urban land 
cover, pavement can have a substantial impact on the UHI effect. Conventional black 
pavements may absorb a lot of heat because they absorb 80–95 percent of incoming 
sunlight, with peak heat absorption occurring at surface temperatures of 48–67°C (120–
150°F) (Akbari, et al., 1999), ((EPA), 2012). After then, at night, this heat is released, 
warming up neighborhoods and affecting public health. Pavements with lower surface 
temperatures than standard products are referred to as cool pavements. Although cool 
pavements lack a formal definition, practitioners tend to concentrate on two main types: 
reflecting (or high albedo) pavements and permeable or evaporative pavements ((EPA), 
2012), ((EC), 2021). Reflective or cool-colored pavements absorb less sunlight, and 
therefore hold less heat than conventional pavement. They may be used to cover both 
fresh pavement and pre-existing pavement. They are made by utilizing a reflective or 
transparent binder, or a cool-colored surface coating. 
Evaporative cooling is made possible by permeable pavements, which are porous and 
enable air, water, and water vapor to enter voids. The best places for permeable 
pavements are low-traffic areas like roadsides, alleyways, parking lots, and parking lanes. 
Non-vegetated permeable pavements include porous or rubberized asphalt, pervious 
concrete, and brick or block pavers (Ralla & Saadeh, 2018). 
 



 

64 
 

 
 

5.6.3 COOL AND GREEN ROOFS 
 
Cool and green roofs are two common methods for reducing the impact of UHI. In general, 
cool roofs are less expensive and provide less co-benefits. Depending on their design, 
green roofs may have higher upfront expenses with more cobenefits. Plants adapted to 
hotter, drier regions with higher leaf succulence and lower water requirements can be used 
into adaptable green roof designs. In general, green roofs provide all the advantages of 
cool roofs, such as lower albedo, in addition to extra cooling and aesthetic advantages. 
 
5.6.3.1 Cool Roofs  
High solar reflectance and thermal emittance materials are used in cool roofs to reduce 
the temperature of the roof, which has a negative impact on UHI (EPA., 2014). The 
effectiveness of cool roofs in reducing the UHI impact in California was evaluated in 2019 
research from the Lawrence Berkeley National Laboratory of the Department of Energy. 
The research discovered that, for California's urban regions, widespread adoption of cool 
roofs by 2050 might counteract 51–100% of the additional heat exposure projected as a 
result of climate change (Vahmani, et al., 2019). Even in places without air conditioning, 
cool roofs reduce interior temperatures, which lowers energy consumption and improves 
occupant comfort (such as patios or garages). There are several cool-roof systems 
available, each of which is appropriate for a particular architectural context. These 
methods employ white or reflective, cool-colored coatings when applied retrospectively to 
existing roofs. The optimum technology relies on a variety of project-specific factors, but 
all roofing materials with the energy star badge must satisfy minimal standards for solar 
reflectance and reliability criteria. 
 
5.6.3.2 Green Roofs  
Green roofs, often referred to as vegetated roofs or living roofs, typically cover a 
conventional roof with a waterproofing membrane, soil as the growth medium, and 
vegetation (plants). This kind of roof is a common UHI reduction strategy. Depending on 
the scope and requirements of the project, there are two broad types of green roof 
designs: extensive and intense. A thin covering of soil and hardy plants, such succulents, 
that require minimal maintenance, make up extensive roofs. Intensive roofs include 
deeper soil layers, a wider range of plants, and more elaborate architectural elements. 
Unless the area is open to the public and used for recreation, commercial and public 
buildings often have large green roofs ((GSA), 2011). Green roofs in many ways combine 
the advantages of cool roofs with urban forestry. A green roof, like cool roofs, lowers the 
energy consumption of a structure and its associated effects. Similar to urban forestry 
projects, green roofs reduce heat by boosting evapotranspiration and shading the building 
they are located on, which minimizes heat absorption. Although the roof surface in the 
transportation sector is significantly less than that in the construction sector, many 
structures associated with transportation (like bus stops) are highly visible, making them 
excellent candidates for green roof pilot projects ((SMAQMD), 2019). 
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CHAPTER 6 
6 DISCUSSION OF CONTROVERSIAL ISSUES 
 
This work presents a methodology to derive LST from the Landsat-5, 7, 8 within GEE and 
then, extensively analyse them based on LC classification. The drieved LST maps show 
Landsat-7 has the largest errors, followed by Landsat-5, and 8. These discrepancies are 
related to the different spectral characteristics of the sensors. 
The quality of the LST retrievals was further assessed in comparisons with in-situ LST 
estimates from DRA station obtained from the SURFRAD network. Analysis revealed that 
the Landsat LST computed result was accurate and precise, with variations within the in-
situ LST measurement site ranging from 0-5 K. The satellite output severely 
underestimates the LST, and the Landsat LST can have major inaccuracies in the recovered 
LST across regions of high atmospheric water vapor, according to comparisons between 
in-situ LST and the Landsat LST over Dfb climate regions. Due to inaccurate emissivity 
characterisation, errors of up to 4 K were seen over Csa and Mediterranean climatic 
regions, while variations of up to 15 K between the Landsat LST and in-situ measurement 
were seen over regions with high atmospheric water content Cfb and Aw. 
In comparison to vegetation and water bodies, the mean LST in urban and barren regions 
is continuously greater. Vegetated areas can emit less radiation, enhance 
evapotranspiration, and give shade from canopies compared to impermeable surfaces like 
roads, pavements, buildings, and parking lots, which lowers the temperature in the area. 
The rising LST trend across all LC types over the research period suggests a general trend 
of surface warming. For instance, in the selected test sites, the mean LST of impervious 
surface was 0.39-7.96 K higher than the mean LST of green space. The initial hypothesis 
is that the increase in LST through time is due to an increase in human heat emission 
during urbanization, a decrease in naturally occurring vegetation, and an increase in the 
amount of heat-absorbing artificial materials. 
Obtaining high-resolution images for each site is necessary in order to study and better 
comprehend how LC heterogeneity affects LST comparisons. When modeling 
environmental characteristics between LST and LC, the ideal cell grid size should be taken 
into account. Moreover, given that certain years are warmer than others, it is important 
to look at how LC affects LST by either reducing or amplifying it. 
This study provided reference datasets on the seasonal severity of UHI throughout the 
summer, and it depicts that LST varies differently between districts. Given the possibility 
that the effects of UHI might be exacerbated in the near future by global climate warming, 
the findings of our study are expected to provide crucial information for future research. 
It is important to consider a number of drawbacks of this study as follows: 

§ First, this study used only remote sensing derived index to identify UHI over the 
selected test sites with different size and climate performance. Further research 
may be more beneficial if it takes into account the meteorological variables, 
landscape metrics, and clear albedo because these factors have a significant impact 
on LST. 

§ Second, since UHI has significant daily and seasonal fluctuations, which would also 
be of great utility, we only took the summer season into account and so restricted 
its widespread application. 

§ Third, the issue of lowering pixel values caused by a lack of clear sky is most notably 
observed during the summer at most selected test sites, and as a result, the impact 
on LST is most noticeable during that time of year. 

§ Finally, the estimation of the validation of LST may also be done using an in-situ 
measurment. But it is important to note that the conclusions drawn from our study 
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were based on the analysis of high-resolution satellite data utilizing remote sensing 
methods, and the estimated LST was not completely validated with the real ground 
situation. Additionally, for DRA stations all over the world, some of the selected 
test sites are placed a little bit farther from the station location to cover more 
homogenous surfaces. 

Despite these drawbacks, this research gives a better understanding of the local 
temperature changes and global warming within the large districts of the world and gives 
further information for developing potential mitigation actions. At the end, this chapter 
drives us to answer our research questions: 
 

§ How can a generic model determine spatiotemporal patterns of UHI? 
UHIs are identified by measuring surface temperatures. Therefore, by using remote 
sensing technologies and satellite imagery, the spatial LST value distributions for the 
various LC classes were computed and mapped for each of the twelve cities. This was done 
to illustrate temperature variations and, consequently, the geographic regions affected by 
UHIs between 1990 and 2021. Then, comparisons against in-situ LST, which were obtained 
using radiance measurements from DRA station affiliated with the SURFRAD, are used to 
evaluate the accuracy of the Landsat LST computed using the suggested technique. 
 

§ How remote sensing image-based analysis can be used to detect UHI? 
GEE is an online platform designed to make large data analysis simple for remote sensing 
users without increasing the need for local computer resources. In this work, we modified 
a code repository that provided by (Ermida, et al., 2020) to enable computing LSTs from 
Landsat-5, 7, and 8 within GEE. 
 

§ What is the remote sensing image-based analysis of the relationship between UHI 
and LC changes over different urban areas? 

This study used data from the Landsat-5, 7 and 8 satellite images to analyze the UHIs in 
twelve cities with varying climatic performance. The analysis was based on LC classification 
including urban, blue, green, cropland and bare areas. The results showed that the mean 
LST in urban and bare areas is consistently higher than green and blue areas. So, 
compared to impervious surfaces, vegetated areas can reduce their surrounding 
temperature. Finally, an overall tendency of surface warming over the studied periods is 
indicated by the rising mean LST across all LC classes. 
 

§ What are the possible urban planning actions can be applied to mitigate UHI 
effects? 

This research collects the possible urban planning actions which were proposed in two 
different categories, short-term and long-term solutions to reduce UHI effects. 
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CHAPTER 7 
7 SUMMARY AND FUTURE WORK 
7.1 SUMMARY 
 
This study used satellite images from Landsat-5, Landsat-7, and Landsat-8 to detect the 
UHIs in twelve distinct cities located in various climatic zones. LC classification establishes 
the basis for the analysis (urban, blue, green, cropland, and bare areas). According to the 
results, despite the fact that the mean LST was highest in urban areas, there were some 
bare, green, and cropland regions that had greater LST. Urban and cropland regions 
predominate in the selected test sites, which is why they have a greater concentration of 
heat sinks than blue and green areas, despite the fact that they have a greater cooling 
impact. This indicates that other criteria could be important in figuring out LSTs and, thus, 
UHIs. For instance, Canberra City has the biggest deviation in mean LST since it is adjacent 
to both water and vegetation.  
The difference between the minimum and maximum LST in each of the LC categories, 
however, did not necessarily come from the same category. The temperature difference 
between urban areas and blue areas varies from 1 to 13 K, that between urban areas and 
green areas from 6 to 8 K, that between urban areas and cropland areas from 2 to 8 K, 
that between urban areas and bare areas from 11 to 18 K, that between bare areas and 
cropland areas from 13 to 30 K, and that between cropland areas and green areas from 
10 to 18 K.  
The LST and LC comparison have no noticeable relationship based on the analysis of the 
Pearson correlation coefficient. That might be more reliable if the study used the ideal cell 
grid size in LC maps. 
Additionally, each category's LST showed regional variation based on other factors like 
proximity to the sea or the density of urban and green regions. In order to research and 
keep track of the UHI rise in these cities, monitoring the time-series of LST is a valuable 
tool. To mitigate the consequences of UHI, as well as to moderate temperatures and 
improve urban regions' capacity to adapt to a warming climate, a range of initiatives, 
policies, and approaches had been developed, advised, and put into practice in various 
cities. These tactics have included employing cooling materials, boosting the amount of 
plant and water in urban areas, and lowering anthropogenic heat. However, the 
implementation and effectiveness of these strategies depend on many variables, and only 
some of these only some of these factors can be taken into account in urban planning 
policies. 
 
7.2 FUTURE WORK 
 
It will be necessary for future research to evaluate thermal data and images of 
temperature distribution over an area, which is frequently difficult due to several 
complicated controlling elements. Based on the review of recent literature, many critical 
elements that will affect satellite remote sensing of UHIs in the future can be identified: 
Based on a review of the recent research, many critical elements for the advancement of 
satellite remote sensing of UHIs can be identified:  

§ First, it is possible to determine the surface radiant temperature at each class of 
LC with greater accuracy than is now possible. It is crucial to assess the 
temperatures in each part of the ground and the impacts of various canopy 
structures. 

§ Second, the relationship between LST and NDVI needs to be considered. The 
platform dependency and nonlinearity of the relationship between NDVI suggest 
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that it may not be a suitable indicator for quantitative analyses of vegetation  (Ngie, 
et al., 2014). For applications requiring biophysical metrics, as (Small, 2001) 
pointed out, more precise, physically based measures of vegetation abundance are 
needed. Therefore, the significance of spatial resolution for identifying patterns and 
changes in the landscape should also be highlighted, and further research into the 
relationship between NDVI variability and pixel size is necessary. 

§ Third, research should be done to determine how urban morphology affects UHI. 
More study is required to use elevation information and height measurements to 
UHI studies. In order to link urban morphology and topography to UHI studies, it 
is argued by (Ngie, et al., 2014) that radar-generated topography data (such as 
Shuttle Radar Topography Mission (SRTM), Light Detection and Ranging (LIDAR), 
and Interferometric Synthetic Aperture Radar (IFSAR) data) are particularly 
desirable. 

§ Forth, to conduct more in-depth research of the UHI formation in various cities, 
future research should take nighttime data, multiple daytime measurements, and 
seasonal change into consideration. For the purpose of developing planning 
suggestions, it is also important to take into account the various effects of day and 
night as well as seasonal conditions. 

§ Finally, further research is required to examine the continuing pandemic 
occurrences between 2020 and 2021 to have a better understanding of how human 
mobility limits affect the intensity of UHI. LSTs collected by satellites can aid in a 
better study of the temperature variations on a map, which will enhance the 
findings for further studies. To make the solutions better, it would be more useful 
to look at the specific human activities that had the most effects on UHI. 
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CHAPTER 8 
8 CONCLUSION 
 
Open soil and natural landscapes have been replaced by artificially constructed surfaces 
and infrastructure as a result of urbanization. The temperature of the land surface is 
significantly impacted by these changes. It emphasizes how crucial LC is in influencing the 
earth's temperature. Based on remote sensing data from Landsat-5, Landsat-7, and 
Landsat-8, this study computes Landsat LST for the years 1990, 2005, and 2021 to extract 
LSTs maps and compare with LC maps to determine the effects of various LC classes on 
the LST within GEE. The twelve test sites included in this study are Tehran (IR), New York 
(US), Vienna (AT), Washington (US), Helsinki (FIN), Quebec (CA), Canberra (AU), Palma 
(ES), Latur (IN), Niihama (JP), Springfield (US), and Villach (AT). 
The main conclusions of the study are as follows: 
 

§ The generated LST maps depict that the surface temperatures varied between 290 
and 330 K. Remotely sensed LST’s value in 1990 is lowest, followed by 2005 are 
higher than 2021 temperatures, but they show similar LST spatio-temporal 
patterns over time for the study areas. 

§ According to the generated LC maps, during the past three decades, UHI has 
intensified by an average of 6 to 8 K as a result of the simultaneous loss of greenery 
and the growth of urban areas. 

§ Despite the fact that the mean LST was highest in urban areas, there were some 
bare, green, and cropland areas that had greater LST. 

§ In the selected test sites, arbitrary urban development was also associated with 
noticeable thermal comfort decrease, particularly in blue and green areas. 

§ According to the examination of the Pearson correlation coefficient, there is no 
meaningful association between the LST and the LC comparison. 

§ The findings of this study can be used by policymakers and urban planners to 
prevent further environmental destruction and promote the development of 
sustainable cities. In order to improve the environmental condition, nature-based 
solutions (such as using light-colored concrete materials, developing urban parks, 
forests, green roofs, and green walls) can be taken into consideration. 

 
This research provides guidance for efforts to adapt to climate change, particularly for 
urban planning policies. Furthermore, the spatiotemporal analysis of LST around the world 
can be applied to improve temperature exposure estimation for varied researchs.  



 

70 
 

 
 

 
 
ACKNOWLEDGMENTS 
 
This work was supported by the Austrian Marshall Plan Foundation. The author would like 
to thank the United States Geological Survey (USGS) and Google Earth Engine (GEE) to 
freely provide Landsat Archive satellite data and to analyze and download data, 
respectively. Additionally, the author thanks the department of Engineering and IT, 
Carinthia University of Applied Science (Austria) for their support and supervisions in doing 
this research. Also, many thanks to the department of Geography and Environmental 
Studies, University of New Mexico (US) for their resources as much of this work was 
completed during a visit to the University of New Mexico as a Marshall Plan Fellow. 
 

BIBLIOGRAPHY 
 
Abulibdeh, A. (2021). Analysis of urban heat island characteristics and mitigation 

strategies for eight arid and semi-arid gulf region cities. Environmental Earth 
Sciences, 80(7), 259. doi:10.1007/s12665-021-09540-7. 

Akbari, H., Rose, L. S., & Taha, H. (1999). Characterizing the Fabric of the Urban 
Environment: A Case Study of Sacramento, California. Lawrence Berkeley 
National Laboratory. doi:10.2172/764362. 

Al-Ghussain, L. (2019). Global Warming: Review on Driving Forces and Mitigation. 
Environmental Progress & Sustainable Energy [Online], 38(1), 13-21, doi: 
10.1002/ep.13041. 

Alahmad, B., Tomasso, L. P., Al-Hemoud, A., James, P., & Koutrakis, P. (2020). Spatial 
Distribution of Land Surface Temperatures in Kuwait: Urban Heat and Cool 
Islands. International Journal of Environmental Research and Public Health, 
17(9), 2993, doi: 10.3390/ijerph17092993. 

Almeida, C. R., Teodoro, A. C., & Gonçalves, A. (2021). Study of the Urban Heat Island 
(UHI) Using Remote Sensing Data/Techniques: A Systematic Review. 
Environments, 8(10), 105, doi: 10.3390/environments8100105. 

Asgarian, A., Amiri, B. J., & Sakieh, Y. (2015). Assessing the effect of green cover spatial 
patterns on urban land surface temperature using landscape metrics approach. 
Urban Ecosystems, 18(1), 209-222. doi:10.1007/s11252-014-0387-7. 

Bai, T., Mayer, A. L., Shuster, W. D., & Tian, G. (2018). The Hydrologic Role of Urban 
Green Space in Mitigating Flooding (Luohe, China). Sustainability, 10(10), 3584. 
doi:10.3390/su10103584. 

Capital Region Transportation Sector. (2019). Retrieved from Urban Heat Island 
Mitigation Plan: 
https://www.airquality.org/LandUseTransportation/Documents/UHI%20Mitigation
%20Plan.pdf. 

Chen, M., Zhou, Y., Hu, M., & Zhou, Y. (2020). Influence of Urban Scale and Urban 
Expansion on the Urban Heat Island Effect in Metropolitan Areas: Case Study of 
Beijing–Tianjin–Hebei Urban Agglomeratio. Remote Sens., 12(21), 3491. 
doi:10.3390/rs12213491. 

Chen, X.-L., Zhao, H.-M., Li, P.-X., & Yin, Z.-Y. (2006). Remote sensing image-based 
analysis of the relationship between urban heat island and land use/cover 
changes. Remote Sensing of Environment, 104(2), 133-146. 

Cooling Singapore. (2017). A catalogue of strategies to mitigate Urban Heat Island and 
improve outdoor thermal comfort for tropical climate. Retrieved October 2017, 
from https://www.coolingsingapore.sg/reports. 

Department of Energy. (n.d.). Retrieved from 
https://www.fueleconomy.gov/feg/atv.shtml. 

Duan, S.-B., Li, Z.-L., Zhao, W., Wu, P., Huang, C., & Xiao-Jing. (2021). Validation of 
Landsat land surface temperature product in the conterminous United States 



 

71 
 

 
 

using in situ measurements from SURFRAD, ARM, and NDBC sites. International 
Journal of Digital Earth, 14(5), 640-660. doi:10.1080/17538947.2020.1862319. 

Echevarria, L., Dobbelsteen, A., & van der Hoeven, F. (2016). The Urban Heat Island 
Effect in Dutch City Centres: Identifying Relevant Indicators and First 
Explorations. In W. L. Filho, K. Adamson, R. M. Dunk, U. M. Azeiteiro, S. 
Illingworth, & F. Alves, Implementing Climate Change Adaptation in Cities and 
Communities. Switzerland: Springer International Publishing. 

Environmental Protection Agency U.S., (2012). Retrieved from Urban Heat Island: Cool 
Pavements: www.epa.gov/heat-islands/heatisland-compendium. 

Environmental Protection Agency U.S., (2011). Smart Growth, a Guide to Developing and 
Implementing Greenhouse Gas Reductions Programs, s.l.: s.n. 

Environmental Protection Agency U.S.,  (2012). Heat Island Compendium  [Online]  
Available at: www.epa.gov/heat-islands/heatisland-compendium 

Euoropean Environment Agency, E. E. A., (2012). Urban adaptation to climate change in 
Europe Challenges and opportunities for cities together with supportive national 
and European policies, Copenhagen: 
https://www.eea.europa.eu/publications/urban-adaptation-to-climate-change. 

Environmental Protection Agency U.S., (2008). Urban Heat Island Basics. In Reducing 
Urban Heat Islands: Compendium of Strategies. https://www.epa.gov/heat-
islands/ heat-island-compendium. Retrieved from https://www.epa.gov/heat-
islands/heat-island-compendium. 

Environmental Protection Agency U.S., (2014). Retrieved from Reducing Urban Heat 
Islands: Compendium of Strategies: Cool Roofs: 
https://www.epa.gov/sites/default/files/2014-
06/documents/coolroofscompendium.pdf. 

Ermida, S. L., Soares, P., Mantas, V., Göttsche, F.-M., & Trigo, I. F. (2020). Google Earth 
Engine Open-Source Code for Land Surface Temperature Estimation from the 
Landsat Series. Remote Sensing, 12(9), 1471; doi:10.3390/rs12091471. 

European Commission. n.d. (2021, April 20). Retrieved from Nature-Based Solutions: 
https://ec.europa.eu/info/researchand-
innovation/researcharea/environment/nature-basedsolutions_en. 

Filho, W. L., Echevarria, L., Omenche, V., & Al-Amin, A. Q. (2018). Impacts, strategies 
and tools to mitigate UHI. In L. E. Icaza, Urban and regional heat island 
adaptation measures in the Netherlands. A+BE | Architecture and the Built 
Environment. 

Gartland, L. (2008). Heat Islands: Understanding and Mitigating Heat in Urban Areas. 
Washington: Earthscan. 

Georgetown Climate Center. (n.d.). Retrieved 2022, from Green Infrastructure 
Strategies and Techniques: 
https://www.georgetownclimate.org/adaptation/toolkits/green-infrastructure-
toolkit/introduction.html. 

Giguère, M. (2009). Urban Heat Island Mitigation Strategies. Institut National de Santé 
Publique du Quebec. Retrieved from 
https://www.inspq.qc.ca/pdf/publications/1513_UrbanHeatIslandMitigationStrate
gies.pdf. 

Giguère, M., Dubé, N., & Colas, J. (2009, July). Urban Heat Island Mitigation Strategies. 
Retrieved 2012, from 
https://www.inspq.qc.ca/pdf/publications/1513_UrbanHeatIslandMitigationStrate
gies.pdf. 

Goldberg, D. (1978). Manual of the general health questionnaire. Windsor: NFER-Nelson. 
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). 

Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote 
Sensing of Environment, 202(0034-4257), 18-27, doi: 
10.1016/j.rse.2017.06.031. 



 

72 
 

 
 

Hendel, M., Gutierrez, P., Colombert, M., Diab, Y., & Royon, L. (2016). Measuring the 
Effects of UHI Mitigation in the Field: Application to the Case of Pavement-
Watering in Paris. Urban Climate, 16, 43-58, doi: 10.1016/j.uclim.2016.02.003. 

Howard, L. (1818). The Climate of London. Retrieved from https://www.urban-
climate.org/documents/LukeHoward_Climate-of-London-V1.pdf.  

Huang, K., Luo, W., Zhang, W., & Li, J. (2021). Characteristics and Problems of Smart 
City Development in China. Smart Cities, 4, 1403-1419, doi: 
10.3390/smartcities4040074. 

Huang, L., Li, J., Zhao, D., & Zhu, J. (2008). A fieldwork study on the diurnal changes of 
urban microclimate in fourtypes of ground cover and urban heat island of 
Nanjing, China. Building and Environment, 43, 7-17, doi: 
10.1016/j.buildenv.2006.11.025. 

Jaganmohan, M., Knapp, S., Buchmann, C. M., & Schwarz, N. (2016). The Bigger, the 
Better? The Influence of Urban Green Space Design. J. Environ. Qual., 45, 134–
145. doi:10.2134/jeq2015.01.0062. 

Kaplan, G., Avdan, U., & Avdan, Z. Y. (2018). Urban Heat Island Analysis Using the 
Landsat 8 Satellite Data: A Case Study in Skopje, Macedonia. Remote Sensing, 
2(7), 358, doi:10.3390/ecrs-2-05171. 

Kleerekopera, L., Escha, M. v., & Salcedo, T. B. (2012). How to make a city climate-
proof, addressing the urban heat island effect. Resources, Conservation and 
Recycling, 64, 30-38, doi: 10.1016/j.resconrec.2011.06.004. 

Kong, F., Yin, H., James, P., Hutyra, L. R., & He, H. S. (2014). Effects of spatial pattern 
of greenspace on urban cooling in a large metropolitan area of eastern China. 
Landscape and Urban Planning, 128, 35-47. 
doi:10.1016/j.landurbplan.2014.04.018. 

Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the 
Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 
259-263. doi:10.1127/0941-2948/2006/0130. 

Kuang, W., Hou, Y., Dou, Y., Lu, D., & Yang, S. (2021). Mapping Global Urban 
Impervious Surface and Green Space Fractions Using Google Earth Engine. 
Remote Sensing, 13(20), 4187, doi:10.3390/rs13204187. 

Kumar, L., & Mutanga, O. (2018). Google Earth Engine Applications Since Inception: 
Usage, Trends, and Potential. Remote Sensing, 10(10), 1509; doi: 
10.3390/rs10101509. 

Lawrence Berkeley National Laboratory. (n.d.). Retrieved from Cool Pavements: 
https://heatisland.lbl.gov/coolscience/cool-pavements 

Lepp, N. W. (2008). Planting Green Roofs and Living Walls (Vol. 37). Journal of 
Environmental Quality. doi:10.2134/jeq2008.0016br 

Li, C., Cao, Y., Zhang, M., Wang, J., Liu, J., Shi, H., & Geng, Y. (2015). Hidden Benefits 
of Electric Vehicles for Addressing Climate Change. Scientific Reports, 5(9213). 
doi:10.1038/srep09213. 

Li, L., Zhan, W., Huilin, D., Lai, J., Wang, C., Fu, H., . . . Miao, S. (2022). Long-Term and 
Fine-Scale Surface Urban Heat Island Dynamics Revealed by Landsat Data Since 
the 1980s: A Comparison of Four Megacities in China. Journal of Geophysical 
Research Atmospheres, 127(5), 1-21, doi: 10.1029/2021JD035598. 

Li, X., Zhou, W., & Ouyang, Z. (2013). Relationship between land surface temperature 
and spatial pattern of greenspace: What are the effects of spatial resolution? 
Landscape and Urban Planning, 114, 1-8. 
doi:https://doi.org/10.1016/j.landurbplan.2013.02.005. 

Li, X., Zhou, W., Ouyang, Z., Xu, W., & Zheng, H. (2012). Spatial pattern of greenspace 
affects land surface temperature: evidence from the heavily urbanized Beijing 
metropolitan area, China. Landscape Ecol, 27, 887-898. doi:10.1007/s10980-
012-9731-6. 

Lillesand, T., Kiefer, R. W., & Chipman, J. (2008). Remote Sensing and Image 
Interpretation (7th Edition ed.). (Wiley, Ed.) United States of America: Hoboken. 



 

73 
 

 
 

Liu, H., & Weng, Q. (2009). Scaling Effect On the Relationship Between Landscape 
Pattern and Land Surface Temperature. Photogrammetric engineering and remote 
sensing, 75(3), 291-304. doi: 10.14358/PERS.75.3.291. 

Liu, L., & Zhang, Y. (2011). Urban Heat Island Analysis Using the Landsat TM Data and 
ASTER Data: A Case Study in Hong Kong. Remote Sensing, 3(7), 1535-1552. 
doi:10.3390/rs3071535. 

Liu, M., & Tian, H. (2010). China's land cover and land use change from 1700 to 2005: 
Estimations from high-resolution satellite data and historical archives. Global 
Biogeochemical Cycles, 24(3), doi:10.1029/2009GB003687. 

Liu, Z., Lai, J., Zhan, W., Bechtel, B., Voogt, J., Quan, J., . . . Li, J. (2022). Urban Heat 
Islands Significantly Reduced by COVID-19 Lockdown. Geophysical Research 
Letters, 49(2). doi:10.1029/2021GL096842. 

Lu, L., Weng, Q., Xiao, D., Guo, H., Li, Q., & Hui, W. (2020). Spatiotemporal Variation of 
Surface Urban Heat Islands in Relation to Land Cover Composition and 
Configuration: A Multi-Scale Case Study of Xi’an, China. Remote Sens, 12(17), 
2713. doi:10.3390/rs12172713. 

Ma, Q., Wu, J., & He, C. (2016). A hierarchical analysis of the relationship between 
urban impervious surfaces and land surface temperatures: spatial scale 
dependence, temporal variations, and bioclimatic modulation. Landscape Ecology, 
31(5), 1139–1153. doi:10.1007/s10980-016-0356-z. 

Martin, M. A., Ghent, D., Pires, A. C., Göttsche, F.-M., Cermak, J., & Remedios, J. J. 
(2019). Comprehensive In Situ Validation of Five Satellite Land Surface 
Temperature Data Sets over Multiple Stations and Years. Remote Sensing, 11(5), 
479, doi: 10.3390/rs11050479. 

Masoudi, M., Tan, P. Y., & Liew, S. C. (2019). Multi-city comparison of the relationships 
between spatial pattern and cooling effect of urban green spaces in four major 
Asian cities. Ecological Indicators, 98, 200-213. 
doi:10.1016/j.ecolind.2018.09.058. 

Memon, R. A., Leung, D. Y., & Chunho, L. (2008). A review on the generation, 
determination and mitigation of Urban Heat Island. Journal of Environmental 
Sciences, 20(1), 120-128. 

Menon, J. S., & Sharma, R. (2021). Nature-Based Solutions for Co-mitigation of Air 
Pollution and Urban Heat in Indian Cities. Front. Sustain. Cities, 3(705185), 1-11. 
doi:10.3389/frsc.2021.705185. 

Mirzaei, M., Verrelst, J., Arbabi, M., Shaklabadi, Z., & Lotfizadeh, M. (2020). Urban Heat 
Island Monitoring and Impacts on Citizen’s General Health Status in Isfahan 
Metropolis: A Remote Sensing and Field Survey Approach. Remote Sens, 12(8), 
1-17. 

Monsefi, D., Taslim, S., & Shafaghat, A. (2015). Urban Design Guidelines to Mitigate 
Urban Heat Island (UHI) Effects In Hot- Dry Cities. Jurnal Teknologi, 74(4), 119-
124, doi: 10.11113/jt.v74.4619. 

Monteiro, M. V., Doick, K. J., Handley, P., & Peace, A. (2016). The impact of greenspace 
size on the extent of local nocturnal air temperature cooling in London. Urban 
Forestry & Urban Greening, 16, 160-169. doi:10.1016/j.ufug.2016.02.008. 

National Center for Sustainable Transportation. (2018). Retrieved from Sustainable 
Mitigation of Stormwater Runoff Through Fully Permeable Pavement: . 
https://www.metrans.org/research/sustainable-mitigationstormwater-runoff-
through-fully-permeable-pavement. 

National Geographic Education, (2013). Geography Standard 4: the physical and human 
characteristics of places. Retrieved from NatGeoEd.org. 

Ngie, A., Abutaleb, K., Ahmed, F., Darwish, A., & Ahmed, M. (2014). Assessment of 
urban heat island using satellite remotely sensed imagery: a review. South 
African Geographical Journal, 96(2), 198-214, doi: 
10.1080/03736245.2014.924864. 

OECD. (2022). Urban population by city size (indicator). (OECD, Producer) Retrieved July 
4, 2022, from doi: 10.1787/b4332f92-en. 



 

74 
 

 
 

O’Malley, C., Piroozfarb, P. A., Farr, E. R., & Gates, J. (2014). An Investigation into 
Minimizing Urban Heat Island (UHI) Effects: A UK Perspective. Energy Procedia, 
62, 72-80, doi: 10.1016/j.egypro.2014.12.368. 

Oke, T. (1982). The energetic basis of the urban heat island. Quarterly Journal of the 
Royal Meteorological Society, 108, 1–24،, doi:10.1002/qj.49710845502. 

Oke, T. (1987). Boundary Layer Climates (Second ed.). New York: Routledge. 
Oke, T. (2006). Towards Better Scientific Communication in Urban Climate. Theoretical 

and Applied Climatology, 84(1), 179-190, doi: 10.1007/s00704-005-0153-0. 
Parida, B. R., Bar, S., Kaskaoutis, D., Pandey, A. C., Polade, S. D., & Goswami, S. 

(2021). Impact of COVID-19 induced lockdown on land surface temperature, 
aerosol, and urban heat in Europe and North America. Sustain Cities Soc., 
75(103336). doi:10.1016/j.scs.2021.103336. 

Peng, J., Xie, P., Liu, Y., & Ma, J. (2016). Urban thermal environment dynamics and 
associated landscape pattern factors: A case study in the Beijing metropolitan 
region,. Remote Sensing of Environment, 173, 145-155. 
doi:10.1016/j.rse.2015.11.027. 

Ramaiah, M., & Avtar, R. (2019). Urban Green Spaces and Their Need in Cities of Rapidly 
Urbanizing India: A Review. Urban Sci., 3(3), 94. doi:10.3390/urbansci3030094 

Ravanelli, R., Nascetti, A., Cirigliano, R., Rico, C., Monti, P., & Crespi, M. (2018). 
Monitoring urban heat island through google earth engine: potentialities and 
dificulties in different cities of the United States. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, 
1467-1472, doi:10.5194/isprs-archives- XLII-3-1467-2018. 

Ritchie, H., & Roser, M. (2018). Urbanization. Retrieved December 2021, from 
Urbanization: 'https://ourworldindata.org/urbanization'. 

Rosenzweig, C., Solecki, W. D., Parshall, L., Chopping, M., Pope, G., & Goldberg, R. 
(2005). Characterizing the urban heat island in current and future climates in 
New Jersey. Global Environmental Change Part B: Environmental Hazards, 6(1), 
51-62. doi:10.1016/j.hazards.2004.12.001. 

Roth, M. (2013). Urban Heat Islands. In Handbook of Environmental Fluid Dynamics. (H. 
J. Fernando, Ed.) CRC Press/Taylor & Francis Group, LLC. 

Sekertekin, A., & Bonafoni, a. S. (2020). Land Surface Temperature Retrieval from 
Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval 
Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing, 
12(2), 294, doi: 10.3390/rs12020294. 

Secretariat of the Convention on Biological Diversity. (2016). Cities and Biodiversity 
Outlook. Retrieved January 2012, from 
http://www.cbd.int/en/subnational/partners- and-initiatives/cbo. 

Singh, A., & Purohit, B. M. (2014). Public Health Impacts of Global Warming and Climate 
Change. Peace Review, 26(1), 112-120, DOI: 10.1080/10402659.2014.876326. 

Singh, P., Kikon, N., & Verma, P. (2017). Impact of land use change and urbanization on 
urban heat island in Lucknow city, Central India. A remote sensing based 
estimate. Sustainable Cities and Society, 32(2210-6707), 100-114, 
doi:10.1016/j.scs.2017.02.018. 

Small, C. (2001). stimation of urban vegetation abundance by spectral mixture analysis. 
International Journal of Remote Sensing, 22(7), 1305-1334. 
doi:10.1080/01431160151144369. 

Soltani, A., & Sharifi, E. (2017). Daily variation of urban heat island effect and its 
correlations to urban greenery: A case study of Adelaide. Frontiers of 
Architectural Research, 6(4), 529-538. 

Tomlinson, C., Chapman, L., Thornes, J., & Baker, C. (2011). Remote sensing land 
surface temperature for meteorology and climatology: A review . Meteorological 
Applications, 18(3), 296-306, doi: 10.1002/met.287. 

Townsend, P. A., Lookingbill, T. R., Kingdon, C. C., & Gardner, R. H. (2009). Spatial 
pattern analysis for monitoring protected areas. Remote Sensing of Environment, 
113(7), 1410-1420. doi:10.1016/j.rse.2008.05.023. 



 

75 
 

 
 

Tuholske, C., Caylor, K., Funka, C., Verdine, A., Sweeneya, S., Gracee, K., . . . Evansg, 
T. (2021). Global urban population exposure to extreme heat. National Academy 
of Sciences, 118(41), doi:10.1073/pnas.2024792118. 

UN-Habitat, 2020. Annua Progress Report 2019, Nairobi, Kenya: UN-Habitat. 
U.S. General Services Administration. (2011). Retrieved from “The Benefits and 

Challenges of Green Roofs on Public and Commercial: 
https://www.gsa.gov/cdnstatic/The_Benefits_and_Challenges_of_Green_Roofs_o
n_Public_and_Commercial_Buildings.pdf. 

Vahmani, P., Jones, A. D., & Patricola, C. M. (2019). Interacting implications of climate 
change, population dynamics, and urban heat mitigation for future exposure to 
heat extremes. Environ. Res. Lett, 14(8), 1-10. doi:10.1088/1748-9326/ab28b0. 

Vannier, C., Vasseur, C., Hubert-Moy, L., & Baudry, J. (2011). Multiscale ecological 
assessment of remote sensing images. Landscape Ecology, 26(8), 1053-1069. 
doi:10.1007/s10980-011-9626-y. 

Vienna University of Technology. (2014). Development and Application of Mitigation and 
Adaptation Strate- gies and Measures for Counteracting the Global Urban Heat 
Islands Phenomenon. Vienna. 

Villanueva-Solis, J. (2017). Urban Heat Island Mitigation and Urban Planning: The Case 
of the Mexicali, B. C. Mexico. American Journal of Climate Change, 6(1), 
doi:10.4236/ajcc.2017.61002. 

Voogt, J., & Oke, T. (2003). Thermal remote sensing of urban climates. Remote Sensing 
of Environment, 86(3), 370-384, doi:10.1016/S0034-4257(03)00079-8. 

Wai, C. Y., Muttil, N., Tariq, M. A., Paresi, P., Nnachi, R. C., & Ng, A. W. (2022). 
Investigating the Relationship between Human Activity and the Urban Heat Island 
Effect in Melbourne and Four Other International Cities Impacted by COVID-19. 
Sustainability, 14(1), 378, doi: 10.3390/su14010378. 

Wang, C., Myint, S. W., Wang, Z., & Song, J. (2016). Spatio-Temporal Modeling of the 
Urban Heat Island in the Phoenix Metropolitan Area: Land Use Change 
Implications. Remote Sensing, 8(3), 185, doi: 10.3390/rs8030185. 

Welch, R., Jordan, T., Lang, H., & Murakami, H. (1998). ASTER as a source for 
topographic data in the late 1990's. IEEE Transactions on Geoscience and Remote 
Sensing, 36(4), 1282-1289. 

Wenga, Q., Lub, D., & Schubringa, J. (2004). Estimation of land surface temperature–
vegetation abundance relationship. Remote Sensing of Environment, 89(4), 467 – 
483. 

WHO. (2017). Urban green spaces: a brief for action. Denmark: World Health 
Organisation. Retrieved from World Health Organisation. 

WSP. (2019). Urban Heat Island Mitigation Plan. Sacramento, CA: Capital Region 
Transportation Sector. Retrieved from wsp.com/usa. 

Wu, J. (2014). Urban ecology and sustainability: The state-of-the-science and future 
directions. Landscape and Urban Planning, 125(0169-2046), 209-221. 

Yamamoto, Y. (2006, January). Measures to Mitigate Urban Heat Islands. Retrieved 
October 2017, from https://coolrooftoolkit.org/wp-
content/uploads/2012/04/Measures-to-Mitigate-UHI-Yamamoto.pdf. 

Yu, Z., Guo, X., Zeng, Y., Koga, M., & Vejre, H. (2018). Variations in land surface 
temperature and cooling efficiency of green space in rapid urbanization: The case 
of Fuzhou city, China. Urban Forestry & Urban Greening, 29, 113-121. 
doi:10.1016/j.ufug.2017.11.008. 

Zhang, B., Xie, G.-d., Li, N., & Wang, S. (2015). Effect of urban green space changes on 
the role of rainwater runoff reduction in Beijing, China. Landscape and Urban 
Planning, 140, 8-16. doi:10.1016/j.landurbplan.2015.03.014. 

Zhou, D., Xiao, J., Bonafoni, S., Berger, C., Deilami, K., Zhou, Y., . . . Sobrino, J. A. 
(2019). Satellite Remote Sensing of Surface Urban Heat Islands: Progress, 
Challenges, and Perspectives. Remote Sensing, 11(1), 1-36, doi: 
10.3390/rs11010048. 

 



 

76 
 

 
 

APPENDIX 1 
 
There is some important information about images which are used to calculate LST including time, mission, resolution, path and row, 
acquisition date, sun azimuth, sensor, and cloud cover of the records of images used to extract information for each selected test sites, 
Tehran, New York, Vienna, Washington, Helsinki, Quebec, Canberra, Palma, Latur, Niihama, Springfield, and Villach respectively. 
 
Table 16. The records of images used to extract information for Tehran (Iran) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Tehran LC81640352021153LGN00 07:07:51 L8 30*30 164 × 35 2021-06-02 122,245866 OLI/TIRS 0,08 
 LC81640352021169LGN00 07:07:57 L8 30*30 164 × 35 2021-06-18 118,689656 OLI/TIRS 5,94 
 LC81640352021185LGN00 07:08:00 L8 30*30 164 × 35 2021-07-04 118,619094 OLI/TIRS 6,98 
 LC81640352021201LGN00 07:08:03 L8 30*30 164 × 35 2021-07-20 122,059554 OLI/TIRS 4,53 
 LC81640352021217LGN00 07:08:11 L8 30*30 164 × 35 2021-08-05 128,110981 OLI/TIRS 20,08 
 LC81640352021233LGN00 07:08:16 L8 30*30 164 × 35 2021-08-21 135,471506 OLI/TIRS 48,34 
 LC81650352021160LGN00 07:14:05 L8 30*30 165 × 35 2021-06-09 120,320808 OLI/TIRS 15,79 
 LC81650352021176LGN00 07:14:09 L8 30*30 165 × 35 2021-06-25 118,199363 OLI/TIRS 0,53 
 LC81650352021192LGN00 07:14:11 L8 30*30 165 × 35 2021-07-11 119,728912 OLI/TIRS 22,15 
 LC81650352021208LGN00 07:14:18 L8 30*30 165 × 35 2021-07-27 124,463634 OLI/TIRS 5,84 
 LC81650352021224LGN00 07:14:24 L8 30*30 165 × 35 2021-08-12 131,246660 OLI/TIRS 1,94 
 LC81650352021240LGN00 07:14:29 L8 30*30 165 × 35 2021-08-28 138,785569 OLI/TIRS 0,17 
 LE71640352005165ASN00 06:57:33 L7 30*30 164 × 35 2005-06-14 115,366679 ETM 37 
 LE71640352005181ASN01 06:57:30 L7 30*30 164 × 35 2005-06-30 114,443825 ETM 15 
 LE71640352005197ASN00 06:57:31 L7 30*30 164 × 35 2005-07-16 116,964976 ETM 78 
 LE71640352005213ASN00 06:57:30 L7 30*30 164 × 35 2005-08-01 122,298734 ETM 43 
 LE71640352005229ASN00 06:57:25 L7 30*30 164 × 35 2005-08-17 129,305599 ETM 0 
 LE71650352005156ASN00 07:03:48 L7 30*30 165 × 35 2005-06-05 117,347062 ETM 12 
 LE71650352005172ASN00 07:03:42 L7 30*30 165 × 35 2005-06-21 114,526055 ETM 19 
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 LE71650352005188ASN00 07:03:42 L7 30*30 165 × 35 2005-07-07 115,141790 ETM 22 
 LE71650352005204ASN00 07:03:42 L7 30*30 165 × 35 2005-07-23 119,017908 ETM 6 
 LE71650352005220ASN00 07:03:39 L7 30*30 165 × 35 2005-08-08 125,226425 ETM 8 
 LE71650352005236ASN00 07:03:33 L7 30*30 165 × 35 2005-08-24 132,601591 ETM 4 
 LT51640351990164RSA00 06:28:16 L5 30*30 164 × 35 1990-06-13 107,150932 TM 5 
 LT51640351990196RSA01 06:28:12 L5 30*30 164 × 35 1990-07-15 108,307459 TM 18 
 LT51640351990212ISP00 06:28:08 L5 30*30 164 × 35 1990-07-31 112,994488 TM 49 
 LT51640351990228RSA00 06:28:03 L5 30*30 164 × 35 1990-08-16 119,481889 TM 28 
 LT51650351990155RSA00 06:34:27 L5 30*30 165 × 35 1990-06-04 108,922455 TM 1 
 LT51650351990171RSA00 06:34:26 L5 30*30 165 × 35 1990-06-20 106,373857 TM 18 
 LT51650351990203RSA00 06:34:20 L5 30*30 165 × 35 1990-07-22 110,078163 TM 36 
 LT51650351990219ISP00 06:34:16 L5 30*30 165 × 35 1990-08-07 115,668639 TM 14 
 LT51650351990235RSA02 06:34:11 L5 30*30 165 × 35 1990-08-23 122,625984 TM 3 
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Table 17. The records of images used to extract information for New York (US) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

NewYork LC80130322021167LGN00 15:33:32 L8 30*30 13 × 32 2021-06-16 128,913561 OLI/TIRS 7,46 
 LC80130322021199LGN00 15:33:37 L8 30*30 13 × 32 2021-07-18 130,362770 OLI/TIRS 36,95 
 LC80130322021231LGN00 15:33:51 L8 30*30 13 × 32 2021-08-19 140,885564 OLI/TIRS 83,38 
 LC80140312021158LGN00 15:39:15 L8 30*30 14 × 31 2021-06-07 133,524325 OLI/TIRS 6,88 
 LC80140312021174LGN00 15:39:20 L8 30*30 14 × 31 2021-06-23 131,240848 OLI/TIRS 23,89 
 LC80140312021190LGN00 15:39:22 L8 30*30 14 × 31 2021-07-09 131,627756 OLI/TIRS 88,73 
 LC80140312021206LGN00 15:39:28 L8 30*30 14 × 31 2021-07-25 134,668989 OLI/TIRS 90,58 
 LC80140312021222LGN00 15:39:35 L8 30*30 14 × 31 2021-08-10 139,575827 OLI/TIRS 8,29 
 LC80140312021238LGN00 15:39:40 L8 30*30 14 × 31 2021-08-26 145,327387 OLI/TIRS 15,1 
 LC80140322021158LGN00 15:39:39 L8 30*30 14 × 32 2021-06-07 130,561647 OLI/TIRS 24,54 
 LC80140322021174LGN00 15:39:44 L8 30*30 14 × 32 2021-06-23 128,212628 OLI/TIRS 14,26 
 LC80140322021190LGN00 15:39:46 L8 30*30 14 × 32 2021-07-09 128,771286 OLI/TIRS 59,57 
 LC80140322021206LGN00 15:39:52 L8 30*30 14 × 32 2021-07-25 132,145149 OLI/TIRS 66,5 
 LC80140322021222LGN00 15:39:59 L8 30*30 14 × 32 2021-08-10 137,458514 OLI/TIRS 68,36 
 LC80140322021238LGN00 15:40:03 L8 30*30 14 × 32 2021-08-26 143,619070 OLI/TIRS 8,84 
 LT50130322005155GNC01 15:21:09 L5 30*30 13 × 32 2005-06-04 126,188332 TM 85 
 LT50130322005171GNC01 15:21:15 L5 30*30 13 × 32 2005-06-20 123,508931 TM 32 
 LT50130322005203EDC00 15:21:32 L5 30*30 13 × 32 2005-07-22 126,541330 TM 17 
 LT50130322005219GNC01 15:21:41 L5 30*30 13 × 32 2005-08-07 131,601945 TM 54 
 LT50130322005235GNC02 15:21:46 L5 30*30 13 × 32 2005-08-23 137,787832 TM 4 
 LT50140312005162GNC01 15:26:59 L5 30*30 14 × 31 2005-06-11 127,626985 TM 45 
 LT50140312005178GNC01 15:27:04 L5 30*30 14 × 31 2005-06-27 126,088692 TM 21 
 LT50140312005194GNC01 15:27:12 L5 30*30 14 × 31 2005-07-13 127,267056 TM 80 
 LT50140312005210GNC01 15:27:23 L5 30*30 14 × 31 2005-07-29 130,945353 TM 73 
 LT50140312005226GNC01 15:27:30 L5 30*30 14 × 31 2005-08-14 136,258839 TM 8 
 LT50140322005162GNC01 15:27:23 L5 30*30 14 × 32 2005-06-11 124,712478 TM 48 
 LT50140322005178GNC01 15:27:28 L5 30*30 14 × 32 2005-06-27 123,166317 TM 94 
 LT50140322005194GNC01 15:27:36 L5 30*30 14 × 32 2005-07-13 124,559188 TM 85 
 LT50140322005210GNC01 15:27:47 L5 30*30 14 × 32 2005-07-29 128,549941 TM 66 
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 LT50140322005226GNC01 15:27:54 L5 30*30 14 × 32 2005-08-14 134,233430 TM 3 
 LT50130321990178PAC04 14:53:51 L5 30*30 13 × 32 1990-06-27 114,091415 TM 61 
 LT50130321990210XXX03 14:53:44 L5 30*30 13 × 32 1990-07-29 119,242742 TM 86 
 LT50130321990226XXX03 14:53:39 L5 30*30 13 × 32 1990-08-14 124,797264 TM 35 
 LT50140311990153PAC04 14:59:39 L5 30*30 14 × 31 1990-06-02 119,784912 TM 12 
 LT50140311990169PAC04 14:59:38 L5 30*30 14 × 31 1990-06-18 117,147088 TM 88 
 LT50140311990185XXX03 14:59:36 L5 30*30 14 × 31 1990-07-04 116,875339 TM 13 
 LT50140311990201XXX01 14:59:32 L5 30*30 14 × 31 1990-07-20 119,182914 TM 28 
 LT50140321990153PAC04 15:00:02 L5 30*30 14 × 32 1990-06-02 117,227510 TM 6 
 LT50140321990169PAC04 15:00:02 L5 30*30 14 × 32 1990-06-18 114,530477 TM 46 
 LT50140321990185XXX03 15:00:00 L5 30*30 14 × 32 1990-07-04 114,341422 TM 5 
 LT50140321990201XXX01 14:59:56 L5 30*30 14 × 32 1990-07-20 116,833545 TM 2 
 LT50140321990217XXX03 14:59:52 L5 30*30 14 × 32 1990-08-05 121,508772 TM 99 
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Table 18. The records of images used to extract information for Vienna (Austria) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Vienna LC81890262021152LGN00 09:38:46 L8 30*30 189 × 26 2021-06-01 147,190824 OLI/TIRS 44,04 
 LC81890262021168LGN00 09:38:52 L8 30*30 189 × 26 2021-06-17 144,869683 OLI/TIRS 8,51 
 LC81890262021184LGN00 09:38:55 L8 30*30 189 × 26 2021-07-03 143,907824 OLI/TIRS 54,26 
 LC81890262021200LGN00 09:38:58 L8 30*30 189 × 26 2021-07-19 144,837838 OLI/TIRS 27,57 
 LC81890262021216LGN00 09:39:06 L8 30*30 189 × 26 2021-08-04 147,522003 OLI/TIRS 95,49 
 LC81890262021232LGN00 09:39:11 L8 30*30 189 × 26 2021-08-20 151,322339 OLI/TIRS 69,58 
 LC81890272021152LGN00 09:39:10 L8 30*30 189 × 27 2021-06-01 144,990487 OLI/TIRS 29,03 
 LC81890272021168LGN00 09:39:16 L8 30*30 189 × 27 2021-06-17 142,526814 OLI/TIRS 0,28 
 LC81890272021184LGN00 09:39:19 L8 30*30 189 × 27 2021-07-03 141,596759 OLI/TIRS 27,47 
 LC81890272021200LGN00 09:39:22 L8 30*30 189 × 27 2021-07-19 142,715265 OLI/TIRS 56,27 
 LC81890272021216LGN00 09:39:30 L8 30*30 189 × 27 2021-08-04 145,679832 OLI/TIRS 97,94 
 LC81890272021232LGN00 09:39:35 L8 30*30 189 × 27 2021-08-20 149,784116 OLI/TIRS 54,31 
 LC81900262021159LGN00 09:45:00 L8 30*30 190 × 26 2021-06-08 146,074742 OLI/TIRS 31,92 
 LC81900262021175LGN00 09:45:05 L8 30*30 190 × 26 2021-06-24 144,234882 OLI/TIRS 24,32 
 LC81900262021191LGN00 09:45:07 L8 30*30 190 × 26 2021-07-10 144,074288 OLI/TIRS 4,26 
 LC81900262021207LGN00 09:45:13 L8 30*30 190 × 26 2021-07-26 145,830079 OLI/TIRS 16,08 
 LC81900262021223LGN00 09:45:20 L8 30*30 190 × 26 2021-08-11 149,088540 OLI/TIRS 14,78 
 LC81900272021159LGN00 09:45:24 L8 30*30 190 × 27 2021-06-08 143,791797 OLI/TIRS 27,79 
 LC81900272021175LGN00 09:45:29 L8 30*30 190 × 27 2021-06-24 141,883054 OLI/TIRS 2,03 
 LC81900272021191LGN00 09:45:30 L8 30*30 190 × 27 2021-07-10 141,828831 OLI/TIRS 7,1 
 LC81900272021207LGN00 09:45:37 L8 30*30 190 × 27 2021-07-26 143,824204 OLI/TIRS 14,86 
 LC81900272021223LGN00 09:45:43 L8 30*30 190 × 27 2021-08-11 147,379743 OLI/TIRS 9,02 
 LC81900272021239LGN00 09:45:48 L8 30*30 190 × 27 2021-08-27 151,741971 OLI/TIRS 90,06 
 LT51890262005156KIS00 09:26:29 L5 30*30 189 × 26 2005-06-05 141,414894 TM 75 
 LT51890262005172KIS00 09:26:36 L5 30*30 189 × 26 2005-06-21 139,363282 TM 5 
 LT51890262005188KIS00 09:26:40 L5 30*30 189 × 26 2005-07-07 138,947651 TM 44 
 LT51890262005204KIS00 09:26:53 L5 30*30 189 × 26 2005-07-23 140,530587 TM 95 
 LT51890262005220MTI01 09:27:01 L5 30*30 189 × 26 2005-08-08 143,755691 TM 86 
 LT51890272005156KIS00 09:26:53 L5 30*30 189 × 27 2005-06-05 139,123513 TM 92 
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 LT51890272005172KIS00 09:27:00 L5 30*30 189 × 27 2005-06-21 136,969130 TM 3 
 LT51890272005188KIS00 09:27:04 L5 30*30 189 × 27 2005-07-07 136,647950 TM 49 
 LT51890272005204KIS00 09:27:16 L5 30*30 189 × 27 2005-07-23 138,434019 TM 87 
 LT51890272005220KIS00 09:27:25 L5 30*30 189 × 27 2005-08-08 141,946361 TM 51 
 LT51890272005236KIS00 09:27:31 L5 30*30 189 × 27 2005-08-24 146,434907 TM 93 
 LT51900262005179KIS00 09:32:48 L5 30*30 190 × 26 2005-06-28 138,930455 TM 16 
 LT51900262005195KIS00 09:32:57 L5 30*30 190 × 26 2005-07-14 139,399638 TM 37 
 LT51900262005211KIS00 09:33:08 L5 30*30 190 × 26 2005-07-30 141,777302 TM 2 
 LT51900272005163KIS00 09:33:07 L5 30*30 190 × 27 2005-06-12 138,003709 TM 91 
 LT51900272005179KIS00 09:33:12 L5 30*30 190 × 27 2005-06-28 136,566046 TM 31 
 LT51900272005195KIS00 09:33:21 L5 30*30 190 × 27 2005-07-14 137,179194 TM 42 
 LT51900272005211KIS00 09:33:32 L5 30*30 190 × 27 2005-07-30 139,804746 TM 3 
 LT51890261990163FUI00 08:59:12 L5 30*30 189 × 26 1990-06-12 130,053529 TM 24 
 LT51890261990179FUI00 08:59:11 L5 30*30 189 × 26 1990-06-28 128,701561 TM 23 
 LT51890261990195FUI05 08:59:09 L5 30*30 189 × 26 1990-07-14 129,345959 TM 47 
 LT51890261990211FUI00 08:59:04 L5 30*30 189 × 26 1990-07-30 131,926500 TM 4 
 LT51890261990227FUI00 08:59:00 L5 30*30 189 × 26 1990-08-15 135,913633 TM 6 
 LT51890271990163FUI00 08:59:36 L5 30*30 189 × 27 1990-06-12 127,725290 TM 30 
 LT51890271990179FUI00 08:59:35 L5 30*30 189 × 27 1990-06-28 126,399049 TM 25 
 LT51890271990195FUI05 08:59:33 L5 30*30 189 × 27 1990-07-14 127,151371 TM 26 
 LT51890271990211FUI00 08:59:28 L5 30*30 189 × 27 1990-07-30 129,946536 TM 1 
 LT51890271990227FUI00 08:59:24 L5 30*30 189 × 27 1990-08-15 134,211167 TM 6 
 LT51900261990170FUI00 09:05:22 L5 30*30 190 × 26 1990-06-19 129,246671 TM 16 
 LT51900261990186FUI01 09:05:20 L5 30*30 190 × 26 1990-07-05 128,738931 TM 35 
 LT51900261990202FUI00 09:05:15 L5 30*30 190 × 26 1990-07-21 130,250900 TM 26 
 LT51900261990218FUI00 09:05:12 L5 30*30 190 × 26 1990-08-06 133,532825 TM 65 
 LT51900261990234FUI00 09:05:08 L5 30*30 190 × 26 1990-08-22 137,948736 TM 88 
 LT51900271990154FUI00 09:05:47 L5 30*30 190 × 27 1990-06-03 129,183060 TM 63 
 LT51900271990170FUI00 09:05:46 L5 30*30 190 × 27 1990-06-19 126,902372 TM 9 
 LT51900271990186FUI01 09:05:44 L5 30*30 190 × 27 1990-07-05 126,457512 TM 7 
 LT51900271990202FUI00 09:05:39 L5 30*30 190 × 27 1990-07-21 128,142405 TM 11 
 LT51900271990218FUI00 09:05:36 L5 30*30 190 × 27 1990-08-06 131,662334 TM 37 
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Table 19. The records of images used to extract information for Washington D.C, (US)  

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Washington LC80150332021165LGN00 15:46:17 L8 30*30 15 × 33 2021-06-14 126,031650 OLI/TIRS 23,53 
 LC80150332021181LGN00 15:46:20 L8 30*30 15 × 33 2021-06-30 124,961769 OLI/TIRS 7,36 
 LC80150332021197LGN00 15:46:22 L8 30*30 15 × 33 2021-07-16 127,084529 OLI/TIRS 3,92 
 LC80150332021229LGN00 15:46:36 L8 30*30 15 × 33 2021-08-17 138,087203 OLI/TIRS 96,24 
 LT50150332005153GNC01 15:33:53 L5 30*30 15 × 33 2005-06-02 123,722860 TM 96 
 LT50150332005169GNC01 15:34:00 L5 30*30 15 × 33 2005-06-18 120,657644 TM 16 
 LT50150332005185GNC01 15:34:04 L5 30*30 15 × 33 2005-07-04 120,471557 TM 24 
 LT50150332005217GNC01 15:34:25 L5 30*30 15 × 33 2005-08-05 128,570185 TM 3 
 LT50150332005233GNC02 15:34:31 L5 30*30 15 × 33 2005-08-21 135,066962 TM 21 
 LT50150331990160XXX03 15:06:37 L5 30*30 15 × 33 1990-06-09 113,139670 TM 69 
 LT50150331990192XXX03 15:06:34 L5 30*30 15 × 33 1990-07-11 112,637709 TM 58 
 LT50150331990224XXX04 15:06:26 L5 30*30 15 × 33 1990-08-12 122,029221 TM 0 
 LT50150331990240XXX03 15:06:19 L5 30*30 15 × 33 1990-08-28 128,647900 TM 32 
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Table 20. The records of images used to extract information for Helsinki (Finland) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Helsinki LC81870182021154LGN00 09:23:14 L8 30*30 187 × 18 2021-06-03 161,990310 OLI/TIRS 56,04 
 LC81870182021170LGN00 09:23:20 L8 30*30 187 × 18 2021-06-19 160,552746 OLI/TIRS 0,94 
 LC81870182021186LGN00 09:23:23 L8 30*30 187 × 18 2021-07-05 159,617531 OLI/TIRS 9,44 
 LC81870182021202LGN00 09:23:26 L8 30*30 187 × 18 2021-07-21 159,693031 OLI/TIRS 36,7 
 LC81870182021218LGN00 09:23:34 L8 30*30 187 × 18 2021-08-06 160,910924 OLI/TIRS 6,36 
 LC81870182021234LGN00 09:23:39 L8 30*30 187 × 18 2021-08-22 163,002417 OLI/TIRS 80,57 
 LC81880182021161LGN00 09:29:28 L8 30*30 188 × 18 2021-06-10 161,345391 OLI/TIRS 8,67 
 LC81880182021177LGN00 09:29:32 L8 30*30 188 × 18 2021-06-26 160,045359 OLI/TIRS 29,66 
 LC81880182021193LGN00 09:29:34 L8 30*30 188 × 18 2021-07-12 159,504402 OLI/TIRS 2,84 
 LC81880182021225LGN00 09:29:47 L8 30*30 188 × 18 2021-08-13 161,737763 OLI/TIRS 5,72 
 LC81880182021241LGN00 09:29:52 L8 30*30 188 × 18 2021-08-29 164,082654 OLI/TIRS 63,3 
 LC81890182021152LGN00 09:35:35 L8 30*30 189 × 18 2021-06-01 162,167574 OLI/TIRS 27,51 
 LC81890182021168LGN00 09:35:41 L8 30*30 189 × 18 2021-06-17 160,717013 OLI/TIRS 17,09 
 LC81890182021184LGN00 09:35:44 L8 30*30 189 × 18 2021-07-03 159,686470 OLI/TIRS 1,64 
 LC81890182021200LGN00 09:35:47 L8 30*30 189 × 18 2021-07-19 159,618186 OLI/TIRS 43,6 
 LC81890182021216LGN00 09:35:55 L8 30*30 189 × 18 2021-08-04 160,704326 OLI/TIRS 45,58 
 LC81890182021232LGN00 09:36:00 L8 30*30 189 × 18 2021-08-20 162,707856 OLI/TIRS 50,49 
 LT51870182005158KIS00 09:10:57 L5 30*30 187 × 18 2005-06-07 157,142405 TM 48 
 LT51870182005174KIS00 09:11:03 L5 30*30 187 × 18 2005-06-23 155,753050 TM 41 
 LT51870182005190KIS00 09:11:09 L5 30*30 187 × 18 2005-07-09 155,090035 TM 17 
 LT51870182005206KIS00 09:11:21 L5 30*30 187 × 18 2005-07-25 155,609200 TM 33 
 LT51870182005238KIS00 09:11:34 L5 30*30 187 × 18 2005-08-26 159,683637 TM 83 
 LT51880182005165KIS00 09:17:11 L5 30*30 188 × 18 2005-06-14 156,479785 TM 80 
 LT51880182005181KIS00 09:17:16 L5 30*30 188 × 18 2005-06-30 155,336304 TM 77 
 LT51880182005197KIS00 09:17:26 L5 30*30 188 × 18 2005-07-16 155,164564 TM 11 
 LT51880182005213KIS00 09:17:36 L5 30*30 188 × 18 2005-08-01 156,207138 TM 55 
 LT51880182005229KIS00 09:17:43 L5 30*30 188 × 18 2005-08-17 158,241509 TM 32 
 LT51890182005156KIS00 09:23:18 L5 30*30 189 × 18 2005-06-05 157,350609 TM 87 
 LT51890182005172KIS00 09:23:24 L5 30*30 189 × 18 2005-06-21 155,889690 TM 55 
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 LT51890182005188KIS00 09:23:29 L5 30*30 189 × 18 2005-07-07 155,115260 TM 54 
 LT51890182005204KIS00 09:23:41 L5 30*30 189 × 18 2005-07-23 155,479158 TM 88 
 LT51890182005236KIS00 09:23:56 L5 30*30 189 × 18 2005-08-24 159,356803 TM 29 
 LT51870181990165KIS00 08:43:38 L5 30*30 187 × 18 1990-06-14 146,855784 TM 88 
 LT51870181990181KIS00 08:43:38 L5 30*30 187 × 18 1990-06-30 145,721114 TM 10 
 LT51870181990197KIS00 08:43:34 L5 30*30 187 × 18 1990-07-16 145,706791 TM 60 
 LT51870181990213KIS00 08:43:30 L5 30*30 187 × 18 1990-08-01 146,996217 TM 65 
 LT51870181990229KIS03 08:43:26 L5 30*30 187 × 18 1990-08-17 149,365768 TM 25 
 LT51880181990156KIS00 08:49:50 L5 30*30 188 × 18 1990-06-05 147,785239 TM 100 
 LT51880181990172KIS00 08:49:49 L5 30*30 188 × 18 1990-06-21 146,252909 TM 11 
 LT51880181990188KIS00 08:49:48 L5 30*30 188 × 18 1990-07-07 145,561143 TM 98 
 LT51880181990204KIS00 08:49:43 L5 30*30 188 × 18 1990-07-23 146,117340 TM 44 
 LT51880181990220KIS00 08:49:39 L5 30*30 188 × 18 1990-08-08 147,920775 TM 14 
 LT51880181990236KIS00 08:49:33 L5 30*30 188 × 18 1990-08-24 150,615825 TM 66 
 LT51890181990163KIS00 08:56:01 L5 30*30 189 × 18 1990-06-12 147,043582 TM 25 
 LT51890181990179KIS00 08:56:00 L5 30*30 189 × 18 1990-06-28 145,806337 TM 91 
 LT51890181990195KIS00 08:55:57 L5 30*30 189 × 18 1990-07-14 145,637464 TM 73 
 LT51890181990211KIS00 08:55:53 L5 30*30 189 × 18 1990-07-30 146,764895 TM 94 
 LT51890181990227KIS00 08:55:48 L5 30*30 189 × 18 1990-08-15 149,019363 TM 8 
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Table 21. The records of images used to extract information for Quebec (Canada) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Quebec LC80130272021167LGN00 15:31:32 L8 30*30 13 × 27 2021-06-16 142,609822 OLI/TIRS 79,08 
 LC80130272021183LGN00 15:31:35 L8 30*30 13 × 27 2021-07-02 141,589862 OLI/TIRS 39,47 
 LC80130272021199LGN00 15:31:38 L8 30*30 13 × 27 2021-07-18 142,610888 OLI/TIRS 76,93 
 LC80130272021215LGN00 15:31:46 L8 30*30 13 × 27 2021-08-03 145,503479 OLI/TIRS 82,66 
 LC80130272021231LGN00 15:31:52 L8 30*30 13 × 27 2021-08-19 149,570994 OLI/TIRS 53,23 
 LC80130282021167LGN00 15:31:56 L8 30*30 13 × 28 2021-06-16 140,149176 OLI/TIRS 49,81 
 LC80130282021183LGN00 15:31:59 L8 30*30 13 × 28 2021-07-02 139,160450 OLI/TIRS 95,27 
 LC80130282021199LGN00 15:32:02 L8 30*30 13 × 28 2021-07-18 140,382367 OLI/TIRS 93,76 
 LC80130282021215LGN00 15:32:10 L8 30*30 13 × 28 2021-08-03 143,574010 OLI/TIRS 14,52 
 LC80130282021231LGN00 15:32:15 L8 30*30 13 × 28 2021-08-19 147,966877 OLI/TIRS 90,07 
 LC80140272021158LGN00 15:37:40 L8 30*30 14 × 27 2021-06-07 143,908924 OLI/TIRS 14,35 
 LC80140272021174LGN00 15:37:45 L8 30*30 14 × 27 2021-06-23 141,930610 OLI/TIRS 72,44 
 LC80140272021190LGN00 15:37:47 L8 30*30 14 × 27 2021-07-09 141,779029 OLI/TIRS 77,69 
 LC80140272021206LGN00 15:37:53 L8 30*30 14 × 27 2021-07-25 143,683989 OLI/TIRS 80,57 
 LC80140272021222LGN00 15:38:00 L8 30*30 14 × 27 2021-08-10 147,183010 OLI/TIRS 42,39 
 LC80140272021238LGN00 15:38:04 L8 30*30 14 × 27 2021-08-26 151,524998 OLI/TIRS 55,08 
 LT50130272005155GNC01 15:19:09 L5 30*30 13 × 27 2005-06-04 139,242677 TM 85 
 LT50130272005171GNC01 15:19:16 L5 30*30 13 × 27 2005-06-20 137,029490 TM 17 
 LT50130272005187GNC01 15:19:20 L5 30*30 13 × 27 2005-07-08 136,600798 TM 1 
 LT50130272005203GNC01 15:19:32 L5 30*30 13 × 27 2005-07-22 138,304740 TM 28 
 LT50130272005219GNC01 15:19:41 L5 30*30 13 × 27 2005-08-07 141,744189 TM 20 
 LT50130282005155GNC01 15:19:33 L5 30*30 13 × 28 2005-06-04 136,859801 TM 40 
 LT50130282005171GNC01 15:19:40 L5 30*30 13 × 28 2005-06-20 134,551290 TM 3 
 LT50130282005187GNC01 15:19:44 L5 30*30 13 × 28 2005-07-06 134,202966 TM 45 
 LT50130282005203GNC01 15:19:56 L5 30*30 13 × 28 2005-07-22 136,126786 TM 52 
 LT50130282005219GNC01 15:20:05 L5 30*30 13 × 28 2005-08-07 139,860668 TM 7 
 LT50140272005162GNC01 15:25:23 L5 30*30 14 × 27 2005-06-11 138,104653 TM 13 
 LT50140272005178GNC01 15:25:28 L5 30*30 14 × 27 2005-06-27 136,584765 TM 1 
 LT50140272005194GNC01 15:25:37 L5 30*30 14 × 27 2005-07-13 137,101336 TM 35 
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 LT50140272005210GNC01 15:25:48 L5 30*30 14 × 27 2005-07-29 139,638452 TM 83 
 LT50140272005226GNC01 15:25:55 L5 30*30 14 × 27 2005-08-14 143,622137 TM 70 
 LT50130271990162PAC03 14:51:52 L5 30*30 13 × 27 1990-06-11 127,878874 TM 80 
 LT50130271990194PAC02 14:51:49 L5 30*30 13 × 27 1990-07-13 127,123636 TM 11 
 LT50130271990210PAC02 14:51:44 L5 30*30 13 × 27 1990-07-29 129,817517 TM 5 
 LT50130271990226PAC02 14:51:40 L5 30*30 13 × 27 1990-08-14 134,017994 TM 46 
 LT50130281990162PAC05 14:52:16 L5 30*30 13 × 28 1990-06-11 125,506990 TM 94 
 LT50130281990194PAC04 14:52:13 L5 30*30 13 × 28 1990-07-13 124,882411 TM 3 
 LT50130281990210XXX03 14:52:08 L5 30*30 13 × 28 1990-07-29 127,793429 TM 1 
 LT50130281990226PAC04 14:52:04 L5 30*30 13 × 28 1990-08-14 132,255266 TM 87 
 LT50140271990153PAC02 14:58:03 L5 30*30 14 × 27 1990-06-02 129,378489 TM 70 
 LT50140271990169PAC02 14:58:02 L5 30*30 14 × 27 1990-06-18 127,021316 TM 79 
 LT50140271990201PAC02 14:57:56 L5 30*30 14 × 27 1990-07-20 128,074652 TM 88 
 LT50140271990233PAC03 14:57:48 L5 30*30 14 × 27 1990-08-21 136,137924 TM 4 
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Table 22. The records of images used to extract information for Canberra (Australia) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Canberra LC80900842021018LGN00 23:50:26 L8 30*30 90 × 84 2021-01-18 74,54598710 OLI/TIRS 39,68 
 LC80900842021034LGN00 23:50:25 L8 30*30 90 × 84 2021-02-03 69,47608719 OLI/TIRS 10,08 
 LC80900842021050LGN00 23:50:20 L8 30*30 90 × 84 2021-02-19 62,88944881 OLI/TIRS 3,82 
 LC80900852021018LGN00 23:50:50 L8 30*30 90 × 85 2021-01-18 72,82205922 OLI/TIRS 4,7 
 LC80900852021034LGN00 23:50:49 L8 30*30 90 × 85 2021-02-03 68,03025617 OLI/TIRS 16,8 
 LC80900852021050LGN00 23:50:44 L8 30*30 90 × 85 2021-02-19 61,73695429 OLI/TIRS 3,95 
 LC80910842021009LGN00 23:56:41 L8 30*30 91 × 84 2021-01-09 76,34763687 OLI/TIRS 0,16 
 LC80910842021025LGN00 23:56:37 L8 30*30 91 × 84 2021-01-25 72,57961341 OLI/TIRS 92,6 
 LC80910842021041LGN00 23:56:34 L8 30*30 91 × 84 2021-02-10 66,72034626 OLI/TIRS 0,56 
 LC80910842021057LGN00 23:56:28 L8 30*30 91 × 84 2021-02-26 59,77901288 OLI/TIRS 32,05 
 LC80910852021009LGN00 23:57:05 L8 30*30 91 × 85 2021-01-09 74,48164070 OLI/TIRS 1,38 
 LC80910852021041LGN00 23:56:58 L8 30*30 91 × 85 2021-02-10 65,40280068 OLI/TIRS 13,27 
 LC80910852021057LGN00 23:56:52 L8 30*30 91 × 85 2021-02-26 58,75318715 OLI/TIRS 74,92 
 LC80900842021338LGN00 23:50:39 L8 30*30 90 × 84 2021-12-04 73,06249576 OLI/TIRS 84,25 
 LC80900842021354LGN00 23:50:37 L8 30*30 90 × 84 2021-12-20 76,71117283 OLI/TIRS 0,74 
 LC80900852021354LGN00 23:51:01 L8 30*30 90 × 85 2021-12-20 74,61743084 OLI/TIRS 6,08 
 LC80910842021345LGN00 23:56:49 L8 30*30 91 × 84 2021-12-11 75,06940574 OLI/TIRS 4,97 
 LC80910842021361LGN00 23:56:44 L8 30*30 91 × 84 2021-12-27 77,21284522 OLI/TIRS 33,04 
 LC80910852021345LGN00 23:57:13 L8 30*30 91 × 85 2021-12-11 72,94478605 OLI/TIRS 26,65 
 LC80910852021361LGN00 23:57:08 L8 30*30 91 × 85 2021-12-27 75,17861641 OLI/TIRS 14,33 
 LE70900842005014ASN00 23:39:42 L7 30*30 90 × 84 2005-01-14 77,89287810 TM 22 
 LE70900842005030ASA00 23:39:45 L7 30*30 90 × 84 2005-01-30 73,41709126 TM 34 
 LE70900842005046ASN00 23:39:54 L7 30*30 90 × 84 2005-02-15 67,32360956 TM 19 
 LE70900852005014ASN00 23:40:05 L7 30*30 90 × 85 2005-01-14 76,23281303 TM 27 
 LE70900852005030ASA00 23:40:08 L7 30*30 90 × 85 2005-01-30 71,98690456 TM 6 
 LE70900852005046ASN00 23:40:18 L7 30*30 90 × 85 2005-02-15 66,15488782 TM 46 
 LE70910842005005ASN00 23:45:51 L7 30*30 91 × 84 2005-01-05 79,25566301 TM 23 
 LE70910842005021ASN00 23:45:52 L7 30*30 91 × 84 2005-01-21 76,24350078 TM 0 
 LE70910842005037ASN00 23:46:00 L7 30*30 91 × 84 2005-02-06 70,94941679 TM 1 



 

88 
 

 
 

 LE70910842005053ASN01 23:46:07 L7 30*30 91 × 84 2005-02-22 64,31161224 TM 3 
 LE70910852005005ASN00 23:46:15 L7 30*30 91 × 85 2005-01-05 77,47540899 TM 43 
 LE70910852005021ASN00 23:46:16 L7 30*30 91 × 85 2005-01-21 74,67650599 TM 0 
 LE70910852005037ASN00 23:46:24 L7 30*30 91 × 85 2005-02-06 69,63463045 TM 13 
 LE70910852005053ASN01 23:46:31 L7 30*30 91 × 85 2005-02-22 63,25328070 TM 1 
 LE70900842005350ASN00 23:39:55 L7 30*30 90 × 84 2005-12-16 78,58566632 TM 11 
 LE70900852005350ASN00 23:40:19 L7 30*30 90 × 85 2005-12-16 76,62451372 TM 26 
 LE70910842005341ASN00 23:46:05 L7 30*30 91 × 84 2005-12-07 76,63400592 TM 0 
 LE70910842005357ASN00 23:46:08 L7 30*30 91 × 84 2005-12-23 79,39567975 TM 87 
 LE70910852005341ASN00 23:46:29 L7 30*30 91 × 85 2005-12-07 74,66299774 TM 15 
 LE70910852005357ASN00 23:46:32 L7 30*30 91 × 85 2005-12-23 77,47582844 TM 48 
 LT50900841990045ASA00 23:11:47 L5 30*30 90 × 84 1990-02-14 73,78267424 TM 64 
 LT50900851990045ASA00 23:12:11 L5 30*30 90 × 85 1990-02-14 72,74641794 TM 75 
 LT50910841990052ASA00 23:17:46 L5 30*30 91 × 84 1990-02-21 71,02614518 TM 69 
 LT50910851990052ASA00 23:18:09 L5 30*30 91 × 85 1990-02-21 70,08179448 TM 54 
 LT50900841990349ASA00 23:09:42 L5 30*30 90 × 84 1990-12-15 83,98735796 TM 25 
 LT50900851990349ASA00 23:10:06 L5 30*30 90 × 85 1990-12-15 82,38539235 TM 46 
 LT50910841990340ASA00 23:15:43 L5 30*30 91 × 84 1990-12-06 82,22870892 TM 3 
 LT50910841990356ASA00 23:16:04 L5 30*30 91 × 84 1990-12-22 84,74101659 TM 3 
 LT50910851990340ASA00 23:16:07 L5 30*30 91 × 85 1990-12-06 80,61698866 TM 38 
 LT50910851990356ASA00 23:16:28 L5 30*30 91 × 85 1990-12-22 83,16968265 TM 27 
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Table 23. The records of images used to extract information for Palma (Spain) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Palma LC81960322021153LGN00 10:24:26 L8 30*30 196 × 32 2021-06-02 131,81580080 OLI/TIRS 32,15 
 LC81960322021169LGN00 10:24:31 L8 30*30 196 × 32 2021-06-18 128,68711290 OLI/TIRS 17,27 
 LC81960322021185LGN00 10:24:34 L8 30*30 196 × 32 2021-07-04 128,26146383 OLI/TIRS 64,84 
 LC81960322021201LGN00 10:24:38 L8 30*30 196 × 32 2021-07-20 130,78128027 OLI/TIRS 0,07 
 LC81960322021217LGN00 10:24:45 L8 30*30 196 × 32 2021-08-05 135,58541999 OLI/TIRS 20,06 
 LC81960322021233LGN00 10:24:51 L8 30*30 196 × 32 2021-08-21 141,58551943 OLI/TIRS 2,12 
 LC81960332021153LGN00 10:24:49 L8 30*30 196 × 33 2021-06-02 128,77130965 OLI/TIRS 29,55 
 LC81960332021169LGN00 10:24:55 L8 30*30 196 × 33 2021-06-18 125,49800262 OLI/TIRS 10,26 
 LC81960332021185LGN00 10:24:58 L8 30*30 196 × 33 2021-07-04 125,18808421 OLI/TIRS 20,27 
 LC81960332021201LGN00 10:25:01 L8 30*30 196 × 33 2021-07-20 128,01298283 OLI/TIRS 0,05 
 LC81960332021217LGN00 10:25:09 L8 30*30 196 × 33 2021-08-05 133,22588457 OLI/TIRS 13,21 
 LC81960332021233LGN00 10:25:15 L8 30*30 196 × 33 2021-08-21 139,66227643 OLI/TIRS 0,86 
 LC81970322021160LGN00 10:30:39 L8 30*30 197 × 32 2021-06-09 130,18261348 OLI/TIRS 11,26 
 LC81970322021176LGN00 10:30:44 L8 30*30 197 × 32 2021-06-25 128,12839264 OLI/TIRS 2,02 
 LC81970322021192LGN00 10:30:46 L8 30*30 197 × 32 2021-07-11 129,02273095 OLI/TIRS 1,8 
 LC81970322021208LGN00 10:30:52 L8 30*30 197 × 32 2021-07-27 132,66708000 OLI/TIRS 0,8 
 LC81970322021224LGN00 10:30:59 L8 30*30 197 × 32 2021-08-12 138,12720239 OLI/TIRS 10,35 
 LC81970322021240LGN00 10:31:03 L8 30*30 197 × 32 2021-08-28 144,31825254 OLI/TIRS 8,9 
 LC81970332021160LGN00 10:31:03 L8 30*30 197 × 33 2021-06-09 127,04067056 OLI/TIRS 2,88 
 LC81970332021176LGN00 10:31:08 L8 30*30 197 × 33 2021-06-25 124,96110268 OLI/TIRS 1,75 
 LC81970332021192LGN00 10:31:09 L8 30*30 197 × 33 2021-07-11 126,06508587 OLI/TIRS 30,55 
 LC81970332021208LGN00 10:31:16 L8 30*30 197 × 33 2021-07-27 130,06936196 OLI/TIRS 1,93 
 LC81970332021224LGN00 10:31:23 L8 30*30 197 × 33 2022-08-12 135,95913318 OLI/TIRS 54,63 
 LC81970332021240LGN00 10:31:27 L8 30*30 197 × 33 2022-08-28 142,57886283 OLI/TIRS 12,21 
 LT51960332005157MTI00 10:12:33 L5 30*30 196 × 33 2005-06-06 122,78267623 TM 0 
 LT51960332005189MTI00 10:12:44 L5 30*30 196 × 33 2005-07-08 120,90284853 TM 30 
 LT51960332005205MTI00 10:12:56 L5 30*30 196 × 33 2005-07-24 124,41728336 TM 15 
 LT51960332005221MTI00 10:13:04 L5 30*30 196 × 33 2005-08-09 130,03148070 TM 42 
 LT51960332005237MTI00 10:13:10 L5 30*30 196 × 33 2005-08-25 136,66717844 TM 1 
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 LT51970322005180MTI00 10:18:28 L5 30*30 197 × 32 2005-06-29 123,18961971 TM 4 
 LT51970322005196MTI00 10:18:37 L5 30*30 197 × 32 2005-07-15 124,88013633 TM 5 
 LT51970322005228MTI00 10:18:54 L5 30*30 197 × 32 2005-08-16 134,93572125 TM 39 
 LT51970332005164MTI00 10:18:47 L5 30*30 197 × 33 2005-06-13 121,37579646 TM 36 
 LT51970332005180MTI00 10:18:52 L5 30*30 197 × 33 2005-06-29 120,19531274 TM 49 
 LT51970332005196MTI00 10:19:01 L5 30*30 197 × 33 2005-07-15 122,12336072 TM 36 
 LT51970332005212MTI00 10:19:11 L5 30*30 197 × 33 2005-07-31 126,68885201 TM 23 
 LT51960321990164FUI00 09:44:51 L5 30*30 196 × 32 1990-06-13 115,08629110 TM 27 
 LT51960321990212FUI00 09:44:43 L5 30*30 196 × 32 1990-07-31 119,75323344 TM 0 
 LT51960321990228FUI00 09:44:38 L5 30*30 196 × 32 1990-08-16 125,42430204 TM 1 
 LT51960331990164FUI00 09:45:15 L5 30*30 196 × 33 1990-06-13 112,47328468 TM 35 
 LT51960331990180FUI00 09:45:14 L5 30*30 196 × 33 1990-06-29 111,44279775 TM 0 
 LT51960331990212FUI00 09:45:07 L5 30*30 196 × 33 1990-07-31 117,54781001 TM 2 
 LT51960331990228FUI00 09:45:02 L5 30*30 196 × 33 1990-08-16 123,51157936 TM 1 
 LT51970321990155FUI00 09:51:02 L5 30*30 197 × 32 1990-06-04 116,76611817 TM 22 
 LT51970321990171FUI00 09:51:01 L5 30*30 197 × 32 1990-06-20 114,28811265 TM 34 
 LT51970321990187FUI00 09:50:59 L5 30*30 197 × 32 1990-07-06 114,43710394 TM 55 
 LT51970321990203FUI01 09:50:54 L5 30*30 197 × 32 1990-07-22 117,20600961 TM 0 
 LT51970321990219FUI00 09:50:51 L5 30*30 197 × 32 1990-08-07 122,08629452 TM 80 
 LT51970321990235FUI00 09:50:46 L5 30*30 197 × 32 1990-08-23 128,21206285 TM 0 
 LT51970331990155FUI00 09:51:26 L5 30*30 197 × 33 1990-06-04 114,17013566 TM 51 
 LT51970331990171FUI00 09:51:25 L5 30*30 197 × 33 1990-06-20 111,67958656 TM 8 
 LT51970331990187FUI00 09:51:23 L5 30*30 197 × 33 1990-07-06 111,90796325 TM 17 
 LT51970331990203FUI01 09:51:18 L5 30*30 197 × 33 1990-07-22 114,86653044 TM 0 
 LT51970331990219FUI00 09:51:15 L5 30*30 197 × 33 1990-08-07 119,99565415 TM 48 
 LT51970331990235FUI00 09:51:10 L5 30*30 197 × 33 1990-08-23 126,40662263 TM 3 
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Table 24. The records of images used to extract information for Latur (India) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Latur LC81450472021100LGN00 05:15:11 L8 30*30 145 × 47 2021-04-10 111,019629 OLI/TIRS 6,65 
 LC81450472021116LGN00 05:15:03 L8 30*30 145 × 47 2021-04-26 99,348729 OLI/TIRS 4,17 
 LC81450472021132LGN00 05:15:00 L8 30*30 145 × 47 2021-05-12 87,778615 OLI/TIRS 0,09 
 LC81450472021148LGN00 05:15:10 L8 30*30 145 × 47 2021-05-28 79,005526 OLI/TIRS 58,97 
 LC81460472021091LGN00 05:21:24 L8 30*30 146 × 47 2021-04-01 116,838145 OLI/TIRS 0 
 LC81460472021107LGN00 05:21:18 L8 30*30 146 × 47 2021-04-17 106,058471 OLI/TIRS 0,17 
 LC81460472021123LGN00 05:21:09 L8 30*30 146 × 47 2021-05-03 94,105940 OLI/TIRS 4,15 
 LC81460472021139LGN00 05:21:16 L8 30*30 146 × 47 2021-05-19 83,456276 OLI/TIRS 48,41 
 LE71450472005096PFS00 05:05:05 L7 30*30 145 × 47 2005-04-06 111,125148 TM 0 
 LE71460472005103ASN00 05:11:13 L7 30*30 146 × 47 2005-04-13 106,628068 TM 68 
 LE71460472005119ASN00 05:11:12 L7 30*30 146 × 47 2005-04-29 95,684499 TM 6 
 LE71460472005135ASN00 05:11:15 L7 30*30 146 × 47 2005-05-15 85,453497 TM 1 
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Table 25. The records of images used to extract information for Niihama (Japan) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Niihama LC81110362021166LGN00 01:40:47 L8 30*30 111 × 36 2021-06-15 115,531140 OLI/TIRS 96,26 
 LC81110362021182LGN00 01:40:50 L8 30*30 111 × 36 2021-07-01 114,821040 OLI/TIRS 91,29 
 LC81110362021198LGN00 01:40:52 L8 30*30 111 × 36 2021-07-17 117,899677 OLI/TIRS 84,07 
 LC81110362021214LGN00 01:41:00 L8 30*30 111 × 36 2021-02-08 123,943646 OLI/TIRS 43,38 
 LC81110372021166LGN00 01:41:10 L8 30*30 111 × 37 2021-06-15 111,796476 OLI/TIRS 98,31 
 LC81110372021214LGN00 01:41:24 L8 30*30 111 × 37 2021-02-08 121,033478 OLI/TIRS 63,23 
 LT51110362005154BJC00 01:28:23 L5 30*30 111 × 36 2005-06-03 114,162217 TM 72 
 LT51110362005170BJC00 01:28:30 L5 30*30 111 × 36 2005-06-19 110,943315 TM 38 
 LT51110362005186BJC00 01:28:34 L5 30*30 111 × 36 2005-07-05 111,243972 TM 100 
 LT51110362005202BJC00 01:28:46 L5 30*30 111 × 36 2005-07-21 114,989834 TM 4 
 LT51110362005218BJC00 01:28:55 L5 30*30 111 × 36 2005-08-06 121,328565 TM 65 
 LT51110362005234BJC00 01:29:01 L5 30*30 111 × 36 2005-08-22 129,050253 TM 64 
 LT51110372005154BJC00 01:28:47 L5 30*30 111 × 37 2005-06-03 110,810345 TM 77 
 LT51110372005170BJC00 01:28:54 L5 30*30 111 × 37 2005-06-19 107,556263 TM 81 
 LT51110372005186BJC00 01:28:58 L5 30*30 111 × 37 2005-07-05 107,997008 TM 73 
 LT51110372005202BJC00 01:29:10 L5 30*30 111 × 37 2005-07-21 112,014120 TM 13 
 LT51110372005218BJC00 01:29:19 L5 30*30 111 × 37 2005-08-06 118,677921 TM 52 
 LT51110372005234BJC00 01:29:25 L5 30*30 111 × 37 2005-08-22 126,808488 TM 27 
 LT51110361990161BJC00 01:01:07 L5 30*30 111 × 36 1990-06-10 104,957236 TM 68 
 LT51110361990177HAJ00 01:01:06 L5 30*30 111 × 36 1990-06-26 103,472717 TM 96 
 LT51110361990193BJC00 01:01:04 L5 30*30 111 × 36 1990-07-12 105,102409 TM 90 
 LT51110361990225HAJ01 01:00:55 L5 30*30 111 × 36 1990-08-13 115,940658 TM 66 
 LT51110361990241HAJ00 01:00:49 L5 30*30 111 × 36 1990-08-29 123,448370 TM 32 
 LT51110371990161BJC00 01:01:31 L5 30*30 111 × 37 1990-06-10 102,215970 TM 85 
 LT51110371990225HAJ01 01:01:19 L5 30*30 111 × 37 1990-08-13 113,779028 TM 59 
 LT51110371990241HAJ00 01:01:13 L5 30*30 111 × 37 1990-08-29 121,564069 TM 62 
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Table 26. The records of images used to extract information for Springfield (US) 

City Landsat Scene 
Identifier Time Mission Resolution 

Path 
and 
Row 

Acquisition 
date 

Sun Azimuth 
angle Sensor Cloud 

Cover 

Springfield LC80230322021157LGN00 16:35:16 L8 30*30 23 × 32 2021-06-06 130,77664963 OLI/TIRS 62,33 
 LC80230322021173LGN00 16:35:21 L8 30*30 23 × 32 2021-06-22 128,27415796 OLI/TIRS 0,28 
 LC80230322021205LGN00 16:35:29 L8 30*30 23 × 32 2021-07-24 131,87503436 OLI/TIRS 26,8 
 LC80230322021221LGN00 16:35:36 L8 30*30 23 × 32 2021-08-09 137,10321624 OLI/TIRS 99,98 
 LC80230322021237LGN00 16:35:41 L8 30*30 23 × 32 2021-08-25 143,24303538 OLI/TIRS 30,27 
 LC80230332021157LGN00 16:35:40 L8 30*30 23 × 33 2021-06-06 127,66709260 OLI/TIRS 71,67 
 LC80230332021173LGN00 16:35:45 L8 30*30 23 × 33 2021-06-22 125,09193014 OLI/TIRS 0,46 
 LC80230332021189LGN00 16:35:48 L8 30*30 23 × 33 2021-07-08 125,64406047 OLI/TIRS 46,5 
 LC80230332021205LGN00 16:35:53 L8 30*30 23 × 33 2021-07-24 129,20859320 OLI/TIRS 7,93 
 LC80230332021221LGN00 16:36:00 L8 30*30 23 × 33 2021-08-09 134,86065335 OLI/TIRS 76,1 
 LC80230332021237LGN00 16:36:05 L8 30*30 23 × 33 2021-08-25 141,43256043 OLI/TIRS 10,63 
 LC80240322021164LGN00 16:41:30 L8 30*30 24 × 32 2021-06-13 129,36928399 OLI/TIRS 0,01 
 LC80240322021180LGN00 16:41:34 L8 30*30 24 × 32 2021-06-29 128,06394250 OLI/TIRS 68,25 
 LC80240322021196LGN00 16:41:35 L8 30*30 24 × 32 2021-07-15 129,74515492 OLI/TIRS 99,96 
 LC80240322021212LGN00 16:41:43 L8 30*30 24 × 32 2021-07-31 133,98258108 OLI/TIRS 99,96 
 LC80240322021228LGN00 16:41:49 L8 30*30 24 × 32 2021-08-16 139,73942015 OLI/TIRS 28,88 
 LT50230322005161PAC01 16:23:00 L5 30*30 23 × 32 2005-06-10 124,88921991 TM 73 
 LT50230322005177PAC01 16:23:05 L5 30*30 23 × 32 2005-06-26 123,17966237 TM 5 
 LT50230322005209PAC01 16:23:24 L5 30*30 23 × 32 2005-07-28 128,25115895 TM 46 
 LT50230322005225PAC01 16:23:31 L5 30*30 23 × 32 2005-08-13 133,86809861 TM 82 
 LT50230322005241PAC01 16:23:35 L5 30*30 23 × 32 2005-08-29 140,20571683 TM 0 
 LT50230332005161PAC01 16:23:24 L5 30*30 23 × 33 2005-06-10 121,86538346 TM 51 
 LT50230332005177PAC01 16:23:29 L5 30*30 23 × 33 2005-06-26 120,16426145 TM 7 
 LT50230332005209PAC01 16:23:48 L5 30*30 23 × 33 2005-07-28 125,74493371 TM 39 
 LT50230332005225PAC01 16:23:55 L5 30*30 23 × 33 2005-08-13 131,74097333 TM 18 
 LT50230332005241PAC01 16:23:59 L5 30*30 23 × 33 2005-08-29 138,46730088 TM 44 
 LT50240322005152PAC02 16:29:06 L5 30*30 24 × 32 2005-06-01 126,90818656 TM 9 
 LT50240322005168PAC01 16:29:13 L5 30*30 24 × 32 2005-06-17 123,80236059 TM 1 
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 LT50240322005184GNC01 16:29:18 L5 30*30 24 × 32 2005-07-03 123,34644163 TM 18 
 LT50240322005200PAC01 16:29:29 L5 30*30 24 × 32 2005-07-19 125,79639203 TM 11 
 LT50240322005216PAC01 16:29:38 L5 30*30 24 × 32 2005-08-04 130,54606519 TM 52 
 LT50240322005232GNC01 16:29:44 L5 30*30 24 × 32 2005-08-20 136,60585307 TM 12 
 LT50230321990168XXX04 15:55:39 L5 30*30 23 × 32 1990-06-17 114,62336572 TM 33 
 LT50230321990184XXX03 15:55:38 L5 30*30 23 × 32 1990-07-03 114,28230842 TM 1 
 LT50230321990200XXX03 15:55:33 L5 30*30 23 × 32 1990-07-19 116,61886352 TM 5 
 LT50230331990168XXX04 15:56:03 L5 30*30 23 × 33 1990-06-17 111,96264787 TM 36 
 LT50230331990184XXX03 15:56:02 L5 30*30 23 × 33 1990-07-03 111,70192467 TM 1 
 LT50230331990200XXX03 15:55:57 L5 30*30 23 × 33 1990-07-19 114,23198829 TM 2 
 LT50230331990232XXX03 15:55:50 L5 30*30 23 × 33 1990-08-20 125,28577315 TM 83 
 LT50240321990159XXX03 16:01:51 L5 30*30 24 × 32 1990-06-08 115,95728781 TM 52 
 LT50240321990175AAA04 16:01:50 L5 30*30 24 × 32 1990-06-24 114,13733477 TM 0 
 LT50240321990207XXX03 16:01:44 L5 30*30 24 × 32 1990-07-26 118,38400522 TM 63 
 LT50240321990223XXX03 16:01:39 L5 30*30 24 × 32 1990-08-11 123,67685525 TM 88 
 LT50240321990239XXX03 16:01:33 L5 30*30 24 × 32 1990-08-27 129,97076817 TM 0 
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Table 27. The records of images used to extract information for Villach (Austria) 

City Landsat Scene 
Identifier Time Mission Resolution Path and 

Row 
Acquisition 

date 
Sun Azimuth 

angle Sensor Cloud 
Cover 

Villach LC81910272021166LGN00 09:51:37 L8 30*30 191×27 2021-06-15 142,76900404 OLI/TIRS 3,14 
 LC81910272021182LGN00 09:51:41 L8 30*30 191×27 2021-07-01 141,60374855 OLI/TIRS 99,91 
 LC81910272021214LGN00 09:51:51 L8 30*30 191×27 2021-08-02 145,23333874 OLI/TIRS 80,09 
 LC81910272021230LGN00 09:51:56 L8 30*30 191×27 2021-08-18 149,23620275 OLI/TIRS 83,88 
 LC81910282021166LGN00 09:52:01 L8 30*30 191×28 2021-06-15 140,31397837 OLI/TIRS 13,75 
 LC81910282021182LGN00 09:52:04 L8 30*30 191×28 2021-07-01 139,16456406 OLI/TIRS 65,99 
 LC81910282021198LGN00 09:52:06 L8 30*30 191×28 2021-07-17 140,21449440 OLI/TIRS 98,74 
 LC81910282021214LGN00 09:52:15 L8 30*30 191×28 2021-08-02 143,27834461 OLI/TIRS 69,92 
 LC81910282021230LGN00 09:52:20 L8 30*30 191×28 2021-08-18 147,60735077 OLI/TIRS 27,76 
 LT51910272005154KIS00 09:39:14 L5 30*30 191×27 2005-06-03 139,47096964 TM 6 
 LT51910272005170KIS00 09:39:21 L5 30*30 191×27 2005-06-19 137,15787149 TM 8 
 LT51910272005202KIS00 09:39:37 L5 30*30 191×27 2005-07-21 138,10590551 TM 54 
 LT51910272005218KIS00 09:39:46 L5 30*30 191×27 2005-08-06 141,44359826 TM 84 
 LT51910282005154KIS00 09:39:38 L5 30*30 191×28 2005-06-03 137,10213231 TM 5 
 LT51910282005170KIS00 09:39:44 L5 30*30 191×28 2005-06-19 134,67328898 TM 2 
 LT51910282005202KIS00 09:40:01 L5 30*30 191×28 2005-07-21 135,90748456 TM 36 
 LT51910282005218KIS00 09:40:10 L5 30*30 191×28 2005-08-06 139,53666557 TM 50 
 LT51910271990177FUI00 09:11:57 L5 30*30 191×27 1990-06-26 126,44418946 TM 12 
 LT51910271990193FUI00 09:11:55 L5 30*30 191×27 1990-07-12 126,94752318 TM 2 
 LT51910271990209FUI00 09:11:51 L5 30*30 191×27 1990-07-28 129,49816191 TM 6 
 LT51910271990225FUI00 09:11:46 L5 30*30 191×27 1990-08-13 133,61240714 TM 4 
 LT51910271990241FUI00 09:11:40 L5 30*30 191×27 1990-08-29 138,55194470 TM 11 
 LT51910281990177FUI00 09:12:21 L5 30*30 191×28 1990-06-26 124,07352076 TM 11 
 LT51910281990193FUI00 09:12:19 L5 30*30 191×28 1990-07-12 124,69842050 TM 2 
 LT51910281990209FUI00 09:12:15 L5 30*30 191×28 1990-07-28 127,46119445 TM 6 
 LT51910281990225FUI00 09:12:10 L5 30*30 191×28 1990-08-13 131,83456972 TM 3 
 LT51910281990241FUI00 09:12:03 L5 30*30 191×28 1990-08-29 137,03946203 TM 3 
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