

Project Report for a
Scholarship of the Austrian
Marshall Plan Foundation

Project Title:

Self-attention based System for Joint Search and Recommendation

Scientific Supervisors:

Hamed Zamani

Associate Director of the Center for Intelligent

Information Retrieval (CIIR) and Assistant

Professor in the College of Information and

Computer Sciences (CICS)

Center for Intelligent Information Retrieval

College of Information and Computer Sciences

University of Massachusetts Amherst

140 Governors Drive

Amherst, MA 01003-9264

Cornelia Ferner

Lecturer and Researcher at the Applied Data

Science Lab (ADSLab)

Stefan Wegenkittl

Academic Program Director Applied Image and

Signal Processing (AIS)

Salzburg University of Applied Sciences

(SUAS)

Urstein Süd 1

5412 Puch

Austria

Submitted by:

Stjepan Bijelonjić, BSc.

Master Student at Salzburg University of Applied Sciences

Degree Program: Information Technology & Systems Management (ITS)

Table of Contents

1. Introduction ... 4

2. Background ... 5

2.1. Machine Learning and Artificial intelligence .. 5

2.2. Search Engine .. 6

2.3. Scores .. 6

2.4. Transformer ... 7

2.5. The Environment ... 8

3. The Idea of Joint Search and Recommendation .. 9

4. The Dataset .. 11

4.1. ISTAS Dataset ... 11

4.2. LSApp Dataset .. 12

5. Search Engine .. 13

5.1. Multilabel Classification Model using Simple Transformer ... 13

5.2. Classification using HuggingFace and PyTorch ... 13

5.3. Dense Retriever ... 16

6. Recommendation System .. 20

6.1. Data pre-processing ... 20

6.2. CLS-Token based Recommender .. 21

7. Conclusion and Outlook .. 22

References ... 24

Figures

Figure 1 - Representation of BERT input. [4] ... 8

Figure 2 - Model of joint search and recommendation for given dataset .. 9

Figure 3 - How to join Search and Recommendation ... 10

Figure 4 - Demonstration of uSearch interface as App [21] .. 11

Figure 5 - (right) Distribution of Apps with more than 100 Queries .. 12

Figure 6 - (left) Queries / Apps distribution .. 12

Figure 7 - MRR over epochs (with batch-size: 8) ... 14

Figure 8 - MRR over batch sizes (with epochs: 8) .. 14

Figure 9 - Train-test split explained for given dataset ... 15

Figure 10 - Dense Retriever with BERT and dot product ... 16

Figure 11 - Distribution of Apps per Category ... 17

Figure 12 - Number of sessions per used apps per session ... 20

Figure 13 - Concept of Joint Search and Recommendation Model ... 22

Tables
Table 1 - example for ISTAS entries ... 12

Table 2 - change of the MRR based on the options boost_to and trim_to .. 15

Table 3 - app categories with number of apps per category .. 17

Table 4 - static predicter prediction list ... 19

Table 5 - dense retriever training results ... 19

Table 6 - mrr scores for CLS-token based simple recommender .. 21

1. Introduction

The work described in this paper was done between March and August 2022 during a stay at the Center

of Intelligent Information Retrieval at the University of Massachusetts Amherst. The Austrian Marshall

Plan Foundation funded this Research Scholarship which made it possible for the author to work from

Amherst and benefit from the wide knowledge of both, the Center of Intelligent Information Retrieval

and Salzburg’s University of Applied Sciences which have a high interest in information retrieval and

natural language processing (NLP). Since the research scholarship was done during the authors master

studies, all approaches and result will also be part of a master thesis which will deal with a similar topic.

Technical advancements have opened the door for using more complex algorithms to simplify our daily

lives. With better internet connections, high performance CPUs and GPUs and more memory

capabilities, even the smallest devices today are able to solve complex problems by using probabilistic

models, machine learning or other technologies. While machine learning is finding more and more

application in a wide variety of subject areas, there are still a wide range of applications that have not

yet been researched enough. [1]

Search engines and recommendation systems two often machine learning based algorithms which help

users to find desired information. Although both systems have similar goals, they are usually designed

independently. Zamani and Croft have already put effort in exploring joint search and recommendation

systems with user item interactions [2]. The work in this paper extends their research by combining

search and recommendation with the current state of the art approach for natural language processing

tasks – transformers [3], which could find application in multiple real-word scenarios, like e-commerce

websites or streaming services. One main challenge in this paper is the size of the dataset. Recent

advancements have shown that Bidirectional Encoder Representations from Transformers (BERT) [4]

improves the results in many NLP tasks. However, the results depend on the size of the finetuning

dataset and research has shown that BERT can have its difficulties with smaller datasets [5] [6].

Consequently, the goal of this work is to research if BERT can be used as part of a joint search and

recommendation system and how it performs in combination with a small dataset.

2. Background

This topic explains the backgrounds of the components and methods used in this paper. This should help

to gain an overview about the project’s scope and depth. It also explains keywords and topics which are

necessary for the understanding of the work described later in the report.

2.1. Machine Learning and Artificial intelligence

Machine learning in general is the term used to describe computer systems that automatically improve

their own capabilities through experience [7]. Although the idea of machine learning was already

discussed back in 1990 [7], there is still a lot of potential in many-many fields to exploit today. It is a

term which is sometimes used interchangeably with Artificial Intelligence, although they are not the

same. Artificial intelligence (AI) describes a machine which follows the concept of thinking by itself

and is able to execute actions based on own decisions. For its thinking process, machine AI uses

techniques like statistical learning, machine learning or other techniques. [8] Today, machine learning

finds application in many different tasks and helps users to simplify their daily life when translating text

[9], navigating through streets [10] or by recommending movies they may like [11]. This paper focuses

on machine learning in search engines and recommendation systems in combination with Natural

Language Processing.

2.1.1. Natural Language Processing (NLP)

The term Natural Language Processing, like artificial intelligence, is not new. It began back in the 1950s

as combination of artificial intelligence and linguistics and was distinct from information retrieval (IR).

Early applications were found in word-for-word translations, which could be trained based on

dictionaries, but had their difficulties in homographs – words which have different meanings even then

identically spelled. [12] With faster hardware and modern algorithms, NLP has evolved rapidly during

the past years. Today millions of webpages can be processed within a second when browsing Google

for specific terms [13]. In this paper natural language processing plays a key role by analysing English

phrased user queries and therefore gaining a contextual understanding of the apps. However, the

language understanding is hereby built up with a machine learning model, which is trained unsupervised

but fine-tuned supervised.

2.1.2. Supervised vs. Unsupervised Machine Learning

As mentioned in chapter 2.1, a machine learning model tries to improve it skills automatically. To do

so, it needs specific data and a learning goal. There are two main methods for training a machine learning

algorithm, supervised learning and unsupervised learning. Supervised learning, also called supervised

classification learning, encourages a system so find rules and test hypothesises. When training a model

unsupervised, every data-pair must be labelled. [14] This means, when trying to train a model with

images to find the difference between dogs and fish, every input image has to be labelled either as dog

or fish. The model then tries to find an algorithm for differentiating them by setting up hypothesises and

predicts a label based on its hypothesis. Afterward, it cross-checks the predictions with the true label of

the image. This process is then repeated till a minimum error between predictions and true labels is

achieved.

Unsupervised learning on the other side does not need labels. If a machine learning model is trained

unsupervised, its goal is to group similar items by finding natural groupings [15]. Looking at the

mentioned example with dog and fish this would mean the trained model would get only the images as

input, without any labels. Its goal would then be to let the model find the difference between the images

by its own and group images of fish into one group and images of dogs into another one, without calling

them fish or dog.

The model in this paper is trained both, supervised and unsupervised. All models have been pre-trained

unsupervised based on large corpora of data and afterwards fine-tuned supervised for the specific task

of clustering queries according to the assigned app. However, when the model has trained an algorithm

to predict the specific app name by inputting a query, this can be seen as search engine where a database

of app names is searched to find the best app to a specific query.

2.2. Search Engine

When talking about search engine, there are different types of search engines. For this paper two types

of search engines are relevant:

1. Query based Search Engine

2. Recommendation System

Explained in an example: a web-shop can suggest items to a customer using different methods. It can

either provide a search function, which the customer can use to search for a specific product by using a

query, or it can recommend items to the customer without the need of a query.

Recommendation System

A recommendation system does not need a query as input. The goal of a recommendation system is to

find items or answers to questions its users did not even ask yet. To achieve that, different methods can

be applied depending on the use case. Recommendation systems can work with a user’s browsing

history, his reviews of already purchased items or even by comparing a user to other users. Therefore,

it is necessary to not only search the database for specific, but to understand the context and find

similarities or habits. The recommendation system in this paper works with a sequence of used apps per

user session and has the goal of predicting the next app the user will use based on those he already used.

Query Based Search Engine

Query based search engines on the other hand are usually defined as a program or process which should

return the best results for a given query, key words, or related terms. This means, search engines are

designed to go through a given database, a collection of items or similar and calculate a similarity of

those items to a user-defined query. [16] The search engine in this paper is designed as dense retriever

and has the goal of suggesting the best app to a specific query.

There are different options to evaluate the performance of machine learning models. As the data for both

systems, the search engine and the recommendation system, is labelled, all methods in this paper

compare predicted labels to true labels and calculate a score accordingly.

2.3. Scores

In this chapter different methods of evaluating machine learning models are discussed.

2.3.1. Accuracy

The accuracy of a model can be only calculated when the ground truth is known. It is a very simply

measurement and shows how many of the predicted labels are correct. Therefore, the accuracy for every

predicted label can be either True (100%) or False (0%). The systems accuracy is calculated by summing

up all correct predictions and divide them by the number of total predictions n.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑛
∑ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖

𝑛

𝑖=1

2.3.2. Mean Reciprocal Rank (MRR)

While for the accuracy only takes one predicted label and can therefore be only 0% or 100% for a single

prediction, the Mean Reciprocal Rank is a metric which can be used when the output to a query is a list

of results of which only one is correct. In difference to the accuracy, the Reciprocal Rank considers the

rank of the correct result, meaning if the correct result is ranked first in the predicted list, the RR is 1, if

it is ranked second, the RR is 0.5 and so on. Therefore, the higher ranked the correct label in the predicted

list is, the higher is the reciprocal rank of the prediction. However, the Mean Reciprocal Rank is, as the

name implies, the average reciprocal rank over n predicted lists. [17]

𝑅𝑅 =
1

𝑟𝑎𝑛𝑘𝑖
, 𝑀𝑅𝑅 =

1

|𝑛|
∑ 𝑅𝑅 =

|𝑛|

𝑖=1

1

|𝑛|
∑

1

𝑟𝑎𝑛𝑘𝑖

|𝑛|

𝑖=1

2.4. Transformer

When it comes to Natural Language Processing (NLP), Transformer has outperformed neural models

such as recurrent and convolutional neural networks in natural language generation as well as in natural

language understanding. [18]

Transformer is a model architecture which was introduced in 2017 by a Google AI Team and relies on

an attention mechanism to find dependencies between input and output. This architecture allows more

parallelization and therefore reached speeds up the training process which reached a new state of the art

for translation tasks. It is designed to process an entire input at once and consequently train an

understanding of the context for any word or syllable in the input sentence. Using an attention function,

to be specific, a Scaled Dot-Product Attention function, the Transformer architecture calculates the dot

product of a query and a set of key-value pairs and maps it to an output. Afterwards, the softmax function

calculates the weights on the values. [19]

2.4.1. HuggingFace

HuggingFace1 is a GitHub repository where users can upload pretrained transformer models and make

them accessible for others. Currently, HuggingFace has over 70.000 GitHub Stars, making it the sixtieth

most popular GitHub repository worldwide2. It provides access to almost 80.000 models in over 190

different languages.

HuggingFace started as a chatbot for teenagers in 2017 and became popular among developers in 2018.

At that time, its developers have begun to share parts of their code for free which made it attractive for

AI developers, including those from companies like Google and Microsoft. Today the company is valued

at two billion US-dollars. [20]

2.4.2. Bidirectional Encoder Representations from Transformers (BERT)

Since its introduction in 2018, BERT has outperformed a majority of other models when it comes to

NLP tasks [3]. BERT consists of two steps. Firstly, it is designed to learn contextual representations of

text by being pretrained on large amounts of texts. This process is called pre-training and happens

unsupervised. After the pre-training is done, BERT can be fine-tuned for a specific task. This is done

1 https://huggingface.co/models, accessed 10th October 2022
2 https://gitstar-ranking.com/repositories, accessed 10th October 2022

https://huggingface.co/models
https://gitstar-ranking.com/repositories

by adding a classification layer on top of the representation if the first token, the CLS token. To achieve

that, BERT is initialized with pretrained parameters which are changed slightly during the fine-tuning

process. As shown in Figure 1, to every input for a BERT model a [CLS] token needs to be added. CLS

hereby stands for classification. The [SEP] token on the other hand stands for separation and shows

where one sentence ends, and another sentence starts. After the input has been processed, all for the

classification necessary information gets stored in the CLS-token as 768-dimensional vector. The whole

input is finally classified based on this single vector. [4]

Figure 1 - Representation of BERT input. [4]

2.5. The Environment

When it comes to developing code, the first question is always which programming language to choose.

Since the goal is not to develop everything from scratch but to use existing frameworks, it is necessary

to check which options there are. The most used frameworks at the Center for Intelligent Information

Retrieval for machine learning tasks are Pytorch3 and Tensorflow4, both used in Python. With Anaconda5

as the most popular data science platform, providing uncomplicated framework imports and a broad

offer of extensions, all code developed during this project was done in Anaconda as JupyterNotebook

with Python as programming language and a mixture of PyTorch and Tensorflow.

3 https://pytorch.org/, accessed 18th October 2022
4 https://www.tensorflow.org/, accessed 18th October 2022
5 https://www.anaconda.com/, accessed 18th October 2022

https://pytorch.org/
https://www.tensorflow.org/
https://www.anaconda.com/

3. The Idea of Joint Search and Recommendation
Although search engines and recommendation systems can be seen as two sides of the same coin, the

techniques used for developing and training them are different. They both should help users to find the

information they need, which often can be in both systems identical. Still, the methodology of searching

is different in both. While search engines rely on information retrieval approaches such as learning to

rank, a common approach for recommender systems is collaborative filtering. Recently, Hamed Zamani

and W. Bruce Croft have shown that search and recommendation can be designed jointly and therefore

bring improvements to both systems [2].

The goal of this project is to apply those existing approaches to different projects and thereby extend

them with Transformers like BERT, the current state of the art deep learning model. When it comes to

Natural Language Processing (NLP) tasks, BERT has brought a big improvement since its introduction

in 2018 [3]. Therefore, the aim of this paper is to replace the Bag of Words approach from [2] with

BERT and see if it is suitable to learn a context for search and recommendation.

Since recommendation systems and search engines are trained on different data, the choice of datasets

that can be used for this work is very limited. One dataset, which consists enough data to train both,

search and recommendation, is the dataset created as part of the Context-aware Target Apps Selection

and Recommendation for Enhancing Personal Mobile Assistants [21], which consists of query-app

combinations and recordings of app sessions. As shown in Figure 2, the search engine needs queries and

apps to be trained on, while the recommendation system needs apps and sessions of apps. However,

both have the goal to predict a list of apps depending on the information they have. The search engine

should predict the best app for the given query, while the recommendation system predicts the next app

the user will use based on the apps he already did use.

Figure 2 - Model of joint search and recommendation for given dataset

The idea is to design both systems independently but with a shared BERT Model. To achieve this, this

project was divided into three steps which can be seen in Figure 3. The first step is to explore whether

BERT is suitable at all for learning a context to the applications using the queries and apps during the

training process. If this experiment is positive, the second step is to train a dense retriever that matches

and fine-tunes a pre-trained BERT model to the app and query combinations. The goal of the Dense

Retriever is to predict a list of apps for a specific query, where those apps that best match the query are

listed at the top. For example, if a user searches for "spiderman movie", there is a high probability that

the user wants to watch the movie. Therefore, the Dense Retriever should suggest streaming services

like Netflix or Hulu. This would complete the search itself.

The third step is then building a recommendation system. The input of the recommendation system is a

sequence of apps, where the next system should predict the application, a user will open next based on

those he already used in his surfing session. Meaning, if the user’s session contains Disney Plus, Prime

Video and Hulu, he is probably searching for a movie and would like to open Netflix next. The gained

knowledge from the Search engine could bring a profit to this task. When training a BERT model with

queries and apps, the goal for the model is to learn a context to an application. Therefore, it could learn

from the queries that Disney Plus, Hulu and Netflix are all streaming services. Therefore, the idea is to

check if this knowledge can help in predicting the next application. To achieve this, the trained BERT

model from the search engine should be used as app encoder for the recommendation system. Every app

name from a session is encoded using the trained BERT model and using the encoded app names, the

next app should be predicted.

Figure 3 - How to join Search and Recommendation

4. The Dataset

As mentioned in the previous chapter, to build a Joint Search and Recommendation System, a dataset is

needed which can be used for both, search and recommendation. As described in chapter 0, a query-

based machine learning search engine needs a collection of queries and matching items for being trained

accordingly. However, the recommendation system cannot be trained by query and item combinations

as recommendation are used without queries. Summing up, this means that a dataset is needed which

has both, query-item combinations and either a sort of user-item interactions or a sequence of items.

Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani and W. Bruce Croft build a dataset for

Context-aware Target Apps Selection and Recommendation for Enhancing Personal Mobile Assistants

which meets those requirements. The dataset is divided into two subsets, the “In Situ collection of cross-

App mobile Search” (ISTAS) and the collection of a “Large dataset of Sequential mobile App usage”.

[21]

4.1. ISTAS Dataset

For collecting the ISTAS data 255 recruited participants let a custom-built app, called uSearch, running

on their smartphones for a minimum period of one day. As shown in Figure 4, the app’s user interface

is split into three sections:

1. a list of apps installed on the phone, where the user has to check which app he used

2. a text box to enter the query the users executed in the selected app

3. a short survey to get a unique ID and some demographics and backgrounds of the user

In addition to those query-app-combinations, the app collected data via GPS, accelerometer, gyroscope,

ambient light, WiFi and cellular sensors. For their participation all users got paid $0.2 per query entered

into the application. [21]

Figure 4 - Demonstration of uSearch interface as App [21]

All collected data was finally stored as JSON file containing entries with associated timestamps,

UserIDs, Queries, Apps and AppUsages. Examples for those entries can be seen in Table 1. In total there

are 6877 recorded queries in 192 different apps from 255 users.

Table 1 - example for ISTAS entries

However, the uneven distribution of the 6877 queries over the 192 apps is a challenge for training a

machine learning algorithm based on this data. As shown in Figure 5 and Figure 6, for more than one

third of the apps (73 of 192) only one query was recorded while 49,2% of all queries (3386 of 6877)

have been executed in either google or chrome, which are almost identical apps when it comes to

browsing the internet via query.

Figure 5 - (right) Distribution of Apps with more than 100 Queries

Figure 6 - (left) Queries / Apps distribution

4.2. LSApp Dataset

The other part of the given dataset is the LSApp dataset. LSApp is short for Large dataset of Sequential

mobile App usage and was collected using uSearch6 data collection tool. Over eight months data of 292

users was collected of which 255 users were the same users from the ISTAS dataset. The other 37 users

did not submit a single valid query and are therefore not included in the app query dataset. While

collecting the data, many repeated app usages within ten seconds have been recorded. Therefore, the

authors defined multiple app usages of one app within ten seconds as one single entry. The median of

unique apps per session is two while the mean session time length is 5:26. [21]

In total there were almost 600,000 app usages recoded, distributed over around 76,000 sessions. While

the ISTAS dataset contains 192 recorded apps, the LSApp dataset has only 87 unique apps. 51 of these

87 apps could be matched to the 192 apps, for the other 36 apps no record in the ISTAS dataset was

found.

6 https://github.com/aliannejadi/uSearch

0

50

100

150

200

1
 q

u
er

y

≤
2

 q
u

er
ie

s

≤
5

 q
u

er
ie

s

≤
1

0
 q

u
er

ie
s

≤
5

0
 q

u
er

ie
s

≤
1

0
0

 q
u

er
ie

s
Number of Apps with less than 100

Queries

Number of Apps

0

500

1000

1500

2000

go
o

gl
e

ch
ro

m
e

yo
u

tu
b

e

sa
m

su
n

g_
in

te
rn

et

fa
ce

b
o

o
k

am
az

o
n

_
sh

o
p

p
in

g

m
ap

s

gm
ai

l

go
o

gl
e_

p
la

y_
st

o
re

in
st

ag
ra

m

sp
o

ti
fy

Number of Queries for Apps with
more than 100 recorded Queries

recorded queries
per app

https://github.com/aliannejadi/uSearch

5. Search Engine

This section describes the approaches to optimize search via machine learning for the ISTAS dataset.

The search in this section is defined as predicting the correct app based on a query. The benchmark for

this task is the best score of the Context-aware Target Apps Selection and Recommendation for

Enhancing Personal Mobile Assistants [21] paper. This means, the goal is to see if a machine learning

model with BERT can achieve similar or better results on the same dataset as the best model in the

according paper. The authors of the mentioned paper have documented the performances of 21 different

methods using MRR and nDCG@n scores. The best result for the ISTAS dataset has been achieved

using CNTAS-pairwise with a MRR score of 0.5637, followed by the NTAS-pairwise with 0.5257 [21].

Therefore, an MRR score of 0.5637 is the benchmark here.

5.1. Multilabel Classification Model using Simple Transformer

The first approach to check if BERT qualifies for an app prediction was to build a multilabel classifier

using a pretrained BERT model using Simple Transformer. Simple Transformer7 is a library for natural

language processing tasks which is built using HuggingFace. As the name implies, Simple Transformer

is designed to use basic functions of HuggingFace with a few simple lines of code. With this

simplification also comes a restriction of the HuggingFace functionality. Although a fully functional

multilabel transformer was built with a few lines of code, a training based on a Mean Reciprocal Rank

could not be implemented.

5.2. Classification using HuggingFace and PyTorch

To use the full functionality of HuggingFace, the idea of building a prediction with Simple Transformer

was discarded. Instead, the next approach was to build a model using HuggingFace and Pytorch. At this

stage, three different, pretrained BERT models have been compared:

- bert-base-uncased8

- roberta-base9

- distilbert-base-uncased-finetuned-sst-2-english10

[ERGEBNISSE FÜR ROBERTA UND DISTILBERT EINFÜGEN]

Using HuggingFace and Pytorch, the next step was to check which pretrained BERT model is the best

for the given dataset. Therefore, a model was built which predicts an app name based on the input

query. All models have been evaluated using the Mean Reciprocal Rank (see chapter 2.3.2) so they

can be compared to the models from the Context-aware Target Apps Selection and Recommendation

for Enhancing Personal Mobile Assistants [21] paper.

Picking the best pretrained model can be challenging as the results do not only depend on the model

itself, but also on the fine-tuning parameters. Since those settings strongly depend on the dataset, there

is no one-size-fits-all setting a model, which means the best setting needs to be determined

experimentally. If you go by the original BERT introduction paper, a batch size of 8, 16, 32, 64 or 128

and two to four epochs are a good starting point for finetuning a BERT model [4]. As shown in Figure

7, the mean reciprocal rank is higher when using four epochs than with two or three. Therefore, more

7 https://simpletransformers.ai/about/
8 https://huggingface.co/bert-base-uncased
9 https://huggingface.co/roberta-base
10 https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

https://simpletransformers.ai/about/
https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-base
https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english

different options have been tried out than suggested by the authors of the BERT paper. The results

show that the model performs best when trained with eight epochs.

Figure 7 - MRR over epochs (with batch-size: 8)

Figure 8 - MRR over batch sizes (with epochs: 8)

The next step was to research which batch size fits best for the given dataset. As the first experiments

have shown that eight epochs work best, different settings with batch sizes between 4 and 128 have

been tested with constantly using eight epochs. As shown in Figure 8, the best final setting for training

the model is with epochs: 8 and batch_size: 8.

5.2.1. Challenges caused by uneven distribution of data

As shown in Figure 9, when training a machine learning model, a percentage n is used for training the

model and 1-n for evaluating it. This means when training the given model here, one query-app-pair

can either be used for training or for testing. Considering that 73 of 192 apps in the given dataset have

0.37

0.38

0.39

0.40

0.41

0.42

0.43

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1

MRR OVER EPOCHS

0.37

0.38

0.39

0.40

0.41

0.42

0.43

4 1 2 2 0 2 8 3 6 4 4 5 2 6 0 6 8 7 6 8 4 9 2 1 0 0 1 0 8 1 1 6 1 2 4 1 3 2

MRR OVER BATCH_SIZE

only one recorder query, the can either never be trained for those apps or if it was trained with them,

they will not appear in the evaluation. This makes it impossible to get a correct evaluation when trying

to predict those apps.

Figure 9 - Train-test split explained for given dataset

Another challenge caused by the uneven distribution of data is the optimization goal of the model.

Since the model is designed to train for the best accuracy or MRR, it could happen that is trains itself

mainly on those apps which have the most query-app-pairs. Since 49.2% of all queries have been

executed in either google or chrome, a model could achieve an accuracy of almost 50% just by being

trained to google and chrome, which would be easier than to train it to the other or to the other 190

apps.

5.2.2. Data pre-processing

To find a solution for handling the uneven distribution of data, different options have been tried. As

some apps have over 1000 recorded queries while almost 75% of the apps have less than 50 queries, the

first idea was reducing the number of queries for those apps with a high occurrence. To achieve that, a

function has been developed which trims the number of queries for all apps to a specific amount. When

this parameter, called trim_to, is set to m, only m query-app-pairs per app stay in the dataset.

As mentioned previously, if an app has only one recorder query, it cannot occur during training and

evaluation and therefore, no conclusions can be drawn for those apps. To solve this problem as well, an

option for boosting queries has been implemented. When the parameter boost_to is set to x, query-app-

pairs for apps with less than x queries get duplicated in the dataset.

 trim to

b
o

o
st

 t
o

 50 100 200 400

50 0.859 0.843 0.795 0.756

100 0.933 0.908 0.881

200 0.945 0.938

400 0.961
Table 2 - change of the MRR based on the options boost_to and trim_to

Using the parameters trim_to and boost_to the dataset can be a little balanced. If an app on the one side

has over 1000 entries but the parameter trim_to is set to 200, 200 of those 1000 query-app-pairs are

picked randomly and used for training and testing the model. On the other, if an app has only two

recorded queries but the boost_to parameter is set to 50, every query-app-pair for this app is replicated

25 times. These options have two positive effects on finetuning the model: on the one hand, this makes

the model more sensitive to those apps with fewer queries, but on the other hand, it also prevents the

model from always predicting google or chrome just because these two apps account for almost 50

percent of the original data. Additionally, those two options also give other insides on the model

behaviour like the impact of apps with high occurrences on the predicting accuracy or change of the

MRR score depending on how balanced the input data is.

Two main conclusions can be drawn from the figures presented in Table 2. First, it shows that the

prediction accuracy is not necessarily getting better with more input data. Looking at the setting boost_to

= 50 it can be seen that the performance gets worse when the apps with a high number of recorded

queries are trimmed less. However, the boost_to and the trim_to parameter get higher, the model

generally performs better. Therefore, it can be said that the model performs better when the distribution

of queries per app is well balanced. However, it should be noted that by increasing the boost_to

parameter the system tends to overfitting. If a query gets replicated 200 times, the model gets sensitive

to that specific query and will most probably always classify it correctly, but a slightly changed query

could already be wrong classified which is a strong indicator for overfitting. Nevertheless, if there are

only one or two recorded queries for an app, the model in general cannot learn much context about it.

5.3. Dense Retriever

As the results from chapter 5.2 have shown that BERT is indeed able to learn a context between queries

and apps, the next step is to build a search engine using BERT. Dense retrievers retrieve items using a

usually high-dimensional representation. This representation can be learned by fine-tuning pre-trained

models like BERT with queries and documents. [22]

Figure 10 - Dense Retriever with BERT and dot product

The design of the built dense retriever is shown in Figure 10. Thereby, the BERT model is used as

encoder for the inputs, which in this case are queries and apps. In addition to queries and apps the dense

retriever receives a label which marks if the query-app pair is a positive or negative sample. Recent

studies have shown that dense retriever results tend to be improved by adding some negative samples

during the training process [23] [24]. According to the literature a common loss function for training

dense retrievers is contrastive loss [25] [26].

As the dataset has no negative samples it was necessary to generate some before training the dense

retriever. Therefore, a function was implemented which generates negative from the existing dataset and

adds them to the train-dataset. Negative samples are created per app, meaning when given an app name

like Netflix, a random query is taken which does not have Netflix as app assigned. However, as the

dataset has 192 apps, there are a few apps which are very similar to each other. Therefore, a query like

Spiderman Movie could have been executed in Netflix but also in Hulu or IMDB. To prevent the creation

of negative samples where the query and app combination would make sense, all 192 apps were divided

manually into 10 categories.

Category Id Categories # apps in category

0 Browser 13

1 Streaming 32

2 purchase and living 30

3 social media 15

4 default apps / other apps 32

5 communication 19

6 finance 8

7 health 7

8 navigation & travel 10

9 information 14

10 games & other entertainment 12

Table 3 - app categories with number of apps per category

The category Browser for example contains apps like Google, Chrome, Firefox, Samsung_Internet and

others, while the category social media has apps like Facebook, Instagram, Twitter etc. The distribution

of apps per category can be seen in Figure 11. Using those categories, it is guaranteed that no query

from an app in the same category is taken as negative sample for another app in the same category.

Figure 11 - Distribution of Apps per Category

Following different pre-trained models have been tested in combination with a dense retriever and the

given dataset:

Distribition of Apps per Category as Pie Chart

Browser Streaming purchase and living

social media default apps / other apps communication

finance health navigation & travel

information games & other entertainment

distilbert-base-uncased-finetuned-sst-2-english11

distilbert-base-uncased-finetuned-sst-2-english is a checkpoint based on distilbert-base-uncased but

finetuned on the Stanford Sentiment Treebank (SST). Distilbert is, as the name implies, a lighter version

of BERT. As the size of the data sets in machine learning tasks is crucial for the results, the models are

in principle fed with more and more data. Since there is no one-fits-all solution for the parameters of a

machine learning model, the training is mostly based on try and error. In order to accelerate the training

of the models, investments are made in graphics cards on the one hand, and on the other hand, the models

themselves must be designed to be as performant as possible. Since BERT is relatively computationally

intensive, distilbert was created. While the size of distilbert is only around 60% of the original BERT

model, its language understanding performance is around 97% compared to BERT. This makes distilbert

around 60% faster and still very performant. [27]

The Stanford Sentiment Treebank12 is a dataset containing sentences for English sentiment language.

It contains 215,154 unique phrases which were all annotated by 3 human judges. As the phrases are in

English and the queries from the dataset in this paper are also mainly in English, the idea was to see if

advantage can be taken from a model which is already trained on understanding English context.

microsoft/mpnet-base13 and all-mpnet-base-v214

MPNet stands for Masked and Permuted Pre-training for Language Understanding. It is a model which

extends the functionality of BERT and XLNet, a Generalized Autoregressive Pretraining for Language

Unterstanding [28], and takes position information into consideration. It is pre-trained on around 160GB

of text corpora. While BERT uses masked language modelling (MLM) and XLNet permuted language

modelling, MPNet uses a mixture of both. [29] In this paper two different MPNet models have been

trained on the given dataset: mpnet-base and all-mpnet-base-v2. As mentioned, mpnet-base is pretrained

on 160GB of text corpora, while the all-mpnet-base-v2 model checkpoint is pretrained on mpnet-base

and fine-tuned on one billion sentence pairs dataset which come mostly from Reddit comments.

multi-qa-distilbert-cos-v115

The multi-qa-distilbert-cos-v1 checkpoint is based on a sentence transformers model and was designed

for a semantic search, to be precise, on Sentence-BERT (SBERT). Sentence-BERT uses Siamese and

triplet network structures to extend the BERT network and therefore improve the performance when it

comes to similarity recognition in sentences. When searching for a similar sentence in a set of 10,000

sentences, SBERT needs around five seconds to find the most similar one while BERT takes about 65

hours. The comparison hereby is done using by calculating a cosine-similarity of the dense vectors.

Therefore, the model is optimized to arrange similar sentences in a vector space near to each other and

calculate the similarity of the vectors for finding the nearest neighbours. [30] Since the goal of the dense

retriever in this paper is also to find similarities in the recorded queries per app, the sentence transformer

architecture is similar to the dense retriever architecture.

random predicter and static ranker

Sometimes performance results can be hard to interpret or even vacuous when given to little context.

For a better orientation about how good or bad a model is, two simple predicter have been built for

11 https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english?text=I+like+you.+I+love+you
12 https://huggingface.co/datasets/sst2
13 https://huggingface.co/microsoft/mpnet-base
14 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
15 https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1

https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english?text=I+like+you.+I+love+you
https://huggingface.co/datasets/sst2
https://huggingface.co/microsoft/mpnet-base
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/multi-qa-distilbert-cos-v1

comparison. Firstly, a static predicter has been implemented. When entering a query, independently of

the input the predicter always predicts the same list of apps. The first five apps on this list can be seen

in Table 4. Although there is no prediction logic behind this, it can be used as orientation point about

how good a trained model is compared to a static prediction.

prediction rank app name

0 google

1 chrome

2 puffin

3 youtube

4 file_manager

5 google_play_store
Table 4 - static predicter prediction list

Secondly, a random predicter has been built which predicts any random app from the ‘app’ column of

the given dataset. Although the predicter pics a random line, the prediction is also based on the

distribution of app usages since it picks a random line from the 6877 app query pairs. Although this also

does not implement any query-based logic, it can be informative index as the minimum goal of the

search engine should be to beat those two predicters.

Results:

As shown in Table 5, the trained models were not able to outperform the existing solution. Nevertheless,

this does not mean that BERT is not able to bring any improvement in this field of application since

only a few settings have been tested. All models were trained using two epochs, a batch size of eight, a

train / test ration of 90 / 10 and a positive / negative sample ration of one, meaning for every positive

sample one negative sample was generated. The training was performed on a Tesla T4 GPU and the

training duration was between two and ten hours. Therefore, due to time constraints, only a certain

contingent of settings could be tested.

model mrr

distilbert-base-uncased-finetuned-sst-2-english 0.1398

microsoft/mpnet-base 0.0266

all-mpnet-base-v2 0.2453

multi-qa-distilbert-cos-v1 0.2628

random predicter 0.2766

static predicter 0.4280

Table 5 - dense retriever training results

In total, the fine-tuned microsoft/mpnet-base model performed worst on with the configured settings on

the given dataset. Using distilbert-base-uncased-finetuned-sst-2-english the results were already over

five times better while the models using all-mpnet-base-v2 and multi-qa-distilbert-cos-v1 performed

best. However, all trained models were worse then the static and random predicters and were therefore

not able to compete with TempoLSTM (MRR: 0.6898) from the Context aware Target App Aelection

and Recommendation paper [21].

6. Recommendation System

Although the results from the search engine were not satisfactory, the potential for improvement is still

there. Therefore, to complete the overall setting, the next step was to develop a recommendation system

based on the trained BERT model. Although the recommendation system uses the trained BERT model

to encode the app names, the data used in this part is from the LSApp dataset which is, as mentioned in

chapter 4.2, also based on the same paper as the ISTAS dataset [21].

However, the content of the datasets is very different even though they were both created by the same

user groups and most probably on the same devices. While the ISTAS dataset has in total 192 apps

recorded, the LSApp dataset has only 87 used unique apps in the recorded sessions, which implies that

the data for these two datasets either was not collected at the same time, the app for recording the

sessions was not able to record everything or the users did not enter the queries they submitted on the

device where the sessions were recorded. Additionally, of those 87 recorded unique apps, only 51 could

be matched to the 192 apps from the ISTAS dataset. Therefore, the BERT model used in the dense

retriever was not able to train a context for over 40% of the apps which occur in the LSApp dataset.

6.1. Data pre-processing

In total almost 600,000 app usages were recorded. App usages in the mentioned paper [21] are opening

and closing an app. The focus on this paper is to predict the next app based on already used apps in one

session. Therefore, the information about opening or closing an app is irrelevant at this point and was

filtered. Afterwards, also all entries where filtered where an app was used multiple times in one session

without an app in between. After filtering duplicate usages as well as the opening and closing

information per session, from almost 600,000 records only approximately 182,000 records were left. As

shown in Figure 12Error! Reference source not found., the majority of those 182,000 records has only

one recorded app per session. The mean of apps used per session is 2.38, while the median is 2.0.

Figure 12 - Number of sessions per used apps per session

As the next app should be predicted, all sessions with only one recorded app are useless for training the

system. Consequently, 29,955 of 76,247 recorded sessions cannot be used for training leaving the train

dataset with 46,292 sessions.

6.2. CLS-Token based Recommender

Since the results from 5.3 still need to be improved to gain an improvement from training a search engine

with BERT for this specific dataset, designing an advanced recommender on the current results is not

possible. Nevertheless, this research has still shown that BERT is able to gain contextual knowledge of

the apps. Consequently, the next step for is to research how a simple recommender based on the CLS

tokens of the trained BERT model performs.

As explained in chapter 2.4.2, when trained, a BERT model computes a multidimensional dense / vector

which contains the information needed for classification and is stored on the CLS-Token position. Thus,

similar words are nearer neighbours in the vector space of calculated CLS-Tokens. Following that, when

a BERT model is trained, it can be used to represent similar words as vectors. The recommendation

system in this chapter is built based on this principle. All app names are transformed into a vector using

the CLS-Tokens of a trained BERT model and stored into a lookup table. When recommending, the

system takes multiple apps as input, replaces every app name with the corresponding vector from the

lookup table and performs a mathematical operation on all input vectors. Afterwards, it looks for the

most similar app in the vector space and takes it as prediction.

When it comes to predicting the next app, the number of already used apps per session is crucial. If a

session has only two recorded apps, the predicter would have to predict the second app only based on

the one previously used app, which is little information for training a predicter. However, the higher the

number of input apps for the recommender is set, the less data remains for training / testing. Therefore,

different modes have been implemented for predicting and evaluating. The recommendation is

configured using two parameters: n_apps and min_apps_per_session.

n_apps: this parameter sets the number of apps the recommendation system gets. The last used app is

always taken as label / ground truth and the others as input for the prediction. When n_apps is set for

example to 4, the recommendation system tries to predict the fourth used app based on the first three

apps used.

min_apps_per_session: this parameter sets the number of apps needed minimum for predicting and

evaluating. It removes all sessions with less than min_apps_per_session apps recorded.

n_apps min_apps_per_session operation mrr

1 1 Σ 0.1348

1 1 Π 0.1348

2 2 Σ 0.1349

2 2 Π 0.1349

3 3 Σ 0.1268

3 3 Π 0.1345

4 4 Σ 0.1351

4 4 Π 0.0541

Table 6 - mrr scores for CLS-token based simple recommender

As shown in Table 6, the simple recommender was not able to outperform the existing solutions from

[21] by simply searching for the most similar apps. Nevertheless, for a fair competition with the existing

solution, a TempoLSTM should be added on top of the current implementation, which takes the CLS

encoded app names as input and predicts the next app based on them. Due to time constraints this

implementation has not been implemented during this research period.

7. Conclusion and Outlook

Compared to the best existing search engines, NTAS-pairwise (MRR: 0.5257) and CNTAS-pairwise

(MRR: 0.5637), the BERT-based dense retriever in this paper was not able to maintain the performance

(MRR: 0.2628). Consequently, the recommendation system built on base of the trained BERT model

(MRR: [TODO]) was also not able to compete with TempoLSTM (MRR: 0.6898) from [21].

Although the models built and trained in this paper were not able to maintain the performance of neither

the search engine nor the recommendation system compared to other implementations [21], it has once

again proven BERT’s ability of gaining contextual knowledge with little data by giving a moderate

performance on the given dataset. However, there are still plenty of other possible configuration

possibilities for BERT systems which still could outperform the existing solutions.

During the research and implementation work of the documented systems and models, another idea

regarding joint search and recommendation came up. This paper did extend similar solutions to

Zamani’s and Croft’s research [2], which shows how search and recommendation can be designed

jointly. However, with this solution the systems may be able to benefit from each other during their

training but afterwards, still two separate systems are needed, one for searching and one for

recommending. By extending the work from this paper an additional solution could be research where

search and recommendation are designed as one final model, as shown in [ABBILDUNG]. The

mentioned concept could be then trained and used jointly for both, search and recommendation.

However, the first step of establishing this system would be to find a setting for the given search and

recommendation in this paper which can maintain or even outperform existing solutions. Afterwards,

both models could be designed as one pipeline and evaluated together.

Figure 13 - Concept of Joint Search and Recommendation Model

All in all, this work has shown possible implementation possibilities for a Joint Search and

Recommendation system in combination with BERT. Although the built models did not outperform

existing solutions, the work done sets a direction for a joint search and recommendation in combination

with transformers. The next steps for continuing this work would be to test other pretrained BERT

models with different settings to improve the prediction accuracy of the dense retriever. Afterwards, the

recommendation can be built by using the fine-tuned model and adding another transformers or LSTM

layer on top.

References

[1] E. Horvitz, "Machine Learning, Reasoning, and Intelligence in Daily Life: Directions and

Challenges," 1 12 2006. [Online]. Available: https://www.semanticscholar.org/paper/Machine-

Learning%2C-Reasoning%2C-and-Intelligence-in-

Horvitz/fe1279cc8fe08bb143ad02bccd3561a435e8f27e?sort=is-influential. [Accessed 26 10

2022].

[2] H. Zamani and W. B. Croft, Learning a Joint Search and Recommendation Model from, Amherst:

University of Massachusetts Amherst, 2020.

[3] D. D. E. P. Ian Tenney, "BERT Rediscovers the Classical NLP Pipeline," Association for

Computational Linguistics, vol. Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, p. 4593–4601, 2019.

[4] M.-W. C. K. L. K. T. Jacob Devlin, "BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding," Association for Computational Linguistics, Vols. Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), p. 4171–4186,

2019.

[5] A. Ezen-Can, "A Comparison of LSTM and BERT for Small Corpus," 11 09 2020. [Online].

Available: https://arxiv.org/abs/2009.05451. [Accessed 26 10 2022].

[6] s. si, R. Wang, J. Wosik, H. Zhang, D. Dov, G. Wang and L. Carin, "Students Need More

Attention: BERT-based Attention Model for Small Data with Application to Automatic Patient

Message Triage," Proceedings of the 5th Machine Learning for Healthcare Conference, vol. 126,

pp. 436-456, 2020.

[7] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom and A. Waibel, "MACHINE

LEARNING," Annual Review of Computer Science, vol. 4, pp. 417-433, 1990.

[8] N. Kühl, M. Goutier, R. Hirt and G. Satzger, "Machine Learning in Artificial Intelligence:

Towards a Common Understanding," in Hawaii International Conference on System Sciences,

Hawaii, 2019.

[9] A. Yulianto and R. Supriatnaningsih, "Google Translate vs. DeepL: A quantitative evaluation of

close-language pair translation (French to English)," AJELP: Asian Journal of English Language

and Pedagogy, vol. 9 No. 2, pp. 109-127, 2021.

[10] G. Lewis-Kraus, "The Great A.I. Awakening," The New York Times Magazine, New York, 2016.

[11] F. Amat, A. Chandrashekar, T. Jebara and J. Basilico, "Artwork personalization at netflix," in

RecSys '18: Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver,

2018.

[12] P. M. Nadkarni, L. Ohno-Machado and W. W. Chapman, "Natural language processing: an

introduction," Journal of the American Medical Informatics Association, vol. 18, pp. 544-551,

2011.

[13] E. Cambria and B. White, "Jumping NLP Curves: A Review of Natural Language Processing

Research," IEEE Computational Intelligence Magazine, vol. 9, no. 2, pp. 48-57, 2014.

[14] B. C. Love, "Comparing supervised and unsupervised," Psychonomic Bulletin & Review, vol. 9,

no. 4, pp. 829-835, 2002.

[15] J. G. Dy and C. E. Brodley, "Feature Selection for Unsupervised Learning," Journal of Machine

Learning Research, vol. 5, pp. 845-889, 2004.

[16] S. Kavitha and K. Tarakeswar, "Search Engines:A Study," Journal of Computer Applications

(JCA), pp. 29-33, 2011.

[17] N. Craswell, "Mean Reciprocal Rank," in Encyclopedia of Database Systems, Boston, Springer,

2009, p. 1703.

[18] T. Wolf, L. Debut, S. Victor and e. al, "Transformers: State-of-the-Art Natural Language

Processing," Association for Computational Linguistics, vol. Proceedings of the 2020 Conference

on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38-45, 2020.

[19] A. Vaswani, N. Shazeer, N. Parmar and e. al., "Attention Is All You Need," in 31st Conference on

Neural Information Processing Systems, Long Beach, CA, USA, 2017.

[20] K. Cai, "The $2 Billion Emoji: Hugging Face Wants To Be Launchpad For A Machine Learning

Revolution," Forbes, 09 05 2022. [Online]. Available:

https://www.forbes.com/sites/kenrickcai/2022/05/09/the-2-billion-emoji-hugging-face-wants-to-

be-launchpad-for-a-machine-learning-revolution/?sh=664d2ec0f732. [Accessed 10 10 2022].

[21] M. Aliannejadi, H. Zamani, F. Crestani and B. W. Croft, “Context-aware Target Apps Selection

and Recommendation,” ACM Transactions on Information Systems, vol. 39, no. 3, pp. 29:1-29:30,

2021.

[22] H. Zeng, H. Zamani and V. Vinay, "Curriculum Learning for Dense Retrieval Distillation," in 45th

International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR 22), Madrid, 2022.

[23] S. Hofstätter, S.-C. Lin, J.-H. Yang and e. al., "Efficiently Teaching an Effective Dense Retriever,"

in 44th International ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR 21), Canada, 2021.

[24] H. Zhang, G. Yeyun, S. Yelong, L. Jiancheng, D. Nan and C. Weizhu, "ADVERSARIAL

RETRIEVER-RANKER FOR DENSE," in The International Conference on Learning

Representations (ICLR 2022), Virtual, 2022.

[25] X. Lee, X. Chenyan, L. Ye, T. Kwok-Fung, L. Jialin, P. N. Bennet, A. Junaid and O. Arnold,

"Approximate nearest neighbor negative contrastive learning for dense text," in ICLR 2021,

virtual, 2021.

[26] K. Vladimir, O. Barlas, S. Min, P. S. H. Lewis, L. Wu, S. Edunov, D. Chen and W.-t. Yih, "Dense

passage retrieval for open-domain question answering," in EMNLP, virtual, 2020.

[27] V. Sanh, D. Lysandre, J. Chaumond and T. Wolf, "DistilBERT, a distilled version of BERT:

smaller,," in The 5th EMC2 - Energy Efficient Training and Inference of Transformer Based

Models, Vancouver, 2019.

[28] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov and Q. V. Le, "XLNet: Generalized

Autoregressive Pretraining," in 33rd Conference on Neural Information Processing Systems,

Vancouver, 2019.

[29] S. Kaitao, T. Xu, Q. Tao, L. Jianfeng and T.-Y. Liu, "MPNet: Masked and Permuted Pre-training

for," in 34th Conference on Neural Information Processing Systems, Vancouver, 2020.

[30] I. G. Nils Reimer, "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks," in

Conference on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing, Hong Kong, 2019.

[31] G. Boesch, "Pytorch vs Tensorflow: A Head-to-Head Comparison," visio.ai, [Online]. Available:

https://viso.ai/deep-learning/pytorch-vs-tensorflow/. [Accessed 18 10 2022].

