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1. Introduction 
 

The work described in this paper was done between March and August 2022 during a stay at the Center 

of Intelligent Information Retrieval at the University of Massachusetts Amherst. The Austrian Marshall 

Plan Foundation funded this Research Scholarship which made it possible for the author to work from 

Amherst and benefit from the wide knowledge of both, the Center of Intelligent Information Retrieval 

and Salzburg’s University of Applied Sciences which have a high interest in information retrieval and 

natural language processing (NLP). Since the research scholarship was done during the authors master 

studies, all approaches and result will also be part of a master thesis which will deal with a similar topic. 

Technical advancements have opened the door for using more complex algorithms to simplify our daily 

lives. With better internet connections, high performance CPUs and GPUs and more memory 

capabilities, even the smallest devices today are able to solve complex problems by using probabilistic 

models, machine learning or other technologies. While machine learning is finding more and more 

application in a wide variety of subject areas, there are still a wide range of applications that have not 

yet been researched enough. [1] 

Search engines and recommendation systems two often machine learning based algorithms which help 

users to find desired information. Although both systems have similar goals, they are usually designed 

independently. Zamani and Croft have already put effort in exploring joint search and recommendation 

systems with user item interactions [2]. The work in this paper extends their research by combining 

search and recommendation with the current state of the art approach for natural language processing 

tasks – transformers [3], which could find application in multiple real-word scenarios, like e-commerce 

websites or streaming services. One main challenge in this paper is the size of the dataset. Recent 

advancements have shown that Bidirectional Encoder Representations from Transformers (BERT) [4] 

improves the results in many NLP tasks. However, the results depend on the size of the finetuning 

dataset and research has shown that BERT can have its difficulties with smaller datasets [5] [6]. 

Consequently, the goal of this work is to research if BERT can be used as part of a joint search and 

recommendation system and how it performs in combination with a small dataset.  

 

  



2. Background 
 

This topic explains the backgrounds of the components and methods used in this paper. This should help 

to gain an overview about the project’s scope and depth. It also explains keywords and topics which are 

necessary for the understanding of the work described later in the report. 

2.1. Machine Learning and Artificial intelligence 

Machine learning in general is the term used to describe computer systems that automatically improve 

their own capabilities through experience [7]. Although the idea of machine learning was already 

discussed back in 1990 [7], there is still a lot of potential in many-many fields to exploit today. It is a 

term which is sometimes used interchangeably with Artificial Intelligence, although they are not the 

same. Artificial intelligence (AI) describes a machine which follows the concept of thinking by itself 

and is able to execute actions based on own decisions. For its thinking process, machine AI uses 

techniques like statistical learning, machine learning or other techniques. [8] Today, machine learning 

finds application in many different tasks and helps users to simplify their daily life when translating text 

[9], navigating through streets [10] or by recommending movies they may like [11]. This paper focuses 

on machine learning in search engines and recommendation systems in combination with Natural 

Language Processing. 

2.1.1. Natural Language Processing (NLP) 

The term Natural Language Processing, like artificial intelligence, is not new. It began back in the 1950s 

as combination of artificial intelligence and linguistics and was distinct from information retrieval (IR). 

Early applications were found in word-for-word translations, which could be trained based on 

dictionaries, but had their difficulties in homographs – words which have different meanings even then 

identically spelled. [12] With faster hardware and modern algorithms, NLP has evolved rapidly during 

the past years. Today millions of webpages can be processed within a second when browsing Google 

for specific terms [13]. In this paper natural language processing plays a key role by analysing English 

phrased user queries and therefore gaining a contextual understanding of the apps. However, the 

language understanding is hereby built up with a machine learning model, which is trained unsupervised 

but fine-tuned supervised.  

2.1.2. Supervised vs. Unsupervised Machine Learning 

As mentioned in chapter 2.1, a machine learning model tries to improve it skills automatically. To do 

so, it needs specific data and a learning goal. There are two main methods for training a machine learning 

algorithm, supervised learning and unsupervised learning. Supervised learning, also called supervised 

classification learning, encourages a system so find rules and test hypothesises. When training a model 

unsupervised, every data-pair must be labelled. [14] This means, when trying to train a model with 

images to find the difference between dogs and fish, every input image has to be labelled either as dog 

or fish. The model then tries to find an algorithm for differentiating them by setting up hypothesises and 

predicts a label based on its hypothesis. Afterward, it cross-checks the predictions with the true label of 

the image. This process is then repeated till a minimum error between predictions and true labels is 

achieved. 

Unsupervised learning on the other side does not need labels. If a machine learning model is trained 

unsupervised, its goal is to group similar items by finding natural groupings [15]. Looking at the 

mentioned example with dog and fish this would mean the trained model would get only the images as 

input, without any labels. Its goal would then be to let the model find the difference between the images 



by its own and group images of fish into one group and images of dogs into another one, without calling 

them fish or dog.  

The model in this paper is trained both, supervised and unsupervised. All models have been pre-trained 

unsupervised based on large corpora of data and afterwards fine-tuned supervised for the specific task 

of clustering queries according to the assigned app. However, when the model has trained an algorithm 

to predict the specific app name by inputting a query, this can be seen as search engine where a database 

of app names is searched to find the best app to a specific query. 

2.2. Search Engine 

When talking about search engine, there are different types of search engines. For this paper two types 

of search engines are relevant: 

1. Query based Search Engine 

2. Recommendation System  

Explained in an example: a web-shop can suggest items to a customer using different methods. It can 

either provide a search function, which the customer can use to search for a specific product by using a 

query, or it can recommend items to the customer without the need of a query.  

Recommendation System 

A recommendation system does not need a query as input. The goal of a recommendation system is to 

find items or answers to questions its users did not even ask yet. To achieve that, different methods can 

be applied depending on the use case. Recommendation systems can work with a user’s browsing 

history, his reviews of already purchased items or even by comparing a user to other users. Therefore, 

it is necessary to not only search the database for specific, but to understand the context and find 

similarities or habits. The recommendation system in this paper works with a sequence of used apps per 

user session and has the goal of predicting the next app the user will use based on those he already used. 

Query Based Search Engine 

Query based search engines on the other hand are usually defined as a program or process which should 

return the best results for a given query, key words, or related terms. This means, search engines are 

designed to go through a given database, a collection of items or similar and calculate a similarity of 

those items to a user-defined query. [16] The search engine in this paper is designed as dense retriever 

and has the goal of suggesting the best app to a specific query.  

There are different options to evaluate the performance of machine learning models. As the data for both 

systems, the search engine and the recommendation system, is labelled, all methods in this paper 

compare predicted labels to true labels and calculate a score accordingly.  

2.3. Scores 

In this chapter different methods of evaluating machine learning models are discussed.  

2.3.1. Accuracy 

The accuracy of a model can be only calculated when the ground truth is known. It is a very simply 

measurement and shows how many of the predicted labels are correct. Therefore, the accuracy for every 

predicted label can be either True (100%) or False (0%). The systems accuracy is calculated by summing 

up all correct predictions and divide them by the number of total predictions n. 
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2.3.2. Mean Reciprocal Rank (MRR) 

While for the accuracy only takes one predicted label and can therefore be only 0% or 100% for a single 

prediction, the Mean Reciprocal Rank is a metric which can be used when the output to a query is a list 

of results of which only one is correct. In difference to the accuracy, the Reciprocal Rank considers the 

rank of the correct result, meaning if the correct result is ranked first in the predicted list, the RR is 1, if 

it is ranked second, the RR is 0.5 and so on. Therefore, the higher ranked the correct label in the predicted 

list is, the higher is the reciprocal rank of the prediction. However, the Mean Reciprocal Rank is, as the 

name implies, the average reciprocal rank over n predicted lists. [17] 
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2.4. Transformer 

When it comes to Natural Language Processing (NLP), Transformer has outperformed neural models 

such as recurrent and convolutional neural networks in natural language generation as well as in natural 

language understanding. [18]  

Transformer is a model architecture which was introduced in 2017 by a Google AI Team and relies on 

an attention mechanism to find dependencies between input and output. This architecture allows more 

parallelization and therefore reached speeds up the training process which reached a new state of the art 

for translation tasks. It is designed to process an entire input at once and consequently train an 

understanding of the context for any word or syllable in the input sentence. Using an attention function, 

to be specific, a Scaled Dot-Product Attention function, the Transformer architecture calculates the dot 

product of a query and a set of key-value pairs and maps it to an output. Afterwards, the softmax function 

calculates the weights on the values. [19] 

2.4.1. HuggingFace 

HuggingFace1 is a GitHub repository where users can upload pretrained transformer models and make 

them accessible for others. Currently, HuggingFace has over 70.000 GitHub Stars, making it the sixtieth 

most popular GitHub repository worldwide2. It provides access to almost 80.000 models in over 190 

different languages.  

HuggingFace started as a chatbot for teenagers in 2017 and became popular among developers in 2018. 

At that time, its developers have begun to share parts of their code for free which made it attractive for 

AI developers, including those from companies like Google and Microsoft. Today the company is valued 

at two billion US-dollars. [20] 

2.4.2. Bidirectional Encoder Representations from Transformers (BERT) 

Since its introduction in 2018, BERT has outperformed a majority of other models when it comes to 

NLP tasks [3]. BERT consists of two steps. Firstly, it is designed to learn contextual representations of 

text by being pretrained on large amounts of texts. This process is called pre-training and happens 

unsupervised. After the pre-training is done, BERT can be fine-tuned for a specific task. This is done 

 
1 https://huggingface.co/models, accessed 10th October 2022 
2 https://gitstar-ranking.com/repositories, accessed 10th October 2022 

https://huggingface.co/models
https://gitstar-ranking.com/repositories


by adding a classification layer on top of the representation if the first token, the CLS token. To achieve 

that, BERT is initialized with pretrained parameters which are changed slightly during the fine-tuning 

process. As shown in Figure 1, to every input for a BERT model a [CLS] token needs to be added. CLS 

hereby stands for classification. The [SEP] token on the other hand stands for separation and shows 

where one sentence ends, and another sentence starts. After the input has been processed, all for the 

classification necessary information gets stored in the CLS-token as 768-dimensional vector. The whole 

input is finally classified based on this single vector. [4] 

 

Figure 1 - Representation of BERT input. [4] 

2.5. The Environment 

When it comes to developing code, the first question is always which programming language to choose. 

Since the goal is not to develop everything from scratch but to use existing frameworks, it is necessary 

to check which options there are. The most used frameworks at the Center for Intelligent Information 

Retrieval for machine learning tasks are Pytorch3 and Tensorflow4, both used in Python. With Anaconda5 

as the most popular data science platform, providing uncomplicated framework imports and a broad 

offer of extensions, all code developed during this project was done in Anaconda as JupyterNotebook 

with Python as programming language and a mixture of PyTorch and Tensorflow.  

 

  

 
3 https://pytorch.org/, accessed 18th October 2022 
4 https://www.tensorflow.org/, accessed 18th October 2022 
5 https://www.anaconda.com/, accessed 18th October 2022 

https://pytorch.org/
https://www.tensorflow.org/
https://www.anaconda.com/


3. The Idea of Joint Search and Recommendation 
Although search engines and recommendation systems can be seen as two sides of the same coin, the 

techniques used for developing and training them are different. They both should help users to find the 

information they need, which often can be in both systems identical. Still, the methodology of searching 

is different in both. While search engines rely on information retrieval approaches such as learning to 

rank, a common approach for recommender systems is collaborative filtering. Recently, Hamed Zamani 

and W. Bruce Croft have shown that search and recommendation can be designed jointly and therefore 

bring improvements to both systems [2].  

The goal of this project is to apply those existing approaches to different projects and thereby extend 

them with Transformers like BERT, the current state of the art deep learning model. When it comes to 

Natural Language Processing (NLP) tasks, BERT has brought a big improvement since its introduction 

in 2018 [3]. Therefore, the aim of this paper is to replace the Bag of Words approach from [2] with 

BERT and see if it is suitable to learn a context for search and recommendation. 

Since recommendation systems and search engines are trained on different data, the choice of datasets 

that can be used for this work is very limited. One dataset, which consists enough data to train both, 

search and recommendation, is the dataset created as part of the Context-aware Target Apps Selection 

and Recommendation for Enhancing Personal Mobile Assistants [21], which consists of query-app 

combinations and recordings of app sessions. As shown in Figure 2, the search engine needs queries and 

apps to be trained on, while the recommendation system needs apps and sessions of apps. However, 

both have the goal to predict a list of apps depending on the information they have. The search engine 

should predict the best app for the given query, while the recommendation system predicts the next app 

the user will use based on the apps he already did use.  

 

Figure 2 - Model of joint search and recommendation for given dataset 

The idea is to design both systems independently but with a shared BERT Model. To achieve this, this 

project was divided into three steps which can be seen in Figure 3. The first step is to explore whether 

BERT is suitable at all for learning a context to the applications using the queries and apps during the 

training process. If this experiment is positive, the second step is to train a dense retriever that matches 

and fine-tunes a pre-trained BERT model to the app and query combinations. The goal of the Dense 



Retriever is to predict a list of apps for a specific query, where those apps that best match the query are 

listed at the top. For example, if a user searches for "spiderman movie", there is a high probability that 

the user wants to watch the movie. Therefore, the Dense Retriever should suggest streaming services 

like Netflix or Hulu. This would complete the search itself.  

The third step is then building a recommendation system. The input of the recommendation system is a 

sequence of apps, where the next system should predict the application, a user will open next based on 

those he already used in his surfing session. Meaning, if the user’s session contains Disney Plus, Prime 

Video and Hulu, he is probably searching for a movie and would like to open Netflix next. The gained 

knowledge from the Search engine could bring a profit to this task. When training a BERT model with 

queries and apps, the goal for the model is to learn a context to an application. Therefore, it could learn 

from the queries that Disney Plus, Hulu and Netflix are all streaming services. Therefore, the idea is to 

check if this knowledge can help in predicting the next application. To achieve this, the trained BERT 

model from the search engine should be used as app encoder for the recommendation system. Every app 

name from a session is encoded using the trained BERT model and using the encoded app names, the 

next app should be predicted. 

 

Figure 3 - How to join Search and Recommendation 

 

  



4. The Dataset 
 

As mentioned in the previous chapter, to build a Joint Search and Recommendation System, a dataset is 

needed which can be used for both, search and recommendation. As described in chapter 0, a query-

based machine learning search engine needs a collection of queries and matching items for being trained 

accordingly. However, the recommendation system cannot be trained by query and item combinations 

as recommendation are used without queries. Summing up, this means that a dataset is needed which 

has both, query-item combinations and either a sort of user-item interactions or a sequence of items.  

Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani and W. Bruce Croft build a dataset for 

Context-aware Target Apps Selection and Recommendation for Enhancing Personal Mobile Assistants 

which meets those requirements. The dataset is divided into two subsets, the “In Situ collection of cross-

App mobile Search” (ISTAS) and the collection of a “Large dataset of Sequential mobile App usage”. 

[21] 

4.1. ISTAS Dataset 

For collecting the ISTAS data 255 recruited participants let a custom-built app, called uSearch, running 

on their smartphones for a minimum period of one day. As shown in Figure 4, the app’s user interface 

is split into three sections: 

1. a list of apps installed on the phone, where the user has to check which app he used 

2. a text box to enter the query the users executed in the selected app 

3. a short survey to get a unique ID and some demographics and backgrounds of the user 

In addition to those query-app-combinations, the app collected data via GPS, accelerometer, gyroscope, 

ambient light, WiFi and cellular sensors. For their participation all users got paid $0.2 per query entered 

into the application. [21]  

 

Figure 4 - Demonstration of uSearch interface as App [21] 

All collected data was finally stored as JSON file containing entries with associated timestamps, 

UserIDs, Queries, Apps and AppUsages. Examples for those entries can be seen in Table 1. In total there 

are 6877 recorded queries in 192 different apps from 255 users.  



 

Table 1 - example for ISTAS entries 

However, the uneven distribution of the 6877 queries over the 192 apps is a challenge for training a 

machine learning algorithm based on this data. As shown in Figure 5 and Figure 6, for more than one 

third of the apps (73 of 192) only one query was recorded while 49,2% of all queries (3386 of 6877) 

have been executed in either google or chrome, which are almost identical apps when it comes to 

browsing the internet via query.  

 

Figure 5 - (right) Distribution of Apps with more than 100 Queries 

Figure 6 - (left) Queries / Apps distribution 

4.2. LSApp Dataset 

The other part of the given dataset is the LSApp dataset. LSApp is short for Large dataset of Sequential 

mobile App usage and was collected using uSearch6 data collection tool. Over eight months data of 292 

users was collected of which 255 users were the same users from the ISTAS dataset. The other 37 users 

did not submit a single valid query and are therefore not included in the app query dataset. While 

collecting the data, many repeated app usages within ten seconds have been recorded. Therefore, the 

authors defined multiple app usages of one app within ten seconds as one single entry. The median of 

unique apps per session is two while the mean session time length is 5:26.  [21] 

In total there were almost 600,000 app usages recoded, distributed over around 76,000 sessions. While 

the ISTAS dataset contains 192 recorded apps, the LSApp dataset has only 87 unique apps. 51 of these 

87 apps could be matched to the 192 apps, for the other 36 apps no record in the ISTAS dataset was 

found.  

 
6 https://github.com/aliannejadi/uSearch  

0

50

100

150

200

1
 q

u
er

y

≤ 
2

 q
u

er
ie

s

≤ 
5

 q
u

er
ie

s

≤ 
1

0
 q

u
er

ie
s

≤ 
5

0
 q

u
er

ie
s

≤ 
1

0
0

 q
u

er
ie

s
Number of Apps with less than 100 

Queries

Number of Apps

0

500

1000

1500

2000

go
o

gl
e

ch
ro

m
e

yo
u

tu
b

e

sa
m

su
n

g_
in

te
rn

et

fa
ce

b
o

o
k

am
az

o
n

_
sh

o
p

p
in

g

m
ap

s

gm
ai

l

go
o

gl
e_

p
la

y_
st

o
re

in
st

ag
ra

m

sp
o

ti
fy

Number of Queries for Apps with 
more than 100 recorded Queries

recorded queries
per app

https://github.com/aliannejadi/uSearch


5. Search Engine 
 

This section describes the approaches to optimize search via machine learning for the ISTAS dataset. 

The search in this section is defined as predicting the correct app based on a query. The benchmark for 

this task is the best score of the Context-aware Target Apps Selection and Recommendation for 

Enhancing Personal Mobile Assistants [21]  paper. This means, the goal is to see if a machine learning 

model with BERT can achieve similar or better results on the same dataset as the best model in the 

according paper. The authors of the mentioned paper have documented the performances of 21 different 

methods using MRR and nDCG@n scores. The best result for the ISTAS dataset has been achieved 

using CNTAS-pairwise with a MRR score of 0.5637, followed by the NTAS-pairwise with 0.5257 [21]. 

Therefore, an MRR score of 0.5637 is the benchmark here. 

5.1. Multilabel Classification Model using Simple Transformer 

The first approach to check if BERT qualifies for an app prediction was to build a multilabel classifier 

using a pretrained BERT model using Simple Transformer. Simple Transformer7 is a library for natural 

language processing tasks which is built using HuggingFace. As the name implies, Simple Transformer 

is designed to use basic functions of HuggingFace with a few simple lines of code. With this 

simplification also comes a restriction of the HuggingFace functionality. Although a fully functional 

multilabel transformer was built with a few lines of code, a training based on a Mean Reciprocal Rank 

could not be implemented. 

5.2. Classification using HuggingFace and PyTorch 

To use the full functionality of HuggingFace, the idea of building a prediction with Simple Transformer 

was discarded. Instead, the next approach was to build a model using HuggingFace and Pytorch. At this 

stage, three different, pretrained BERT models have been compared: 

- bert-base-uncased8 

- roberta-base9 

- distilbert-base-uncased-finetuned-sst-2-english10 

[ ERGEBNISSE FÜR ROBERTA UND DISTILBERT EINFÜGEN] 

Using HuggingFace and Pytorch, the next step was to check which pretrained BERT model is the best 

for the given dataset. Therefore, a model was built which predicts an app name based on the input 

query. All models have been evaluated using the Mean Reciprocal Rank (see chapter 2.3.2) so they 

can be compared to the models from the Context-aware Target Apps Selection and Recommendation 

for Enhancing Personal Mobile Assistants [21] paper. 

Picking the best pretrained model can be challenging as the results do not only depend on the model 

itself, but also on the fine-tuning parameters. Since those settings strongly depend on the dataset, there 

is no one-size-fits-all setting a model, which means the best setting needs to be determined 

experimentally. If you go by the original BERT introduction paper, a batch size of 8, 16, 32, 64 or 128 

and two to four epochs are a good starting point for finetuning a BERT model [4]. As shown in Figure 

7, the mean reciprocal rank is higher when using four epochs than with two or three. Therefore, more 

 
7 https://simpletransformers.ai/about/  
8 https://huggingface.co/bert-base-uncased 
9 https://huggingface.co/roberta-base  
10 https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english  

https://simpletransformers.ai/about/
https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english


different options have been tried out than suggested by the authors of the BERT paper. The results 

show that the model performs best when trained with eight epochs. 

 

Figure 7 - MRR over epochs (with batch-size: 8) 

 

Figure 8 - MRR over batch sizes (with epochs: 8) 

 

The next step was to research which batch size fits best for the given dataset. As the first experiments 

have shown that eight epochs work best, different settings with batch sizes between 4 and 128 have 

been tested with constantly using eight epochs. As shown in Figure 8, the best final setting for training 

the model is with epochs: 8 and batch_size: 8. 

5.2.1. Challenges caused by uneven distribution of data 

As shown in Figure 9, when training a machine learning model, a percentage n is used for training the 

model and 1-n for evaluating it. This means when training the given model here, one query-app-pair 

can either be used for training or for testing. Considering that 73 of 192 apps in the given dataset have 
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only one recorder query, the can either never be trained for those apps or if it was trained with them, 

they will not appear in the evaluation. This makes it impossible to get a correct evaluation when trying 

to predict those apps. 

 

Figure 9 - Train-test split explained for given dataset 

Another challenge caused by the uneven distribution of data is the optimization goal of the model. 

Since the model is designed to train for the best accuracy or MRR, it could happen that is trains itself 

mainly on those apps which have the most query-app-pairs. Since 49.2% of all queries have been 

executed in either google or chrome, a model could achieve an accuracy of almost 50% just by being 

trained to google and chrome, which would be easier than to train it to the other or to the other 190 

apps.  

5.2.2. Data pre-processing 

To find a solution for handling the uneven distribution of data, different options have been tried. As 

some apps have over 1000 recorded queries while almost 75% of the apps have less than 50 queries, the 

first idea was reducing the number of queries for those apps with a high occurrence. To achieve that, a 

function has been developed which trims the number of queries for all apps to a specific amount. When 

this parameter, called trim_to, is set to m, only m query-app-pairs per app stay in the dataset.  

As mentioned previously, if an app has only one recorder query, it cannot occur during training and 

evaluation and therefore, no conclusions can be drawn for those apps. To solve this problem as well, an 

option for boosting queries has been implemented. When the parameter boost_to is set to x, query-app-

pairs for apps with less than x queries get duplicated in the dataset. 

  trim to 

b
o

o
st

 t
o

 

  50 100 200 400 

50 0.859 0.843 0.795 0.756 

100  0.933 0.908 0.881 

200   0.945 0.938 

400    0.961 
Table 2 - change of the MRR based on the options boost_to and trim_to 

Using the parameters trim_to and boost_to the dataset can be a little balanced. If an app on the one side 

has over 1000 entries but the parameter trim_to is set to 200, 200 of those 1000 query-app-pairs are 

picked randomly and used for training and testing the model. On the other, if an app has only two 

recorded queries but the boost_to parameter is set to 50, every query-app-pair for this app is replicated 

25 times. These options have two positive effects on finetuning the model: on the one hand, this makes 

the model more sensitive to those apps with fewer queries, but on the other hand, it also prevents the 



model from always predicting google or chrome just because these two apps account for almost 50 

percent of the original data. Additionally, those two options also give other insides on the model 

behaviour like the impact of apps with high occurrences on the predicting accuracy or change of the 

MRR score depending on how balanced the input data is.  

Two main conclusions can be drawn from the figures presented in Table 2. First, it shows that the 

prediction accuracy is not necessarily getting better with more input data. Looking at the setting boost_to 

= 50 it can be seen that the performance gets worse when the apps with a high number of recorded 

queries are trimmed less. However, the boost_to and the trim_to parameter get higher, the model 

generally performs better. Therefore, it can be said that the model performs better when the distribution 

of queries per app is well balanced. However, it should be noted that by increasing the boost_to 

parameter the system tends to overfitting. If a query gets replicated 200 times, the model gets sensitive 

to that specific query and will most probably always classify it correctly, but a slightly changed query 

could already be wrong classified which is a strong indicator for overfitting. Nevertheless, if there are 

only one or two recorded queries for an app, the model in general cannot learn much context about it. 

5.3. Dense Retriever 

As the results from chapter 5.2 have shown that BERT is indeed able to learn a context between queries 

and apps, the next step is to build a search engine using BERT. Dense retrievers retrieve items using a 

usually high-dimensional representation. This representation can be learned by fine-tuning pre-trained 

models like BERT with queries and documents. [22] 

 

Figure 10 - Dense Retriever with BERT and dot product 

The design of the built dense retriever is shown in Figure 10. Thereby, the BERT model is used as 

encoder for the inputs, which in this case are queries and apps. In addition to queries and apps the dense 

retriever receives a label which marks if the query-app pair is a positive or negative sample. Recent 

studies have shown that dense retriever results tend to be improved by adding some negative samples 

during the training process [23] [24]. According to the literature a common loss function for training 

dense retrievers is contrastive loss [25] [26].  

As the dataset has no negative samples it was necessary to generate some before training the dense 

retriever. Therefore, a function was implemented which generates negative from the existing dataset and 

adds them to the train-dataset. Negative samples are created per app, meaning when given an app name 

like Netflix, a random query is taken which does not have Netflix as app assigned. However, as the 

dataset has 192 apps, there are a few apps which are very similar to each other. Therefore, a query like 



Spiderman Movie could have been executed in Netflix but also in Hulu or IMDB. To prevent the creation 

of negative samples where the query and app combination would make sense, all 192 apps were divided 

manually into 10 categories.  

Category Id Categories # apps in category 

0 Browser 13 

1 Streaming 32 

2 purchase and living 30 

3 social media 15 

4 default apps / other apps 32 

5 communication 19 

6 finance 8 

7 health 7 

8 navigation & travel 10 

9 information 14 

10 games & other entertainment 12 
 

Table 3 - app categories with number of apps per category 

The category Browser for example contains apps like Google, Chrome, Firefox, Samsung_Internet and 

others, while the category social media has apps like Facebook, Instagram, Twitter etc. The distribution 

of apps per category can be seen in Figure 11. Using those categories, it is guaranteed that no query 

from an app in the same category is taken as negative sample for another app in the same category.  

 

Figure 11 - Distribution of Apps per Category 

Following different pre-trained models have been tested in combination with a dense retriever and the 

given dataset: 

 

Distribition of Apps per Category as Pie Chart

Browser Streaming purchase and living

social media default apps / other apps communication

finance health navigation & travel

information games & other entertainment



distilbert-base-uncased-finetuned-sst-2-english11 

distilbert-base-uncased-finetuned-sst-2-english is a checkpoint based on distilbert-base-uncased but 

finetuned on the Stanford Sentiment Treebank (SST). Distilbert is, as the name implies, a lighter version 

of BERT.  As the size of the data sets in machine learning tasks is crucial for the results, the models are 

in principle fed with more and more data. Since there is no one-fits-all solution for the parameters of a 

machine learning model, the training is mostly based on try and error. In order to accelerate the training 

of the models, investments are made in graphics cards on the one hand, and on the other hand, the models 

themselves must be designed to be as performant as possible. Since BERT is relatively computationally 

intensive, distilbert was created. While the size of distilbert is only around 60% of the original BERT 

model, its language understanding performance is around 97% compared to BERT. This makes distilbert 

around 60% faster and still very performant. [27] 

The Stanford Sentiment Treebank12 is a dataset containing sentences for English sentiment language. 

It contains 215,154 unique phrases which were all annotated by 3 human judges. As the phrases are in 

English and the queries from the dataset in this paper are also mainly in English, the idea was to see if 

advantage can be taken from a model which is already trained on understanding English context. 

microsoft/mpnet-base13 and all-mpnet-base-v214 

MPNet stands for Masked and Permuted Pre-training for Language Understanding. It is a model which 

extends the functionality of BERT and XLNet, a Generalized Autoregressive Pretraining for Language 

Unterstanding [28], and takes position information into consideration. It is pre-trained on around 160GB 

of text corpora. While BERT uses masked language modelling (MLM) and XLNet permuted language 

modelling, MPNet uses a mixture of both. [29] In this paper two different MPNet models have been 

trained on the given dataset: mpnet-base and all-mpnet-base-v2. As mentioned, mpnet-base is pretrained 

on 160GB of text corpora, while the all-mpnet-base-v2 model checkpoint is pretrained on mpnet-base 

and fine-tuned on one billion sentence pairs dataset which come mostly from Reddit comments. 

multi-qa-distilbert-cos-v115 

The multi-qa-distilbert-cos-v1 checkpoint is based on a sentence transformers model and was designed 

for a semantic search, to be precise, on Sentence-BERT (SBERT). Sentence-BERT uses Siamese and 

triplet network structures to extend the BERT network and therefore improve the performance when it 

comes to similarity recognition in sentences. When searching for a similar sentence in a set of 10,000 

sentences, SBERT needs around five seconds to find the most similar one while BERT takes about 65 

hours. The comparison hereby is done using by calculating a cosine-similarity of the dense vectors. 

Therefore, the model is optimized to arrange similar sentences in a vector space near to each other and 

calculate the similarity of the vectors for finding the nearest neighbours. [30] Since the goal of the dense 

retriever in this paper is also to find similarities in the recorded queries per app, the sentence transformer 

architecture is similar to the dense retriever architecture.  

random predicter and static ranker 

Sometimes performance results can be hard to interpret or even vacuous when given to little context. 

For a better orientation about how good or bad a model is, two simple predicter have been built for 

 
11 https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english?text=I+like+you.+I+love+you  
12 https://huggingface.co/datasets/sst2  
13 https://huggingface.co/microsoft/mpnet-base  
14 https://huggingface.co/sentence-transformers/all-mpnet-base-v2  
15 https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1  

https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english?text=I+like+you.+I+love+you
https://huggingface.co/datasets/sst2
https://huggingface.co/microsoft/mpnet-base
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1


comparison. Firstly, a static predicter has been implemented. When entering a query, independently of 

the input the predicter always predicts the same list of apps. The first five apps on this list can be seen 

in Table 4. Although there is no prediction logic behind this, it can be used as orientation point about 

how good a trained model is compared to a static prediction.   

prediction rank app name 

0 google 

1 chrome 

2 puffin 

3 youtube 

4 file_manager 

5 google_play_store 
Table 4 - static predicter prediction list 

Secondly, a random predicter has been built which predicts any random app from the ‘app’ column of 

the given dataset. Although the predicter pics a random line, the prediction is also based on the 

distribution of app usages since it picks a random line from the 6877 app query pairs. Although this also 

does not implement any query-based logic, it can be informative index as the minimum goal of the 

search engine should be to beat those two predicters.  

Results: 

As shown in Table 5, the trained models were not able to outperform the existing solution. Nevertheless, 

this does not mean that BERT is not able to bring any improvement in this field of application since 

only a few settings have been tested. All models were trained using two epochs, a batch size of eight, a 

train / test ration of 90 / 10 and a positive / negative sample ration of one, meaning for every positive 

sample one negative sample was generated. The training was performed on a Tesla T4 GPU and the 

training duration was between two and ten hours. Therefore, due to time constraints, only a certain 

contingent of settings could be tested. 

model mrr 

distilbert-base-uncased-finetuned-sst-2-english 0.1398 

microsoft/mpnet-base 0.0266 

all-mpnet-base-v2 0.2453 

multi-qa-distilbert-cos-v1 0.2628 

random predicter 0.2766 

static predicter 0.4280 

Table 5 - dense retriever training results 

In total, the fine-tuned microsoft/mpnet-base model performed worst on with the configured settings on 

the given dataset. Using distilbert-base-uncased-finetuned-sst-2-english the results were already over 

five times better while the models using all-mpnet-base-v2 and multi-qa-distilbert-cos-v1 performed 

best. However, all trained models were worse then the static and random predicters and were therefore 

not able to compete with TempoLSTM (MRR: 0.6898) from the Context aware Target App Aelection 

and Recommendation paper [21].  

  



6. Recommendation System 
 

Although the results from the search engine were not satisfactory, the potential for improvement is still 

there. Therefore, to complete the overall setting, the next step was to develop a recommendation system 

based on the trained BERT model. Although the recommendation system uses the trained BERT model 

to encode the app names, the data used in this part is from the LSApp dataset which is, as mentioned in 

chapter 4.2, also based on the same paper as the ISTAS dataset [21].  

However, the content of the datasets is very different even though they were both created by the same 

user groups and most probably on the same devices. While the ISTAS dataset has in total 192 apps 

recorded, the LSApp dataset has only 87 used unique apps in the recorded sessions, which implies that 

the data for these two datasets either was not collected at the same time, the app for recording the 

sessions was not able to record everything or the users did not enter the queries they submitted on the 

device where the sessions were recorded. Additionally, of those 87 recorded unique apps, only 51 could 

be matched to the 192 apps from the ISTAS dataset. Therefore, the BERT model used in the dense 

retriever was not able to train a context for over 40% of the apps which occur in the LSApp dataset.  

6.1. Data pre-processing 

In total almost 600,000 app usages were recorded. App usages in the mentioned paper [21] are opening 

and closing an app. The focus on this paper is to predict the next app based on already used apps in one 

session. Therefore, the information about opening or closing an app is irrelevant at this point and was 

filtered. Afterwards, also all entries where filtered where an app was used multiple times in one session 

without an app in between. After filtering duplicate usages as well as the opening and closing 

information per session, from almost 600,000 records only approximately 182,000 records were left. As 

shown in Figure 12Error! Reference source not found., the majority of those 182,000 records has only 

one recorded app per session. The mean of apps used per session is 2.38, while the median is 2.0. 

 

Figure 12 - Number of sessions per used apps per session 

As the next app should be predicted, all sessions with only one recorded app are useless for training the 

system. Consequently, 29,955 of 76,247 recorded sessions cannot be used for training leaving the train 

dataset with 46,292 sessions.  



6.2. CLS-Token based Recommender 

Since the results from 5.3 still need to be improved to gain an improvement from training a search engine 

with BERT for this specific dataset, designing an advanced recommender on the current results is not 

possible. Nevertheless, this research has still shown that BERT is able to gain contextual knowledge of 

the apps. Consequently, the next step for is to research how a simple recommender based on the CLS 

tokens of the trained BERT model performs.  

As explained in chapter 2.4.2, when trained, a BERT model computes a multidimensional dense / vector 

which contains the information needed for classification and is stored on the CLS-Token position. Thus, 

similar words are nearer neighbours in the vector space of calculated CLS-Tokens. Following that, when 

a BERT model is trained, it can be used to represent similar words as vectors. The recommendation 

system in this chapter is built based on this principle. All app names are transformed into a vector using 

the CLS-Tokens of a trained BERT model and stored into a lookup table. When recommending, the 

system takes multiple apps as input, replaces every app name with the corresponding vector from the 

lookup table and performs a mathematical operation on all input vectors. Afterwards, it looks for the 

most similar app in the vector space and takes it as prediction. 

When it comes to predicting the next app, the number of already used apps per session is crucial. If a 

session has only two recorded apps, the predicter would have to predict the second app only based on 

the one previously used app, which is little information for training a predicter. However, the higher the 

number of input apps for the recommender is set, the less data remains for training / testing. Therefore, 

different modes have been implemented for predicting and evaluating. The recommendation is 

configured using two parameters: n_apps and min_apps_per_session. 

n_apps: this parameter sets the number of apps the recommendation system gets. The last used app is 

always taken as label / ground truth and the others as input for the prediction. When n_apps is set for 

example to 4, the recommendation system tries to predict the fourth used app based on the first three 

apps used. 

min_apps_per_session: this parameter sets the number of apps needed minimum for predicting and 

evaluating. It removes all sessions with less than min_apps_per_session apps recorded. 

n_apps min_apps_per_session operation mrr 

1 1 Σ 0.1348 

1 1 Π 0.1348 

2 2 Σ 0.1349 

2 2 Π 0.1349 

3 3 Σ 0.1268 

3 3 Π 0.1345 

4 4 Σ 0.1351 

4 4 Π 0.0541 

Table 6 - mrr scores for CLS-token based simple recommender 

As shown in Table 6, the simple recommender was not able to outperform the existing solutions from 

[21] by simply searching for the most similar apps. Nevertheless, for a fair competition with the existing 

solution, a TempoLSTM should be added on top of the current implementation, which takes the CLS 

encoded app names as input and predicts the next app based on them. Due to time constraints this 

implementation has not been implemented during this research period. 

  



7. Conclusion and Outlook 
 

Compared to the best existing search engines, NTAS-pairwise (MRR: 0.5257) and CNTAS-pairwise 

(MRR: 0.5637), the BERT-based dense retriever in this paper was not able to maintain the performance 

(MRR: 0.2628). Consequently, the recommendation system built on base of the trained BERT model 

(MRR: [TODO]) was also not able to compete with TempoLSTM (MRR: 0.6898) from [21]. 

Although the models built and trained in this paper were not able to maintain the performance of neither 

the search engine nor the recommendation system compared to other implementations [21], it has once 

again proven BERT’s ability of gaining contextual knowledge with little data by giving a moderate 

performance on the given dataset. However, there are still plenty of other possible configuration 

possibilities for BERT systems which still could outperform the existing solutions.  

During the research and implementation work of the documented systems and models, another idea 

regarding joint search and recommendation came up. This paper did extend similar solutions to 

Zamani’s and Croft’s research [2], which shows how search and recommendation can be designed 

jointly. However, with this solution the systems may be able to benefit from each other during their 

training but afterwards, still two separate systems are needed, one for searching and one for 

recommending. By extending the work from this paper an additional solution could be research where 

search and recommendation are designed as one final model, as shown in [ABBILDUNG]. The 

mentioned concept could be then trained and used jointly for both, search and recommendation. 

However, the first step of establishing this system would be to find a setting for the given search and 

recommendation in this paper which can maintain or even outperform existing solutions. Afterwards, 

both models could be designed as one pipeline and evaluated together. 

 

Figure 13 - Concept of Joint Search and Recommendation Model 

  

All in all, this work has shown possible implementation possibilities for a Joint Search and 

Recommendation system in combination with BERT. Although the built models did not outperform 

existing solutions, the work done sets a direction for a joint search and recommendation in combination 



with transformers. The next steps for continuing this work would be to test other pretrained BERT 

models with different settings to improve the prediction accuracy of the dense retriever. Afterwards, the 

recommendation can be built by using the fine-tuned model and adding another transformers or LSTM 

layer on top. 
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