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Abstract (English) 

Melanoma is a cancer of melanocytes, the pigment producing cells in the human body, and 

is the deadliest form of skin cancer. Molecular classification has revealed the activating 

BRAFV600E mutation as a major driver of melanoma. Targeted inhibitors of the MAPK sig-

nalling pathway have greatly improved patient outcomes, but resistance is almost universal 

within one year of initiating treatment. Understanding of molecular mechanisms driving 

drug resistance in malignant melanoma is of great importance to identify novel therapeutic 

approaches. Melanoma exhibits a high degree of both inter- and intratumoral heterogeneity 

and the arrival of single-cell sequencing techniques has allowed characterization of distinct 

phenotypic tumor states. To further define disease relevant tumor states we investigated 

primary melanoma samples on two levels: transcriptionally by applying single-cell RNA se-

quencing (scRNA-seq) and epigenetically by single-cell ATAC sequencing (scATAC-seq) during 

treatment with MAPK pathway inhibitors. For modelling BRAFV600E driven melanoma, we 

used a BRAFV600E;tp53-/- driven zebrafish model of melanoma that was previously estab-

lished in the Zon lab. Primary tumors were generated and drug treated with the BRAF inhib-

itor dabrafenib. Resistant tumors arose with variable kinetics and samples from several dis-

ease relevant time points were obtained for both scRNA-seq and scATAC-seq to identify can-

didate transcriptional and epigenetic states characteristic of phases of drug response to 

MAPK pathway inhibition. Our data suggests that an initial dedifferentiation takes place, fol-

lowed by acquisition of a neural crest/“stress-like” state in minimal disease cells. Pseudo-

time trajectory analysis revealed two distinct cell states in resistant cells: a differentiated 

cell state and a neural crest/ “stress-like” state. The in vitro validation of the “stress-like” 

state revealed differential expression of candidate genes in a resistant and sensitive cell line 

upon inhibition of stress signalling using pharmacologic inhibition. Bulk ATAC-seq showed 

higher accessibility of several stress related genes in the resistant cell line. Collectively, our 

study demonstrated the acquisition of a “stress-like” subpopulation in melanoma upon BRAF 

inhibition and provides a refinement of transcriptional and epigenetic cell states at respec-

tive disease-relevant time points. 
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Abstract (German) 

Melanom ist ein Krebs der Melanozyten, jene Zellen, die im menschlichen Körper Pigment 

produzieren. Diese Krebsart gilt als einer der tödlichsten Hautkrebsarten. Molekulare Tu-

morklassifizierung hat gezeigt, dass die aktivierende BRAFV600E-Mutation eine wesentliche 

Drivermutation von Melanom ist. Gezielte Inhibitoren des MAPK Signalweges haben eine 

gute Wirkung auf den Heilungsprozess von Patienten gezeigt. Eine Resistent tritt aber in fast 

allen Fällen innerhalb eines Jahres nach Beginn der Behandlung ein. Das Wissen über die 

molekularen Mechanismen, die zur einer Medikamentenresistenz bei einem malignen Me-

lanom führen, ist von zentraler Bedeutung, um zukünftige Therapieansätze verbessern zu 

können. Das Melanom weist ein hohes Maß an inter- und intratumoralen Heterogenität auf 

und das Einbringen von Einzelzell-Sequenzierungstechniken hat die Differenzierung ver-

schiedener Tumorphänotypen wesentlich vorangetrieben. Für weitere Tumordefinitionen 

wandten wir zwei unterschiedliche Methoden zur Untersuchung primärer Melanomproben 

an: transkriptionell durch Anwendung von Einzelzell-RNA-Sequenzierung (scRNA-seq) und 

epigenetisch durch Einzelzell-ATAC-Sequenzierung (scATAC-seq), während der Behandlung 

mit MAPK-Signalweg-Inhibitoren. Für die Modellierung des BRAFV600E-getriebenen Mela-

noms wurde ein im Zon-Labor etabliertes BRAFV600E;tp53 getriebenes Zebrafischmodell 

des malignen Melanoms verwendet. Primärtumore wurden generiert, medikamentös be-

handelt und scRNA-seq und scATAC-seq wurden durchgeführt, um den transkriptionellen 

und epigenetischen Status zu identifizieren, die charakteristisch für die Phasen der Medika-

mentenwirkung auf die Inhibition des MAPK-Signalweges sind. Resistente Tumore entstan-

den mit variabler Kinetik und in einem weiteren Schritt wurden Proben von mehreren krank-

heitsrelevanten Stadien genommen. Unsere Daten deuten darauf hin, dass eine anfängliche 

Dedifferenzierung stattfindet, gefolgt vom Erwerb eines Neuralleisten/Stress Zustandes in 

den Zellen mit minimaler Krankheit. Die Pseudozeitanalyse zeigte zwei unterschiedliche Zell-

status in den resistenten Zellen: einen differenzierten Zellstatus und einen Neuralleisten-

/Stress Status. Die in vitro-Validierung des Stressstatus ergab eine differentielle Expression 

von Kandidatengenen in einer resistenten und sensitiven humanen Melanom-Zelllinie bei 

Hemmung der Stresssignalwege durch pharmakologische Inhibition. Die ATAC-Sequenzie-

rung demonstrierte eine höhere Zugänglichkeit mehrerer „Stressgene“ in der resistenten 

Zelllinie. Zusammenfassend zeigt unsere Studie die Akquisition einer „stressähnlichen" Sub-

population im Melanom nach BRAF-Inhibierung und stellt eine genaue Analyse der transkrip-

tionellen und epigenetischen Zellstatus in krankheitsrelevanten Stadien dar. 
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1 List of abbreviations 

CAFs Cancer-associated fibroblasts 

cDNA Complementary DNA 

DMEM Dulbecco's Modified Eagle Medium 

DNA Deoxyribonucleic acid 

DNA Copy-number alterations 

ECM Extra-cellular matrix 

ER Endoplasmic reticulum 

hrs Hours 

IF Immunofluorescence 

kb Kilo base 

M Mole 

MCR:EGFP MiniCoopR: Enhanced green fluorescent protein 

MRD Minimal residual disease 

mRNA Messenger RNA 

NCSC Neural crest stem cells 

ng Nano gram 

NK cells Natural killer 

nM Nanomole 

PBS Phosphate-buffer saline 

PCA Principal component analysis 

PCR Polymerase chain reaction 

PDX Patient-derived xenograft 

pg Pico gram 

QC Quality control 

qPCR Quantitative polymerase chain reaction 

RNA Ribonucleic acid 

ROS Reactive oxygen species 
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scATAC-seq Single-cell assay for transposase-accessible chromatin using sequencing 

scRNA-seq Single-cell ribonucleic acid sequencing 

SMC „Starved“-like melanoma cells 

TCGA The Cancer Genome Atlas 

Tg Transgenic 

TME Tumor micro environment 

T-SNE T-distributed stochastic neighbor embedding 

uM Micromole 

UMAP Uniform manifold approximation and projection 

UV Ultraviolet 

V600E Valine (V) is substituted by glutamic acid (E) at amino acid 600 

V600K Valine (V) is substituted by lysine (K) at amino acid 600 

WT Wild type 
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2 Introduction 

2.1 Molecular classification of melanoma 

The skin is the largest human organ and fulfils a barrier function for external forces as well 

as maintaining chemicals and nutrients inside the body. It consists of several layers: the ep-

idermis which is the visible top layer, the dermis, and subcutaneous fat as the bottom layer. 

The epidermis consists predominantly of three cell types: keratinocytes, melanocytes and 

Langerhans cells. In development, melanocytes derive from the neural crest and migrate to 

the skin and other sites (Costin and Hearing 2007). Their primary function is to produce the 

pigment melanin, which acts to protect cells from ultraviolet (UV) radiation.  UV radiation 

can lead to cellular and genetic damage and is one of the leading risk factors for most types 

of skin cancer (Tobin 2006). UV radiation leads to the generation of reactive oxygen species 

(ROS) that promote free radical mediated damage to nucleotides and mutagenesis of G/C 

pairs to A/T pairs. UV radiation can trigger adjacent pyrimidines to form aberrant covalent 

bonds and form highly mutagenic dimers (D'Orazio et al. 2013). Thus, UV radiation is one of 

major risk factors for the development of nearly all types of skin cancer.  The three most 

common forms of skin cancers include: basal cell carcinoma, squamous cell carcinoma, and 

melanoma. This work focuses on cutaneous melanoma, which is a cancer of the melano-

cytes, and the most deadly form of skin cancer (Diepgen and Mahler 2002).  

The genetic and environmental risk factors and why some melanocytes undergo transfor-

mation are not fully understood. The triggers for malignant transformation and prolifera-

tive/invasive/metastatic behaviour of melanoma cells need to be further investigated. The 

development of therapies for melanoma patients has greatly progressed over the last dec-

ade - with the development of targeted small molecule inhibitors of the MAPK pathway and 

and immune checkpoint blockade therapies. Yet, it remains to be elucidated why some mel-

anomas respond to certain therapies and some do not, eventually develop metastasis or 

acquire resistance to established treatments.  

In an attempt to understand the molecular mechanisms that drive melanoma, several risk 

factors and the genetic/hereditary component of the disease have been investigated. 10% 

of patients with melanoma have a strong family history. This hereditary form of melanoma 

is often characterized by either recurring cases of melanoma in the family history, a relatively 
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early development of melanoma or multiple primary tumors within a patient (Gandini et al. 

2005).  

As in other malignancies, several tumor suppressors have been implicated in the develop-

ment of melanoma. Among germline mutations, the cell-cycle regulating protein retinoblas-

toma (RB) is a master regulator of the G1/S checkpoint and disruptions in RB and p53 signal-

ling are considered highly predisposing for melanoma formation (Hodis et al. 2012; Yang et 

al. 2005). 

Markers for pigmentation were also subject to investigation of mutations in melanoma. The 

melanocortin-1 receptor (MC1R) is a G-protein coupled receptor that activates adenylate 

cyclase and subsequently the second major player in pigmentation, the microphthalmia-as-

sociated transcription factor (MITF) which has been found to be amplified in some melano-

mas (Tsao et al. 2012). MITF is a helix-loop-helix leucine zipper transcription factor that is a 

master regulator in melanocyte development and therefore an important player in mela-

noma development and progression (Ploper and Robertis 2015). The expression of MITF has 

been shown to drive melanocyte differentiation and is involved in pigmentation processes 

by regulating the expression of numerous genes involved in melanin synthesis including: ty-

rosinase (TYR), tyrosinase-related protein 1 (TYRP1) and dopachrome-tautomerase (DCT), 

together with other genes. Further, MITF regulates proliferation by controlling expression of 

T-box transcription factor 2 (TBX2) and cyclin-dependent kinase 2 (CDK2). Among others, 

upstream regulators of MITF are the neural crest transcription factors of Paired box genes 3 

(PAX3), cAMP-responsive element binding protein (CREB) and sex-determining region-box 

10 (SOX10), in addition to being shown to be regulated through MAPK signalling (Levy et al. 

2006). 

With its high mutational burden, melanoma driver mutations were initially quite challenging 

to identify. In an attempt to molecularly classify cutaneous melanoma, The Cancer Genome 

Atlas program (TCGA) from the National Cancer Institute analysed 333 samples of primary 

and/or metastatic tumors from 331 patients on the DNA, RNA and protein level using whole 

exome sequencing, mRNA sequencing and reverse-phase protein array, amongst other 

methods. From those samples, 52% harbored a BRAF hot-spot mutation in the V600 codon 

(fig.1). The most prevalent substitution is V600E followed by V600K or V600R. These muta-

tion in BRAF lead to activation of the MAPK signalling pathway (The Cancer Genome Atlas 

Network 2015). Under physiological condition, this pathway triggers proliferation. These 

mutations lead to constitutive activation of the BRAF kinase and prolonged activation of the 
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MAPK signalling pathway. Upon constitutive activation, the pathway triggers proliferation 

and survival signalling which results in abnormal cell growth and, along with loss of a tumor 

suppressor, can result in cancer formation (Davies et al. 2002). Samples with a BRAF V600 

and K601 hot-spot mutation typically did not occur with hot-spot NRAS mutations, however, 

BRAF non-hot-spot mutations were correlated with RAS hot-spot and Neurofibromatosis 

type 1 (NF1) mutations. The second most prevalent subtype is defined by hot-spot mutations 

in N-, K- and H-RAS. The NF1 subtype is the third major subtype with 14% of all samples. 

With its GTPase activity and RAS downregulating function, over 50% of mutations in NF1 

were predicted to be loss-of-function and thereby activating canonical MAPK signalling. 

Samples that did not harbor BRAF, RAS or NF1 mutations were categorized as triple wild-

type (Triple-WT) subtype (The Cancer Genome Atlas Network 2015).  

 

Figure 1: Molecular classification of malignant melanoma. From top to bottom: Total num-
ber of mutations, age of melanoma accession, subtype of mutation (BRAF, RAS, NF1 and Tri-
ple-WT), colour-coded matrix of individual mutations. Figure adapted from (The Cancer 
Genome Atlas Network 2015). 

The samples with BRAF, RAS or NF1 hot-spot mutations had a high prevalence (90-93.5%) of 

UV-signature mutations, which is defined by C>T transitions at dipyrimidine sites but only 

30% of Triple-WT melanomas demonstrated a UV mutational signature. Somatic copy-num-

ber alterations (CNA) and focal amplifications of known oncogenes and candidate fusion 

drivers were enriched in Triple-WT melanoma samples. With only 30% of Triple-WT samples 

harboring a UV signature and the high abundance of somatic CNAs, it is very likely that 
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structural rearrangements are a major driver of Triple-WT melanomas (The Cancer Genome 

Atlas Network 2015). 

Whole genome sequencing studies of 183 melanoma samples further revealed BRAF, 

CDKN2A, NRAS and TP53 as significantly mutated genes in cutaneous melanoma. Acral 

(hands and feet) and mucosal (internal body surfaces) melanoma showed higher frequency 

of structural variants than cutaneous melanoma. Different telomere length was observed 

between the samples, but not between the different melanoma subtypes. Non-coding mu-

tations were prominent in the TERT promoter region resulting in new binding sites for the 

GA-binding protein transcription factor (GABPA), which ultimately regulates telomerase ac-

tivity and telomere length. The loss-of-function mutations of Triple-WT melanoma subtypes 

were found in CDKN2A, TP53 and ARID2. The mitogen-activated protein kinase (MAPK), 

phosphoinositol 3-kinase (PI3K) and receptor tyrosine kinase (RTK) were the most affected 

signalling pathways (Hayward et al. 2017). 

The signalling pathways affected correlate with the visual and spatial appearance of mela-

noma. Superficial spreading and nodular melanoma often harbor BRAF and NRAS mutations 

affecting the MAPK pathway whereas KIT aberrations in acral melanoma are associated with 

RTK signalling (Tsao et al. 2012).  
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2.2 Tumor heterogeneity 

The concept of tumor heterogeneity is based on the assumption that tumors do not consist 

of a single cell “type” that is genetically different from normal cells, but rather are made up 

of different populations of genetically, transcriptionally, and epigenetically definable malig-

nant cells (fig. 2) (Burrell et al. 2013; Marusyk et al. 2012; Heppner 1984).  

 

Figure 2: Melanoma patients harbor inter- and intratumoral heterogeneity. Heterogeneity 
varies between and within tumors and can lead to dominance of certain phenotypes. Figure 
adapted from (Marusyk et al. 2012).  

Bulk sequencing of tumors identifies the dominant cell phenotype but single-cell analysis 

can better reflect on the composition of various subpopulations of cells within a tumor. 

These populations can consistent of both benign stromal elements as well as malignant cells 

that are all defined by distinct transcriptional and epigenetic programs that drive a certain 

phenotype. Single-cell sequencing techniques have emerged as a powerful tool to define cell 

types and programs within heterogeneous tissues. Single-cell RNA sequencing (scRNA-seq) 

of patient melanoma samples and dimensional reduction for instance allows clustering of 

non-malignant cells in their various cell types (NK, T-cells, B-cells, Macrophages, CAFs, Endo-

thelial cells) and reveals individual clustering of malignant cells from various patients (indi-

cated by different colour coding, fig.3) (Tirosh et al. 2016). 
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Figure 3: Single-cell expression analysis revealed clusters of malignant and non-malignant 
cells. T-distributed Stochastic Neighbor Embedding (T-SNE) plots show malignant cell types 
from six tumors and non-malignant cells from 11 tumors with annotated cell types. Figure 
adapted from (Tirosh et al. 2016). 

In melanoma, the first two major phenotypes identified were an invasive/mesenchymal and 

a proliferative phenotype (Hoek et al. 2008). Those are defined by the expression levels of 

different transcriptional master regulators that control gene expression and the respective 

transcriptional program that drive a certain cell phenotype. The mesenchymal phenotype is 

characterized by low levels of MITF and correlates with high levels of AXL expression 

whereas the proliferative phenotype is defined by a relatively higher MITF state (Sensi et al. 

2011; Tirosh et al. 2016; Konieczkowski et al. 2014). Single-cell RNA sequencing of cells from 

melanoma patients revealed the inter- and intratumoral heterogeneity in the MITFhigh–AX-

Llow vs MITFlow–AXLhigh program (fig. 4), (Tirosh et al. 2016).  
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Figure 4: AXL and MITF expression displays inter- and intratumoral heterogeneity. (A) Av-
erage expression of AXL and MITF program within melanoma samples. (B) Negative correla-
tion of AXL and MITF signatures on single-cell level within a tumor. (C) IF staining of MITF 
(green) and AXL (red) in two melanoma samples. Figure adapted from (Tirosh et al. 2016).  

Single-cell RNA-sequencing of melanoma cultures also identified main gene regulatory net-

works that drive either a melanocytic or mesenchymal state and defined an intermediate 

state between those two. The latter has higher levels of “immune-response-like” transcrip-

tional states and overall displays greater heterogeneity than cells from the melanocytic 

state. Single-cell regulatory network inference and clustering has led to correlation of spe-

cific transcription factors and their target genes being correlated with specific cell states. 

The melanocytic state has high levels of SOX10, TFAP2A, MITF, IRF4 and SOX4. The mesen-

chymal state is characterized by high activity of JUN, SOX9, IRF1, FOSL2, ATF5 and NFIB.  The 

intermediate state shares features with both, the melanocytic (SOX10, TFAP2A and MITF) 

and the mesenchymal cell state (FOSL1, IRF3 and STAT1). The intermediate state shows in-

creased activity of SOX6, NFATC2, EGR3, ELF1 and ETV4. Interestingly, both, the melanocytic 

and the intermediate states were highly dependent on the expression of SOX10. In a SOX10 

knock down experiment the transcriptome collapsed in both cell lines and acquired a mes-

enchymal-like cell state with comparable transcriptional programs facilitating migration, in-

vasion and development of resistance (Wouters et al. 2020). 

But not only the dominance of certain transcription factors play an important role in the 

context of tumor heterogeneity. The tumor microenvironment (TME) is in continuous con-

tact with the tumor populations and shapes its transcriptional programs by its environmen-

tal factors like growth factors and nutrient or oxygen supply (Cheli et al. 2012; Ferguson et 

al. 2017). The term phenotypic plasticity refers to the capability of genetically identical cells 

to exhibit several transcriptionally mediated phenotypes. The search for markers of the var-

ious phenotypes on the histological level has first brought up different expression of the 

receptor tyrosine kinase receptor AXL for the mesenchymal phenotype and MITF for the 

proliferative phenotype (Sensi et al. 2011). Consecutively, the nomenclature changed to 

MITFhigh–AXLlow for the proliferative phenotype and MITFlow–AXLhigh for the mesenchymal 

phenotype. The phenotypes are characterised by different gene signatures. Starting with 

AXL, the list of gene signatures for the mesenchymal phenotype has been extended by TGF-

β and WNT5A. In a microarray assay of melanoma cultures some cultures responded to in-

hibition of proliferation by TGF-β and some were resistant. The responsive melanoma cul-

tures had low levels of motility whereas the resistant cultures were highly motile. This sug-

gests that TGF-β type and Wnt/β-catenin pathways are differentially regulated and activated 
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between melanoma samples leading to different motility and metastatic potential of mela-

noma cells (Hoek et al. 2006; Widmer et al. 2012). The markers for the proliferative pheno-

type overlap with the gene signature important for melanocyte differentiation and are 

therefore specific for melanoma. The markers for the mesenchymal phenotype are not spe-

cific to melanoma and suggest that this gene signature might also confer an invasive behav-

iour in other cancer types (Rambow et al. 2015). The markers for the proliferative phenotype 

correspond with the various cell states that melanocytes undergo during maturation from 

neural-crest derived precursor cells to mature, differentiated and pigmented melanocytes 

(Rambow et al. 2018; Tsoi et al. 2018).  The state of differentiation as well as the expression 

of gene signatures associated with immune response, particularly infiltrating lymphocytes 

can be mapped onto tumour subtypes (Verfaillie et al. 2015; Tirosh et al. 2016). 

2.3 Melanoma phenotype plasticity and phenotype switching 

Phenotype switching relies on dynamic transcriptional states that allows cells to move be-

tween cell states (fig. 5), (Vandamme and Berx 2014). MITF is a major player in this pheno-

type plasticity and high levels are associated with a proliferative phenotype (Hoek et al. 

2008). Upon transition to a mesenchymal phenotype, the suppression or loss of MITF is re-

quired, however, the reversible step is a little bit more complicated as the overexpression of 

MITF in mesenchymal cells does not induce the proliferative phenotype. This leads to the 

hypothesis that the reversible switch needs other stimuli or changes on the epigenetic level 

beyond MITF levels (Carreira et al. 2006). Epigenetic profile of proliferative and mesenchy-

mal cells differ from each other (Verfaillie et al. 2015). In the mesenchymal phenotype, MITF 

and its target genes are repressed and hypermethylated (Lauss et al. 2015). Similarly, an 

inducible NGFR murine system showed that NGFR drives cancer cells from a proliferative to 

a mesenchymal slow-cycling phenotype with decrease in tumor growth. Switching off NGFR 

expression lead to a restored proliferative phenotype and ultimately, was necessary for the 

tumour progress to metastatic disease (Restivo et al. 2017). The same was shown in 

Zebrafish- only after EDN-3 induction of a proliferative phenotype the previously invasive 

cells could metastasize (Kim et al. 2017).   
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Figure 5: Phenotype switching between invasive and differentiated cell states generates 
heterogeneity and is triggered by the microenvironment as well as cell-intrinsic factors. 
Microenvironmental factors like hypoxia, inflammation and growth factors as well as cell-
intrinsic factors like oncogenic signaling and (epi)genetic instability account for the hetero-
geneity of MITFlow/invasive and MITFhigh/differentiated cells. Figure adapted from 
(Vandamme and Berx 2014). 

During tumor development melanocytes transform to melanoma cells exhibiting gene sig-

natures of the proliferative phenotype. They undergo phenotype switching to a mesenchy-

mal phenotype which allows the cells to change their matrix adhesion characteristics, dis-

seminate from the tumor and seed at a metastatic niche. Upon reverse switch to a prolifer-

ative phenotype the newly seeded cell can grow out to a metastasis (fig. 6), (Arozarena and 

Wellbrock 2019).  



18 

 

Figure 6: The phenotype-switch model. The proliferative phenotype drives initial tumor 
growth and switch to a mesenchymal (invasive) phenotype allows tumor cells to metastasize. 
At the metastatic niche the switch back to the proliferative phenotype is necessary for full 
development of metastasis. Figure adapted from (Arozarena and Wellbrock 2019). 

The observation of heterogeneity, not only within tumors and metastasis but also within 

circulating melanoma cells, leads to the assumption that melanoma cells communicate, pro-

gress and metastasize in a cooperative manner. Melanoma cells communicate with each 

other and their TME. From an intermediate phenotype which comprises cells from both, 

proliferative and invasive state, cells disseminate heterogeneously and seed and develop 

into a metastasis cooperatively (fig. 7), (Arozarena and Wellbrock 2019; Chapman et al. 

2014). 
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Figure 7: Melanoma cells grow and build metastasis in a cooperative manner. Cooperativ-
ity between melanoma cells and their TME accounts for tumor heterogeneity in all stages of 
melanoma progression. Figure adapted from (Arozarena and Wellbrock 2019). 

Apart from the cooperative interaction between tumour cells the TME is an important reg-

ulator of phenotype plasticity. Nutrients and oxygen availability lead melanoma cells to 

adapt. Low levels of oxygen push tumors towards a dedifferentiated slow-cycling phenotype 

that has less oxygen consumption and therefore a survival benefit (Vazquez et al. 2013). This 

phenotype is also capable of mimicking a vascular endothelium, even in absence of epithelial 

cells and can thereby lead to neovascularization (Hendrix et al. 2016). The phenotype in-

duced by the hypoxic condition is again mediated by the master regulator MITF, which is 

suppressed by Hypoxia-induced transcription factor HIF-1a leading to a less differentiation 

cell state (Feige et al. 2011). Nutrient supply and especially restriction of glucose availability 

is another driver of a dedifferentiated/ mesenchymal phenotype by transcriptional suppres-

sion of MITF (Ferguson et al. 2017; Vazquez et al. 2013). Apart from nutrient and oxygen 

availability, the cells comprising the TME are important regulators of cancer phenotype. Can-

cer-associated fibroblasts (CAFs) which are associated with AXLhigh/ mesenchymal (invasive) 

gene signatures and negatively correlate with proliferative/ MITFhigh gene signatures con-

tribute to the TME by remodelling matrix composition and interacting with cancer cells as 

well as infiltrating leukocytes (Tirosh et al. 2016). Especially in ageing skin CAFs promote an 

invasive/ mesenchymal phenotype by lowering ECM stiffness by reduced secretion of the 

important remodeller (Kaur et al. 2019) which is further promoted by the accumulation of 

UV induced damages over time. Conversely, low abundance of CAFs leads to stiffer ECM and 

promotes a differentiated phenotype which is reversible by CAF-mediated TGF- β signalling 

(Kaur et al. 2019; Wulf et al. 2004).  
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2.4 Resistance models 

Melanoma has one of the highest mutational burdens of all cancer types and has a poor 

prognosis with a 5-year survival rate of 10-20% for patients with advanced disease (Siegel et 

al. 2019). The development of immune checkpoint inhibitors has greatly improved patient 

outcomes, however only 10-40% of melanoma patients respond to this therapy (Wolchok et 

al. 2010; Hamid et al. 2013; Topalian et al. 2012). As 52% of melanoma patients harbor an 

activating BRAF mutation (Hodis et al. 2012), BRAF has become an attractive target for can-

cer therapy. 60-70% of patients with BRAF mutations respond to targeted inhibitors (Larkin 

et al. 2014; Robert et al. 2015); however, resistance is almost universal within one year 

(Flaherty et al. 2012; Chapman et al. 2011; Hauschild et al. 2012). Considering the poor prog-

nosis and high mortality rates, the characterisation of resistance mechanisms is an unmet 

need that may lead to novel therapeutic approaches for patients with clinically advanced 

melanoma.  

2.4.1 Genetic mechanisms of melanoma drug resistance 

Several attempts have been made to investigate melanoma resistance to BRAF and MEK 

inhibitors on a genetic level. Mutation in the RAF downstream proteins MEK1 and MEK2 

were identified as resistance mechanisms to both RAF and MEK inhibition. Amplifications of 

the transcription factor MITF are associated with resistance but cannot be regarded as driver 

(van Allen et al. 2014). BRAF amplifications are another genetic mechanism of resistance and 

were observed in 20% of patients treated with BRAF inhibitors (Shi et al. 2012).  

Further, resistance to BRAF inhibitors can be acquired by NRAS mutations leading to reacti-

vation of the MAPK pathway.  Knockdown reduced growing capabilities in resistant cell lines 

and overexpression promotes resistance (Nazarian et al. 2010; Jakob et al. 2012).  

An RNA interference screen revealed loss of the tumor suppressor and RAS antagonist neu-

rofibromin NF1 as a driver for BRAF inhibitor resistance. Loss of NF1 confers resistance by 

reactivation of MAPK signalling in many cancer cell lines (Whittaker et al. 2013).  
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2.4.2 Transcriptional and epigenetic factors contributing to melanoma drug re-

sistance 

In a kinase overexpression screen, MAP3K8 (COT/TpI2), which is an agonist of the MAPK 

pathway confers resistance to a BRAF inhibitor in a BRAF mutant cell line. COT is an upstream 

regulator of MEK and activates ERK signalling and thereby the MAPK pathway independent 

from RAF signalling, leading to resistance. Additionally, the expression of COT was found to 

be a marker of resistance to BRAF inhibitors in various cancer cell lines. A combination ther-

apy to inhibit multiple components of the MAPK pathway is therefore beneficial in many 

patients (Johannessen et al. 2010).  

Sun et al showed that many melanoma patients acquire EGFR expression after becoming 

resistant to BRAF or MEK inhibitors. Knock down of SOX10 or treatment with TGF-β led to 

upregulation of EGFR and PDGFR-β and development of resistance. A slow cycling phenotype 

was established with a gene signature of oncogene-induced senescence. They further sup-

ported the concept of tumor heterogeneity with the observation that cells with low levels 

of SOX10 and high expression of EGFR were enriched in treated samples and this was re-

versed after retain of the drug (Sun et al. 2014).  

Secondary mutations in BRAF were mostly excluded as drivers of resistance to BRAF inhibi-

tors, however, an aberrant splicing variant of the protein was found to be associated with 

acquired resistance. In physiological condition, activated RAS leads to dimerization of BRAF 

for further activation of the MAPK signalling pathway. RAS levels are usually low in BRAF 

mutated tumors and BRAF inhibitors work by binding to and inhibiting BRAF monomers. Ab-

errant splicing events promote dimerization of BRAF monomers to a greater extend and be-

yond the BRAF inhibition leading to reactivation of the MAPK signalling pathway (Poulikakos 

et al. 2011).  

Overexpression of PDGFRβ, IGF1R and wild-type NRAS or KRAS were identified as further 

transcriptional mechanisms to overcome drug treatment (Villanueva et al. 2010; Nazarian et 

al. 2010; Shi et al. 2014; Lidsky et al. 2014). 
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2.4.3 Interplay between tumor microenvironment and melanoma drug re-

sistance 

Regarding the important role of the TME in tumor heterogeneity and phenotype plasticity, 

TME factors in the context of BRAF inhibitor resistance have been investigated. The secretion 

of hepatocyte growth factor (HGF) by tumor stromal cells activates its receptor MET and 

thereby promotes the reactivation of the MAPK signalling pathway but also the PI(3)K-AKT 

pathway. Targeting both, the MAPK pathway and HGF restored sensitivity to BRAF inhibition 

leading to the assumption that also in patients a combination therapy would be beneficial 

(Straussman et al. 2012).  

2.4.4 Drug resistance and phenotype switching 

Tracking melanoma phenotypes over time of BRAF inhibitor treatment at the bulk level, a 

shift towards an MITFhigh proliferative phenotype can be observed which is followed by the 

acquisition of a slow-cycling dedifferentiated neural crest state characterized by high expres-

sion of NGFR (Smith et al. 2013; Su et al. 2017). The initial increase in MITFhigh cells can be 

explained by the phenomenon of rescue from the BRAF inhibition induced cell death by MITF 

survival signalling (Smith et al. 2016). The neural crest state mirrors the mesenchymal/inva-

sive phenotype and is associated with high expression of the receptor tyrosine kinases NGFR, 

PDGFR, IGF1R, EGFR and AXL (Rambow et al. 2018; Nazarian et al. 2010; Villanueva et al. 

2010; Sun et al. 2014; Konieczkowski et al. 2014).  

The concept of clonal evolution in drug resistance (Nowell 1976) is based on the observation 

that tumor cells have high mutational burdens that together with challenges in nutrient and 

oxygen availability lead to selection of the “fittest” clone. Genetic instabilities and resulting 

survival benefits ultimately drive the development of tumors and thus underlines the surge 

for patient specific precision medicine in cancer treatment. Shaffer et al challenged the con-

cept of clonal evolution by proposing the existence of a small population of cells with “rare 

cell variability” which are transcriptionally and epigenetically predisposed to develop re-

sistance to drugs. These cell populations are defined by a very high expression of resistance 

markers which upon drug treatment are epigenetically reprogrammed to move from a tran-

sient transcriptional state to a stably resistant cell. They identified loss of SOX10 as first 

driver to induce that change. Further players in reshaping the transcriptional and epigenetic 

landscape are the transcription factors JUN, AP-1 and TEAD. In a genetic mutation model, 

untreated cells undergo genetic mutations to develop resistance and would undergo clonal 
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selection and expansion during drug treatment leading to the survival of resistant colonies 

(fig. 8A). The transient gene expression state model suggests that already in an untreated 

state, cells shift between non-resistant and pre-resistant cell states in a reversible manner 

(fig. 8B). Drug treatment then leads to transcriptional and epigenetic reprogramming from 

a transiently pre-resistant cell state to a stably resistant state (Shaffer et al. 2017).  

 

Figure 8: Models for drug resistance predict different outcomes of resistant colonies. (A) 
Model for genetic heritability of drug resistance and simulated outcomes of resistant colo-
nies. (B) Model for transient gene expression state and simulated outcomes of resistant col-
onies. Figure adapted from  (Shaffer et al. 2017).  
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Rambow et al focused on the small subpopulation of cells that survive drug treatment in a 

process called minimal residual disease (MRD) (Rambow et al. 2018). They developed a pa-

tient-derived xenograft (PDX) murine model that were treated with the BRAF/MEK inhibitor 

combination Dabrafenib/Trametinib. Phase 0 was defined as start of drug treatment, phase 

1 was the tumor response/sensitivity towards the drug, phase 2 was the MRD and phase 3 

was acquired resistance (fig. 9A). They followed the respective gene signatures over the time 

course and identified multiple drug-tolerant transcriptional states that co-existed in the tu-

mor (fig. 9B). Further, the MRD harbored cells from both the MITFhigh and MITFlow state. The 

main 4 gene sets they identified were neural crest stem cells (NCSC), invasive, “starved”-like 

melanoma cells (SMCs) and pigmented melanoma cells (fig. 9C). The pseudo-time trajectory 

analysis shows a shift from a proliferative gene signature to an SMC signature at the branch-

ing point (fig. 9D). From there, melanoma cells either develop into a NCSC state or a pig-

mented state (Rambow et al. 2018).  

 

Figure 9: Melanoma cells exhibit dynamic transcriptional cell states and move along two 
trajectories upon drug treatment in a patient-derived xenograft (PDX) murine model. (A) 
Mean melanoma tumor volumes from mice treated with dabrafenib-trametinib. (B) t-SNE 
plot of scRNA-seq of melanoma samples shows distinct clustering of melanoma cells based 
on transcriptional cell states. (C) The transcriptional cell states neural crest stem cells (NCSC), 
invasive cells, pigmented cells and “starved-like” melanoma cells over course of the disease 
adapt dynamically upon drug treatment. (D) Monocle-based pseudo-time trajectory analysis 
shows trajectories for resistant cells. Figure adapted from (Rambow et al. 2018). 
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2.5 Zebrafish model 

The lab has previously established a transgenic (Tg) zebrafish line to model BRAFV600E mu-

tant melanoma (fig. 10). In a tp53-/- and mitfa-/- background, BRAFV600E is expressed under 

an mitfa specific promoter. Melanocyte and melanoma development are suppressed by the 

mitfa-/- background. The transposon-based vector miniCoopR contains an mitfa minigene 

that rescues melanocytes and allows expression of mutant BRAFV600E. The miniCoopR vec-

tor allows rapid cloning and expression of human candidate genes in rescued tissues of the 

Tg(mitfa:BRAF(V600E)); p53-/-; mitfa-/- strain (Triples) when injected into one-cell stage of 

the Triples zebrafish embryos (Kaufman et al. 2016; Ablain et al. 2018; Ceol et al. 2011). 

To identify transcriptional and epigenetic mechanisms underlying drug resistance in malig-

nant melanoma Triples zebrafish embryos were grown and in around 4 months developed 

tumors. They were treated daily with the BRAF inhibitor dabrafenib and the change in tumor 

size was observed. Further, scRNA-seq and scATAC-seq were performed at disease relevant 

time points, defined to be a DMSO treated control group, the short-term drug treated sen-

sitive tumor, a stage of minimal disease and the resistant tumor that grew back.  
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Figure 10: Tg zebrafish line to model BRAFV600E driven melanoma. Tg(mitfa:BRAF(V600E)); 
tp53-/-; mitfa-/-  zebrafish embryos. BRAFV600E is expressed under an mitfa specific promoter 
in a tp53-/- and mitfa-/- background. The miniCoopR vector was injected in the single-cell stage 
of the Tg(mitfa:BRAF(V600E)); p53-/-; mitfa-/-  zebrafish embryos. Upon development of mel-
anomas, fish were drug treated with dabrafenib and parallel scATAC-seq and scRNA-seq 
were performed on the samples. 
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2.6 Aims 

To increase the understanding of melanoma biology and find new approaches for treatment, 

this project focuses on the molecular states that drive inter- and intratumoral heterogeneity 

and drug resistance in melanoma. We hypothesize that increased tumor heterogeneity is 

associated with drug resistance and that specific subpopulations of melanoma cells contrib-

ute to development of this resistance.  

To this end, scRNA-seq and scATAC-seq were performed to transcriptionally and epigenet-

ically define cell populations in response to MAPK pathway inhibition. We were using com-

puter algorithms optimized to identify candidate genes – including transcription factors – 

and regulatory elements that define specific cellular states through the course of treatment. 

The laboratory of Dr. Zon has previously established a primary zebrafish model of melanoma 

that is driven by BRAFV600E under control of the mitfa promoter, which is specifically ex-

pressed in melanocytes, in a tp53 mutant background that lacks melanocytes (mitfa-/-). Tu-

mors are induced in these zebrafish lacking mitfa by injection of a rescue construct that can 

be modified to introduce reporter transgenes for tracking and monitoring melanoma devel-

opment by driving expression of a fluorescent protein from the mitfa promoter. 

Single-cell RNA sequencing (scRNA-seq) was performed to identify gene signatures of cell 

clusters reflecting populations that (co-)exist in tumors using high throughput droplet-based 

microfluidics in order to study how transcriptional programs change during drug treatment. 

To further research the epigenetic landscape of tumor cells, we utilized single-cell ATAC (As-

say for Transposase-Accessible Chromatin) sequencing (scATAC-seq), which maps regions of 

chromatin accessibility at a genome wide scale. Sequences with increased accessibility as 

well as transcription factor binding sites can be identified using this technique and can be 

compared to the scRNA-seq to identify regulatory elements associated with drug resistance. 

Using the methods described below, we identified transcriptional programs and regulatory 

elements associated with the development of drug resistance. Further, we validated our 

findings in an in vitro approach using a drug sensitive and resistant human melanoma cell 

line, respectively.  
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3 Materials and Methods 

3.1 Injections into single-cell stage of fish embryo 

Zebrafish injections were performed as described previously (Ceol et al. 2011). Briefly, 25 pg 

of MCR:EGFP were microinjected together with 25 pg of Tol2 transposase mRNA into one-

cell Triples zebrafish embryos. Tol2 transposase mRNA was generated using mMESSAGE 

mMACHINE™ SP6 Transcription Kit according to the manufacturers protocols (Ther-

moFisher, #AM1340). Embryos were scored for melanocyte rescue at 4-5 days post-fertiliza-

tion and raised to adulthood (25-30 zebrafish per tank). Adult zebrafish were scored weekly 

for tumor development. 

3.2 Drug treatment of fish 

Adult tumor bearing zebrafish were treated daily by overnight (12 hours) immersion in 50 

mL of water containing the drug, in petri dishes. Treatment was performed with DMSO or 

2.5 µM dabrafenib Free base (LC laboratories, #D-5678).  

Samples were taken at four disease relevant time points: control tumors (DMSO treated), 

short-term treated drug sensitive tumors (~10 days), minimal disease tumors (~3 weeks) and 

drug resistant tumors. Single-cell RNA sequencing and single-cell ATAC sequencing were per-

formed in parallel.  

3.3 Single-cell RNA sequencing 

Tumors were macrodissected from zebrafish, manually dissociated with scapple and incu-

bated at room temperature in Ham’s F12 media (Gibco, Cat # 11765054) supplemented with 

Liberase TL (Roche) for 30 mins at room temperature with agitation. The cell suspension was 

filtered through a 40 micron filter to remove cell clumps (Falcon, cat #352340) prior to pro-

ceeding with scRNA-seq or scATAC-seq as below. 

Single cell RNA-sequencing was performed by the single cell core, Bauer Core of the Harvard 

University using the inDrop method (Zilionis et al. 2017; Klein et al. 2015). Sequencing librar-

ies were sequenced on a Nextseq instrument (Illumina) using following read structure: read 

1: 86, read 2: 14, Index 1: 8, Index 2:8. 
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Single-cell RNA-seq data was analysed using R (R Foundation for Statistical Computing 2013) 

and the R package Seurat (Butler et al. 2018; Stuart et al. 2019) and the R package Monocle 

(Trapnell et al. 2014; Trapnell et al. 2012; Qiu et al. 2017).  

3.4 Single-cell ATAC sequencing 

scATAC-seq was performed using 10X Genomics kit (10X Genomics, Chromium Single Cell 

ATAC Library & Gel Bead Kit, cat #1000081). These libraries were sequenced on a Novaseq 

instrument (Illumina) using the following read structure: read 1: 50, read 2: 50, index 1: 8, 

index 2: 16. 

scATAC-seq data was processed and analysed in collaboration with the lab of Jason D. Buen-

rostro (Broad Institute, Harvard University).  

3.5 Cell culture and generation of dabrafenib resistant A375 cell line 

The human melanoma cell line A375 was cultured in DMEM (Thermofisher, cat# 12430054) 

+ 10% Foetal Bovine Serum (FBS) + Pen/Strep (Thermofisher, cat# 15070063) and were cul-

tured in 5% CO2 at 37°C in cell culture flask T25 or T75. Cells were passaged every 3-5 days.  

A dabrafenib resistant A375 melanoma cell line was generated by continuously treating with 

increasing doses of dabrafenib from 0.1 nM to 100 nM over a period of 3 weeks. 

Drug treatments were done using dabrafenib (LC Laboratories, #D-5678) and/or toyocamy-

cin (Sigma, #T3580-10MG) at the specified doses. 

3.6 qPCR 

Sensitive and resistant cells were seeded at a density of 1 x 105 cells in a 6-well plate and 

treated with dabrafenib and/or toyocamycin 24 hours after seeding. The cells were treated 

for 5 hours and RNA was extracted using Direct-zol™ RNA Miniprep kit (Zymo Research, # 

R2050, R2051, R2052, & R2053). The RNA extraction was conducted according to the man-

ufacturers protocols. The final elution step was done with 50 μL of nuclease free water.  RNA 

was stored at -80°C. cDNA was generated using the High Capacity cDNA Reverse Transcrip-

tion Kit (ThermoFisher, #4368814) according to the manufacturers protocols in a reaction 

volume of 20 μL. The cDNA was diluted 1:20 in nuclease free water. The cDNA was stored at 

-20°C. The qPCR reaction was set up in a compatible 96-well plate with a reaction volume of 

25 μL. iTaq Universal SYBR Green Supermix (BioRad, #1725120) was used for qPCR master 
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mix. The primers are listed in tab. 1. Fluorescence was measured on a real-time PCR detec-

tion system (Biorad CFX96).  

Primer Sequence 

SOX4  GACCTGCTCGACCTGAACC 
CCGGGCTCGAAGTTAAAATCC 

SOX10  TCTGGAGGCTGCTGAACGAA 
GTAGTGGGCCTGGATGGC 

sXBP1  CTGAGTCCGAATCAGGTGCAG 
ATCCATGGGGAGATGTTCTGG 

usXBP1  CAGCACTCAGACTACGTGCA 
ATCCATGGGGAGATGTTCTGG 

tXBP1  TGGCCGGGTCTGCTGAGTCCG 
ATCCATGGGGAGATGTTCTGG 

ATF3  CGGAGCCTGGAGCAAAATGA 
GGATGGCAAACCTCAGCTCT 

CHOP  TGGCCGGGTCTGCTGAGTCCG 
ATCCATGGGGAGATGTTCTGG 

GAPDH TGCACCACCAACTGCTTAGC  
GGCATGGACTGTGGTCATGAG 

Table 1: Primer sequences for qPCR 

Ct values of target gene were normalized to Ct values of GAPDH.  

3.7 Viability assay  

Sensitive and resistant A375 cells were seeded in a density of 5 x 103 cells/well in a 96-well 

plate. 24 hours after seeding, the cells were drug treated (dabrafenib and/or toyocamycin) 

and medium was changed after 48 hours. In total, cells were treated for 72 hours. The via-

bility was measured using CellTiter-Glo® 2.0 Cell Viability Assay (Promega, #G9241). The 

CellTiter-Glo® 2.0 Cell Viability Assay was conducted according to the manufacturers proto-

cols. Fluorescence was measured on a Synergy™ HTX Multi-Mode Microplate Reader (Bio-

Tek).  

3.8 Bulk ATAC sequencing 

Cell preparation 

For the cell preparation, 50.000 cells were spun down at 500 x g for 5 min, 4°C. The pellet 

was washed once with 50 μL of cold 1x PBS and again spun down at 500 x g for 5 min, 4°C. 

The PBS was carefully removed and pellet was resuspended in 50 μL of cold lysis buffer (10 

mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL #CA-360). Cells were spun down 
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immediately at 500 x g for 10 min, 4°C. The supernatant was discarded and the cell pellet 

was put on ice.  

Transposition reaction 

The transposition reaction master mix was prepared by combining the compounds listed in 

tab. 2.  

Compound Amount per sample [μL] 

2X TD Buffer (Illumina Nextera DNA Preparation kit (Illumina 
Cat #FC-121-1030)) 

25 

Transposase enzyme (Illumina Nextera DNA Preparation kit (Il-
lumina Cat #FC-121-1030)) 
 

2.5 

Nuclease-free water 22.5 

Table 2: Transposition reaction master mix 

The cell pellet was resuspended in 50 μL of transposition reaction master mix. The transpo-

sition reaction was incubated at 37°C for 90 minutes.  

The DNA was eluted using MinElute PCR purification kit (Qiagen, # 28004). DNA extraction 

was conducted according to the manufacturers protocols and DNA was eluted in 10 μL of 

Elution buffer.  

Library amplification 

For the library amplification a master mix was set up according to tab. 3.  

Compound Amount per samples 
[μL] 

Transposed DNA 10 

Nuclease free water 7 

Nextera Primer Ad1 (@ 25 u μM) 2.5 

Nextera Primer Ad2.[x] (@ 25 μM) 2.5 

10X SYBR Green I, diluted in 10 mM Tris-HCl, pH 8 (SYBR Green 
I dye (Invitrogen #S-7563)) 

3 

NEB PCR Master Mix (NEBNext High-Fidelity 2X PCR master mix 
(NEB Cat #M0541)) 

25 

Table 3: Library amplification master mix 

Nextera Primer Ad1_noMX: AATGATACGGCGACCACCGAGATCTACACTCGTCGG-
CAGCGTCAGATGTG 

Nextera Primer Ad2.1_TAAGGCGA: CAAGCAGAAGACGGCATACGAGATTCGCCTTAG-
TCTCGTGGGCTCGGAGATGT 

Nextera Primer Ad2.2_CGTACTAG: CAAGCAGAAGACGGCATACGAGATCTAGTAC-
GGTCTCGTGGGCTCGGAGATGT 
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The PCR cycling was run according to steps (1)-(7). 

(1) 72°C, 5 min 

(2) 98°C, 30 sec 

(3) 98°C, 10 sec 

(4) 63°C, 30 sec 

(5) 72°C, 1 min 

(6) Repeat steps 3-5, 4x 

(7) Hold at 4°C 

The qPCR side reaction was performed to reduce GC and size bias in the library preparation.  

The qPCR side reaction was set up according to tab. 4.  

Compound Amount per samples [μL] 

“5-cycle” PCR reaction from the previous PCR 5 

Nuclease-free water 3.9 

Nextera Primer Ad1 (@ 25 μM) 0.25 

Nextera Primer Ad2.[x] (@ 25 μM) 0.25 

10X SYBR Green I 0.6 

NEB PCR Master Mix 5 

Table 4: Mix for qPCR side reaction 

The remaining PCR reaction was kept at 4°C during the qPCR. 

The additional number of cycles needed for the remaining 45 μL PCR reaction was deter-

mined by: 

(1) plotting linear Rn vs. Cycle # of the SYBR amplified product  

(2) determining Rn value maxima for the sample  

(3) calculating the Cycle# that corresponds to 1/4th of the maxima (this is the number 

of cycles to add to the PCR reaction)  

(4) if the 1/4th value fell between 2 cycle #’s, the smaller integer was chosen 
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The remaining 45 μL PCR reaction was run to the correct # of cycle as follows: 

(1) 98°C, 30 sec 

(2) 98°C, 10 sec 

(3) 63°C, 30 sec 

(4) 72°C, 1 min 

(5) Repeat steps 2-4, x times 

(6) Hold at 4°C 

The amplified library was purified using DNA purification kit (Qiagen, #28104). The library 

was purified according to the manufacturers protocols and eluted in 20 μL of Elution buffer.  

Bead Clean up 

Kapa Pure Beads (Roche Sequencing Store, #7983271001) were warmed up to RT and mixed 

to resuspend. Samples were transferred to 1.7 mL tube and 1.5X volume of Kapa Pure Beads 

was added and pipetted to mix. Mix was incubated at RT with rocking for 10 mins. Tube was 

placed on a magnetic rack for 5 mins. Supernatant was discarded and beads were washed 

with 200 μL of fresh prepared 80% ethanol for 1 min. Ethanol was removed and beads were 

dried for 5-10 mins. Beads were resuspended in 20 μL of nuclease free water and incubated 

at 37°C for 10 mins. Tube was put back on the magnetic rack and eluted samples were iso-

lated into new tube.  

Qubit 

The Qubit dsDNA HS (High Sensitivity) Assay Kit (Thermofisher, #Q32851) was used to meas-

ure concentration. 

Library QC 

A sample of the library was run on TapeStation (2200 TapeStation Instrument, Agilent Tech-

nologies). 3 μL of D1000 Sample Buffer (Agilent, Cat#5190-6502) + 1 μL of sample onto 

D1000 Screen Tape (Agilent, Cat# 5067-5582). 
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4 Results 

4.1 Single-cell RNA sequencing revealed inter- and intratumoral heteroge-

neity in naïve melanoma samples 

Within this chapter the analysis of three primary control samples (GFP1, GFP2 and GFP3), 

meaning BRAFV600E driven tumors that were not drug treated, will be shown and the pipe-

line discussed. The next chapter includes samples from all disease relevant time points. For 

this chapter, a dataset of 7705 single melanoma cells from samples from 3 treatment naïve 

tumor bearing fish were generated using inDrop and sequenced on an illumina NextSeq in-

strument. Raw reads were converted into a read count file using the inDrops package before 

being passed onto Seurat. For the analysis of untreated melanoma samples the R package 

Seurat which is designed for analysis of scRNA-seq data was used. All figures in chapter 4.1 

were generated using the R package Seurat (Butler et al. 2018; Stuart et al. 2019; R 

Foundation for Statistical Computing 2013). The standard pre-processing workflow includes 

the QC of sequenced cells (fig. 11). The threshold for the number of unique genes per cell 

(genes/cell) was set between 200 and 2500 as low-quality cells often exhibit very low num-

bers of unique genes per cell and vice versa for doublets (fig. 11A). Cells which exhibited 

more than 15000 molecules each (RNA/cell) were filtered out to remove cell multiplets from 

the dataset (fig. 11B). Another metric that served as QC was the percentage of mitochondrial 

genes (% mitochondrial RNA) which was set to be less than 5% to filter out low-quality cells 

with high mitochondrial contamination (fig. 11C).  

 

Figure 11: Quality control of single-cell RNA sequencing excludes low quality cells from 
data analysis. (A) Cells with less than 200 and more than 2500 unique genes per cell 
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(genes/cell), (B) more than 15000 RNA molecules per cell (RNA/cell) and (C) more than 5% 
mitochondrial RNA (% mitochondrial RNA) were filtered out for the downstream analysis. 

The feature scatter shows the correlation of the datasets percentage of mitochondrial 

genes, the number of RNA molecules per cell and the number of unique genes per cell (fig. 

12). With a Pearson’s correlation coefficient of 0.07 the percentage of mitochondrial genes 

and the number of RNA molecules per cell do not correlate (fig. 12A). The number of unique 

genes per cell and the number of RNA molecules per cell are positively correlated with a 

Pearson’s correlation coefficient of 0.94 (fig. 12B). 

 

Figure 12: Scatter plot visualizes correlation of QC variables. (A) The percentage of mito-
chondrial genes (% mito.RNA) and the number of RNA molecules per cell (RNA/cell) do not 
correlate (Pearson’s correlation coefficient 0.07). (B) The number of unique genes per cell 
(genes/cell) and the number of RNA molecules per cell show positive correlation (Pearson’s 
correlation coefficient 0.94). 

The normalization was done by normalizing the feature expression by the total expression, 

multiplying this by 10000 and log-transforming the result. Highly variable features between 

cells within the dataset were identified and used for the downstream principal component 

analysis (PCA). In a next step the data was scaled, meaning a linear transformation was ap-

plied which sets the mean expression of features to 0 and scales the expression so that the 

variance across cells is 1. A linear dimensional reduction was performed by PCA. Fig. 13 

shows the first two principal components (PCs) of the analysis.  
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Figure 13: Transcriptional differences cluster cells in first two principal components of the 
principal component analysis. 

The heatmap of the first PC shows the primary source of heterogeneity (fig. 14). The PC is 

separating melanoma cells which highly express crestin and sox4a. The other principle com-

ponent has high expression of the macrophage markers c1qa, c1qb and cd74a. This suggests 

that cell identity is the strongest driver of heterogeneity within the dataset. 

 

Figure 14: Heatmap of the first PC shows heterogeneity is mainly driven by different tran-
scriptomics of melanoma cells and macrophages. Linear dimension reduction by PCA sepa-
rates dataset into main cell types.  
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For the identification of significant PCs that determine heterogeneity and for the decision 

on how many PCs to include in the analysis to get robust results the percentage of variance 

visualized by the elbow plot was used (fig. 15).  The first 18 PCs had a standard deviation 

greater than 2% and were included in the downstream analysis. 

 

Figure 15: Elbow plot ranks the PCs based on the percentage of variance. Using a 2% stand-
ard deviation as threshold, the first 18 PCs are considered as significant and capture the ma-
jority of dimensions.   

The non-linear dimensional reduction calculated cell clusters which are displayed as neigh-

bouring patches in the graphs. Cells with similar transcriptional profiles clustered together 

which was visualized by uniform manifold approximation and projection (UMAP) for dimen-

sion reduction (fig. 16A). Based on the chosen resolution the algorithm calculated 15 cell 

clusters.  Cells formed a separate cluster for each tumor (GFP1, GFP2, GFP3) which shows 

intra- and intertumoral heterogeneity (fig. 16B).   



38 

 

Figure 16: Single-cell expression profiles revealed inter-and intratumoral heterogeneity. 
(A) UMAP shows colour-coded cell clusters calculated by non-linear dimensional reduction. 
(B) UMAP shows clusters of cells from three colour-coded samples (GFP1, GFP2, GFP3).   

Variably expressed features are biomarkers for each cluster and were visualized by UMAPs 

(fig. 17). The melanocyte specific biomarkers mitfa, sox10 and pmela were highly expressed 

in subsets of cells reflecting different tumor populations co-existing in melanoma samples.  

The melanocyte related marker tyr was expressed only in few cells.  
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Figure 17: UMAPs of variably expressed features reflect clusters of cells. The melanocyte 
specific markers mitfa, sox10, pmela and tyr were differentially expressed between clusters.  

Known cell type markers were used to match the unbiased clustering to known cell types 

(fig. 18, 19). The identified cell types are highlighted in fig. 18 and include T-cells (zap70, lck, 

sla2), macrophages (mpeg1.1, marco, mfap4), neutrophils (mpx, mmp9, lyz), keratinocytes 

(krt5, epcam, tp63), fibroblasts (fn1a, cxcl12a, col1a1a/b), red blood cells (alas2, hbba1/2) 

and melanoma cells (mitfa, sox10, pmela, tyr).  

 

 Figure 18: Cell clusters were annotated based on their original cell type. Cell identities were 
annotated by distinct or preferential expression of markers for T-cells, macrophages, neutro-
phils, keratinocytes, fibroblasts, melanoma cells and red blood cells.  
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Figure 19: Known markers for cell types were highly enriched in their specific cell clusters. 
The UMAPs shows expression of known markers representative for melanoma cells (mitfa), 
T-cells (zap70), fibroblasts (fn1a), neutrophils (mpx), macrophages (marco), keratinocytes 
(epcam), red blood cells (alas2) and B-cells (ighv1.4) across the dataset. 
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4.2 Drug resistant tumors arise with variable kinetics 

BRAFV600E driven melanoma was modelled in Zebrafish. The Triples embryos were grown 

until they developed tumors (around 4 months) followed by daily dabrafenib treatment. The 

tumor size was checked weekly and drug response curves were generated (fig. 20). The 

DMSO treated control group had continuous tumor growth whereas tumors of dabrafenib 

treated fish decreased in size over the first weeks. This state is defined as drug sensitive 

group. At around 3 weeks on dabrafenib treatment the tumors decreased to a very small 

size (minimal disease). In the following weeks, some fish eventually developed drug re-

sistance and tumors regrew with variable kinetics. 

 

Figure 20: Melanoma tumors decreased in size upon dabrafenib treatment and grew back 
with variable kinetics after acquiring resistance. (A) Pre-treatment tumor on the back of the 
fish decreased in size after 14 days of dabrafenib treatment. The tumor grew back on pro-
longed dabrafenib treatment and reached its original size. (B) Time of drug treatment is plot-
ted against change in tumor volume. Kinetics of tumor volume shows increase in tumor size 
of control (DMSO treated) fish (red curve) and decrease of dabrafenib treated fish (blue and 
black curves). Around day 21 some tumors acquired resistance and grew back (blue curve). 
Green arrows indicate disease relevant time points: control tumor, drug sensitive tumor, min-
imal disease and resistant tumor.  

Tumor samples were collected from all four disease relevant time points: untreated control, 

drug sensitive tumor, minimal disease, and resistant tumors and parallel scRNA-seq and 

scATAC-seq were conducted. 
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4.3 Single-cell ATAC sequencing identified distinct normal and heterogene-

ous epigenetic tumor cell states  

Single-cell ATAC sequencing of primary melanomas from DMSO treated control tumors 

(Control.1), drug sensitive tumors (Sensitive.1, Sensitive.2, Sensitive.3), minimal disease 

(Minimal Disease.1, Minimal Disease.2) and resistant tumors (Resistant.1, Resistant.2) 

shows the distinct clustering for all samples (fig. 21A) based on distinct chromatin accessi-

bility. The algorithm identified 23 clusters of distinct landscape of chromatin accessibility 

(fig. 21B). 
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Figure 21: scATAC-seq shows distinct clustering of tumor cells from all four disease relevant 
time points based on their chromatin accessibility. (A) Cells are colour-coded based on the 
disease relevant time point: control tumor (Control.1), sensitive tumors (Sensitive.1, Sensi-
tive.2 and Sensitive.3), minimal disease (Minimal Disease.1 and Minimal Disease.2) and re-
sistant tumors (Resistant.1 and Resistant.2). (B) 23 clusters of different chromatin accessibil-
ities were calculated and are visualized by different colour coding. 
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Gene accessibility scores on a single cell/cluster basis were calculated using mapped reads 

to called peaks on the aggregate data within a 2kb window of gene bodies (fig. 22). The 

original cell types were identified and annotated using known markers for melanoma cells, 

T-cells, macrophages, red blood cells, B-cells, fibroblasts, epithelial cells and neutrophils. Fi-

broblasts, macrophages, B-cells, T-cells, red blood cells and epithelial cells show distinct non-

overlapping enrichment in their characteristic genes whereas the 11 melanoma clusters 

were enriched in DNA containing the melanoma-specific genes pmela, mitfa, sox10 and tyr 

with varying intensities and different compositions.   

 

Figure 22: Heatmap shows markers of various cell types and melanoma clusters based on 
gene accessibility scores. Known markers were enriched in the various cell types (fibroblasts, 
macrophages, B-cells, T-cells, epithelial cells and melanoma cells). The melanoma clusters 1-
11 (Melanoma.01-Melanoma.11) were enriched in pmela, mitfa, sox10 and tyr with varying 
intensities.  
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To exclude non-melanoma cells from the downstream analysis, the original cell types were 

identified and annotated using known markers for melanoma cells (highlighted with pink 

shadow), T-cells, macrophages, red blood cells, B-cells, fibroblasts, epithelial cells and neu-

trophils and non-melanoma cells were filtered out (fig. 23) for the downstream analysis. 

Along with the filtering of melanoma cells, the clusters were redefined as 11 candidate mel-

anoma clusters 1-11 (Melanoma.01-Melanoma.11) and reflect the different accessibility of 

chromatin within the melanoma cells. In order to exclude possible cell doublets from the 

analysis, clusters were manually curated. Clusters Melanoma.03 and Melanoma.06 were ex-

cluded due to dual accessibility. 

 

Figure 23: Clusters of differential chromatin accessibility reflect various cell types. Cell clus-
ters were colour-coded based on the original cell types: Red blood cells, macrophages, B-
cells, T-cells, epithelial cells, fibroblasts and melanoma cells. Melanoma cell clusters were 
redefined as 1-11 (Melanoma.01-Melanoma.11) based on their chromatin accessibility and 
highlighted with a pink shadow.   

Highlighting specific clusters demonstrated that the disease relevant time points in the 

UMAP plots tend to cluster with cells from each state and indicates differences in chromatin 

landscape between samples from the same disease relevant state (fig. 24).  



46 

 

Figure 24: Melanoma cells cluster according to their disease relevant state. Melanoma cells 
of control sample, sensitive samples, minimal disease and resistant disease cluster together 
respectively. 

Colour-coding the calculated clusters (cluster ID, fig. 25A) as well as the origin of the samples 

(sample ID, fig. 25B) allows comparing of cell origin and epigenetic state. The resistant cells 

from the tumor Resistant.1 separate into two distinct epigenetic states, the clusters Mela-

noma.08 and Melanoma.09. There are rare cells within each tumor that account to different 

clusters. E.g. a subset of cells from Resistant.1 and Minimal Disease.1 cluster together and 

share the same epigenetic state Melanoma.04. The control cells from Control.1 separate 

into two distinct epigenetic states Melanoma.10 and Melanoma.11 that are not shared with 

any other sample. The responsive tumor Sensitive.3 clusters together with Resistant.2 and 

shares the epigenetic state Melanoma.02. The short-term treated Sensitive.1 and Sensitive.2 

fall into one cluster, Melanoma.05 and Melanoma.07 respectively, that are not shared with 

any other sample. 
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Figure 25: Comparison of calculated cell clusters with original cell samples points towards 
co-existing epigenetic states in melanoma samples. (A) The cells are colour-coded based on 
the calculated cluster IDs Melanoma.01—Melanoma.011 (Melanoma.03 and Melanoma.06 
excluded). (B) The cells are colour-coded based on their sample IDs (DMSO treated Control, 
Sensitive, Minimal disease and Resistant). 
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4.4 Motif accessibility defines epigenetic melanoma cell states and sug-

gests “stress-like” state in resistant cells 

Melanoma clusters (Melanoma.01-Melanoma.11; 3 and 6 excluded) were assigned to the 

dominant phenotypes which are control cells, sensitive cells, minimal disease and resistant 

cells. Control cells are defined by the clusters Melanoma.11 and Melanoma.10, sensitive 

cells Melanoma.05 and Melanoma.07, minimal disease Melanoma.04 and Melanoma.01 and 

resistant cells Melanoma.08, Melanoma.09 and Melanoma.02. Hierarchical clustering of 

highly variable transcription factor motif accessibilities and calculated clusters (Mela-

noma.01-Melanoma.11; 3 and 6 excluded) shows distinct epigenetic states at various dis-

ease relevant time points (fig. 26). Transcription factor motif accessibility was calculated 

across clusters by examining the presence of specific motifs within called peaks in the aggre-

gate cluster peak file, compared across clusters. A subset of resistant samples was highly 

enriched in MITF motif accessibility as well as RUNX3, TFAP2C, TEAD3 and SNAI2 motif ac-

cessibility. Another subset of minimal disease and resistant samples was defined by highest 

accessibility of stress related motifs: XBP1, ATF3, ATF6 and CREB3 as well as AP1 factor (FOS 

and JUNB motif accessibility). A subset of control cells and the short-term treated cells had 

high accessibility of some transcription factors (SOX4, MITF and TFAP2C, FOS and JUNB) but 

did not share a whole epigenetic state with the resistant or minimal disease cells.  
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Figure 26: scATAC sequencing reveals “stress-like” state in a subset of resistant melanoma 
cells. Transcription factor motif accessibility was clustered hierarchical and dominant pheno-
types were assigned (Control, Sensitive, Minimal disease, Resistant). Two major epigenetic 
states are framed in red. 

4.5 Dabrafenib treatment induces dramatic epigenetic shifts 

The volcano plots allow direct comparisons between phenotypes and show the dramatic 

epigenetic shift that happens upon dabrafenib treatment (fig. 27).  

During the short-term treatment especially, differentiation factors like MITF and RUNX1 are 

lost in the treated cells compared to the control cells. Newly acquired regions are enriched 

in neural crest motifs like SOX4, SNAI1, SNAI2, ZEB1, CREB3 and ID3 but also the stress 

related motif ATF6 (fig. 27A).  

On prolonged dabrafenib treatement, minimal disease cells lose accessibility of RREB1, 

PURA and EPAS1 but strengthen their epigenetic stress program. Tumor cells in the minimal 

disease states show relatively high accessibility at DNA containing the stress related motifs 

for ATF6, XBP1, ATF3 and the notch signalling factors such as HEY1 (fig. 27B).  

Compared to the minimal disease state, resistant cells move towards either direction: a 

neural crest/ “stress-like” state or a differentiated state. The neural crest/ “stress-like” 

resistant cells lose accessibility of DNA containing the ALX4 motif, however acquire 

accessibility of DNA contianing AP2 factor motifs (TFAP2A, TFAP2C) and further increase 

accessibility of motifs for neural crest factors such as ID2 and CREB3 (fig. 27C). 

The differentiated cells are highly accessible at DNA containing the differentiation marker 

MITF. Accessibility of RREB1 and EPAS1, which was lost during short-term treatment, is 

restored. The neural crest/ stress factors XBP1, ID2, ATF6 and CREB3 are less accessible in 

the differentiated resistant cells, compared to the minimal disease cells (fig. 27D).  
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Figure 27: Dabrafenib induces dramatic epigenetic shift. (A) Volcano plot shows differential 
motif accessibility for the control cells compared to sensitive cells. (B) Volcano plot shows 
differential motif accessibility for sensitive cells compared to minimal disease cells. (C) Vol-
cano plot shows differential motif accessibility for the minimal disease cells compared to 
neural crest/ “stress-like” resistant cells. (D) Volcano plot shows differential motif accessibil-
ity for minimal disease cells compared to differentiated, resistant cells. Differential motif 
score is plotted against -log10(p-value) of motif enrichment. 
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To more easily visualize transitions between cell states, a heatmap that hierarchically clus-

ters transcription factor motif accessibilities in various calculated clusters with correspond-

ing phenotypes was generated (fig. 28). The dominant phenotypes are control cells, short-

term treated sensitive cells, minimal disease and resistant cells. From the control (Mela-

noma.10 and Melanoma.11) to short term dabrafenib treated cells (Melanoma.07 and Mel-

anoma.05), the accessibility of MITF motifs decreased, whereas stress related motifs like 

ATF3, ATF6 and XBP1 increased. During the transition from short- term dabrafenib treated 

cell state to minimal disease (Melanoma.04 and Melanoma.01) the stress related motifs 

ATF3, ATF6 and XBP1 further gained accessibility and additional neural crest motifs arose 

(PAX3, SNAI2, MYC). The resistant cells cluster into two distinct epigenetic clusters Mela-

noma.02 and Melanoma.08/Melanoma.09. The Melanoma.02 cluster is highly accessible for 

neural crest transcription factors like PAX3, TFAP2D, SOX10 and SOX9 but also stress related 

motifs like XBP1, ATF6 and ATF3 are highly enriched. The other two clusters Melanoma.08 

and Melanoma.09 have rather low accessibility of both, neural-crest and stress related tran-

scription factor motifs, however, they are enriched in MITF motif accessibility, associated 

with differentiated melanoma. From the minimal disease state to the resistant state either 

neural crest/ “stress-like” motifs or differentiation motifs were enriched.  This transition to 

a neural crest or “stress-like” state also comprised high accessibility of HES1/HEY, ATF3 and 

XBP1 motifs.  
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Figure 28: Heatmap shows distinct epigenetic states associated with differentiated mela-
noma, neural crest or “stress-like” states. Accessibility of transcription factor motifs associ-
ated with differentiated melanoma, neural crest and “stress-like” state was clustered hierar-
chically and dominant phenotypes were assigned (Control, short-term treated sensitive, min-
imal disease, resistant).  
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4.6 Single-cell RNA sequencing defines transcriptional tumor cell states 

and supports existence of “stress-like” state in resistant cells 

4.6.1 Single-cell RNA sequencing identifies distinct normal and heterogeneous 

tumor cell states 

Single-cell RNA sequencing of primary melanomas from control tumors (DMSO-1, DMSO-2), 

responsive tumors (Sensitive-1, Sensitive-2), minimal disease (Minimal disease-1, Minimal 

disease-2) and resistant tumors (Resistant-1, Resistant-2) and dimensional reduction show 

the distinct clustering of transcriptional profiles for all samples (fig. 29). 

 

Figure 29: Single-cell RNA sequencing shows distinct clustering of tumor cells from all dis-
ease relevant time points based on their transcriptional profiles. Cells are colour-coded 
based on the disease relevant time point: control tumors (DMSO-1, DMSO-2), sensitive tu-
mors (Sensitive-1, Sensitive-2) minimal disease (Minimal disease-1, Minimal disease-2) and 
resistant tumors (Resistant-1, Resistant-2). 

To exclude non-melanoma cells from the downstream analysis, the original cell types were 

identified using known markers for melanoma cells, T-cells, macrophages, red blood cells, B-

cells, fibroblasts, epithelial cells and neutrophils and non-melanoma cells were filtered out 

(fig. 30). 
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Figure 30: Transcriptionally defined cell types cluster together. Cell clusters were colour-
coded based on the cells original cell types: Melanoma cells, red blood cells, macrophages, 
B-cells, T-cells, epithelial cells, fibroblasts.  

Colour-coding the cells based on their disease-relevant time point sensitive cells and minimal 

disease cells, resistant cells and DMSO treated control cells shows the distinct clustering and 

transcriptional states of the various phenotypes (fig. 31).   

 

Figure 31: Cells cluster according to their disease relevant state. Sensitive and minimal dis-
ease cells, resistant cells and DMSO control cells exhibit distinct transcriptional programs.  
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4.6.2 Dabrafenib treatment leads to transcriptional shift in melanoma cells 

Gene transcription of the various cell types was analysed in Seurat as above and 21 clusters 

were identified (fig. 32). The anticipated shift from the DMSO control cell state, over the 

dabrafenib sensitive state to the minimal disease and resistant cell state is indicated with 

black arrows.  

 

Figure 32: Dynamic cell state adaptation to dabrafenib. Transcriptional cell states were 
merged into 20 transcriptional clusters.  Black arrows indicate dynamics of gene expression.  

Monocle-based pseudo-time trajectory analysis was performed to investigate the transcrip-

tional shift upon drug treatment and development of resistance (fig. 33). Treatment with 

dabrafenib depletes cells from a proliferative state, which is highly enriched in cells from the 

untreated control samples. Sensitive cells are moving towards both extremes with many 

cells sharing an intermediate state. The resistant cells make up for the two most extreme 

transcriptional cell states.  
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Figure 33: Cell states undergo gradual change on prolonged dabrafenib treatment. Mono-
cle-based pseudo-time trajectory analysis of scRNA-seq data from tumor samples from all 
disease relevant time points (DMSO control, sensitive, minimal disease, resistant) show tran-
scriptional shift over the course of the treatment. 

The heatmap in fig. 34 visualizes the distinct transcriptional states along the pseudo-time 

trajectory. The pre-branch cell population has high levels of ccnb1, mcm2 and pcna, which 

are markers for mitosis, proliferation and DNA replication. This population can be assigned 

to the previously identified proliferative cell type. The mitfa-high subgroup has high expres-

sion of mitfa and mycb and notable low expression of sox10 and fosab. Markers of the neural 

crest cell state are snai2 and tfap2a, but also the stress markers xbp1, jun and fosab. 
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Figure 34: In a transcriptional pseudo-time simulation cells are either in a mitfa-high or in 
a neural crest/ “stress-like” state. The heatmap hierarchically clusters variable features of 
the mitfa-high, the pre-branch and the neural crest cell state and group them into four major 
transcriptional states. 

The neural crest markers id2a and mycb and the stress related markers xbp1 and bhlhe41 

are differentially expressed in melanoma cells with highest expression in resistant tumors 

(fig. 35). Id2a and mycb are more consistently expressed in both post-branch states, com-

pared to the stress markers xbp1 and bhlhe41. 
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Figure 35: Resistant tumors have distinct expression of neural crest and stress related 
markers. Expression of the neural crest markers id2a and mycb and the stress related mark-
ers xbp1 and bhlhe41 is visualized in UMAP plots. 

4.7 In vitro validation of “stress- like” state as driver for resistance 

4.7.1 Generation of dabrafenib resistant A375 cell line 

To validate the “stress-like” state in vitro, we generated a dabrafenib resistant cell line. The 

human melanoma cell line A375 was continuously treated with increasing doses of dabraf-

enib from 0.1 nM to 100 nM over a period of 3 weeks (fig. 36).  

Both, the scATAC-seq and scRNA-seq data suggest xbp1 as a major driver of resistant cell 

heterogeneity. XBP1 is a target of ATF6 and mediates unfolded protein response (UPR) acti-

vated by ER stress (Yoshida et al. 2001). Consequently, we focused on ER stress and its inhi-

bition in our in vitro validation experiments.  
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Figure 36: Scheme of generation of drug resistant cell line. A375 cells were continuously 
treated with increasing doses of dabrafenib from 0.1 nM to 100 nM over a period of 3 weeks. 

4.7.2 Sensitive and resistant melanoma cells respond differently to  

pharmacologic ER stress inhibition 

The sensitivity of the generated dabrafenib resistant cell line and the control cell line 

(treated with DMSO) to the ER stress inhibitor toyocamycin, which has been described as an 

inhibitor of XBP1 splicing (Ri et al. 2012) was compared (fig. 37). Cells were seeded and 

treated with varying concentrations of toyocamycin (15-60 nM) and viability was measured 

72 hours after treatment. With increasing concentrations of toyocamycin, both cell lines 

showed decreased viability. With higher doses of toyocamycin (30 and 60 nM) the resistant 

cells showed higher sensitivity compared to the sensitive cells.  

 

Figure 37: Sensitive and resistant A375 melanoma cells show different response to the ER 
stress inhibitor toyocamycin.  Sensitive and resistant A375 cells were seeded and treated 
with increasing concentrations of toyocamycin (15-60 nM) and viability was measured 72 
hours after treatment. Asterisks indicate significant difference between sensitive and re-
sistant cells (two-sided t-test, *p<0.05) 

4.7.3 Markers of neural crest/ “stress-like” state are differentially expressed in 

sensitive and resistant melanoma cells  

To validate the “stress-like” state in resistant cells on the transcriptional level, expression of 

stress markers was measured in resistant and sensitive A375 melanoma cells. Sensitive and 
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resistant cells were seeded and treated with DMSO as a control, dabrafenib (100 nM) and 

toyocamycin (30 nM) combination or toyocamycin (30 nM) alone for 5 hours. Expression of 

the stress marker XBP1 was quantified using qPCR (fig. 38). The amount of total XBP1 (tXBP1) 

was higher in the resistant cell line compared to the sensitive cell line indicating a higher 

degree of stress. Upon dabrafenib treatment, the spliced XBP1 (sXBP1) decreased in the sen-

sitive cells and increased in resistant cells. The combination of dabrafenib and toyocamycin 

treatment decreased levels of sXBP1 in both cell lines and toyocamycin alone did not affect 

sXBP1 levels.  

 

Figure 38: qPCR shows different levels of XBP1 in sensitive and resistant cells upon drug 
treatment. Sensitive and resistant A375 melanoma cells were seeded and treated with 
DMSO as a control, 100 nM dabrafenib, 100 nM dabrafenib and 30 nM toyocamycin combi-
nation or 30 nM toyocamycin alone for 5 hrs. Levels of spliced xbp1 (sXPB1) and total xbp1 
(tXBP1) were measured using qPCR and normalized to Ct values of gapdh. Expression of 
sXBP1 was normalized to the sensitive/DMSO sample. Error bars indicate standard deviation 
of three replicates. 

The neural crest markers SOX4 (fig. 39) and SOX10 (fig. 40) and the stress markers ATF3 (fig. 

41) and DDIT3 (fig. 42) were also subjected to qPCR. Again, sensitive and resistant cells were 

seeded and treated with DMSO as a control, dabrafenib, dabrafenib and toyocamycin com-

bination and toyocamycin alone. In the sensitive cell line there was an increase in SOX4 upon 

dabrafenib treatment and dabrafenib and toyocamycin combination treatment, but not in 

only toyocamycin treated cells. In the resistant cell line, an increase in SOX4 levels was ob-

served when treating with dabrafenib or toyocamycin, however, the combination treatment 

had lower SOX4 levels.  
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Figure 39: qPCR shows different levels of SOX4 in sensitive and resistant cells upon drug 
treatment. Sensitive and resistant A375 melanoma cells were seeded and treated with 
DMSO as a control, 100 nM dabrafenib, 100 nM dabrafenib and 30 nM toyocamycin combi-
nation or 30 nM toyocamycin alone for 5 hrs. Levels of SOX4 were measured using qPCR and 
normalized to Ct values of gapdh. Error bars indicate standard deviation of three replicates. 

Levels of SOX10 did not change dramatically in the sensitive cell line upon drug treatment, 

however, in resistant cells the dabrafenib treatment lead to increased levels of SOX10, but 

not in the dabrafenib/ toyocamycin combination treatment. 

 

Figure 40: qPCR shows different levels of SOX10 in sensitive and resistant cells upon drug 
treatment. Sensitive and resistant A375 melanoma cells were seeded and treated with 
DMSO as a control, 100 nM dabrafenib, 100 nM dabrafenib and 30 nM toyocamycin combi-
nation or 30 nM toyocamycin alone for 5 hrs. Levels of SOX10 were measured using qPCR 
and normalized to Ct values of gapdh. Error bars indicate standard deviation of three repli-
cates. 

Levels of ATF3 increased in sensitive cells with dabrafenib and dabrafenib/toyocamycin com-

bination treatment but not with the toyocamycin treatment alone. In resistant cells, there is 

almost no increase in the dabrafenib treated cells and levels were decreased upon the 
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dabrafenib/ toyocamycin combination treatment. The cells treated with toyocamycin alone 

showed highest levels of ATF3.  

 

Figure 41: qPCR shows different levels of ATF3 in sensitive and resistant cells upon drug 
treatment. Sensitive and resistant A375 melanoma cells were seeded and treated with 
DMSO as a control, 100 nM dabrafenib, 100 nM dabrafenib and 30 nM toyocamycin combi-
nation or 30 nM toyocamycin alone for 5 hrs. Levels of ATF3 were measured using qPCR and 
normalized to Ct values of gapdh. Error bars indicate standard deviation of three replicates. 

Levels of the stress marker DDIT3 increased in sensitive cells with both, dabrafenib and 

dabrafenib/toyocamycin combination treatment. The resistant cells had clearly higher levels 

of DDIT3 upon dabrafenib treatment, however, the dabrafenib/toyocamycin combination 

treatment reversed that effect. The toyocamycin treatment alone did not seem to have an 

effect on DDIT3 in both cell lines, as anticipated since DDIT3 is not a downstream target of 

XBP1.  

 

Figure 42: qPCR shows different levels of DDIT3 in sensitive and resistant cells upon drug 
treatment. Sensitive and resistant A375 melanoma cells were seeded and treated with 
DMSO as a control, 100 nM dabrafenib, 100 nM dabrafenib and 30 nM toyocamycin combi-
nation or 30 nM toyocamycin alone for 5 hrs. Levels of DDIT3 were measured using qPCR and 
normalized to Ct values of gapdh. Error bars indicate standard deviation of three replicates. 
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4.7.4 Bulk ATAC-sequencing confirms “stress-like” state in resistant cells 

To validate the “stress- like” state on an epigenetic level, bulk ATAC sequencing of the sen-

sitive and resistant A375 cells was performed without any further drug treatment (fig. 43-

45). Reads from the sequencing were subjected to pre-alignment quality control following 

alignment to the reference genome. The accessible regions (peaks) were identified using 

MACS2 as peak caller. The accessibility of regions of candidate genes in sensitive and re-

sistant cells were then compared using Integrative Genomics Viewer (Robinson et al. 2011). 

Peaks are coloured in blue and red bars indicate identified peak. Difference is calculated by 

subtracting the areas under the peaks. Higher accessibility in the resistant cell line is de-

picted as orange differential peak and negative values are coloured green. In the resistant 

cell line, the region around the neural-crest marker ATF4 was more accessible compared to 

the sensitive cell line (fig. 43). The markers for the “stress-like” state ATF3, DDIT3 (fig. 43); 

HSPA9, HSP90B1, HSPA5, HYOU (fig. 44); HSPA8, JUNB, JUND and UBB (fig. 45) showed 

higher accessibility in the resistant cell line.  
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Figure 43: Chromatin regions around ATF3, ATF4 and DDIT3 show higher accessibility in 
resistant cells. Sensitive and resistant cell lines were subjected to bulk ATAC-sequencing, 
peaks were called using MACS2 and accessibility was visualized using Integrative Genomics 
Viewer. Accessibility of the neural crest marker ATF4 and the stress related markers ATF3 
and DDIT3 was assessed. Peaks of accessibility: blue, identified peaks: red bars, difference: 
orange (positive values), green (negative values). Res: resistant cells, Sens: sensitive cells, 
Diff: difference. 
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Figure 44: Chromatin regions around HSPA9, HSP90B1, HSPA5 and HYOU show higher ac-
cessibility in resistant cells. Sensitive and resistant cell lines were subjected to bulk ATAC-
sequencing, peaks were called using MACS2 and accessibility was visualized using Integrative 
Genomics Viewer. Accessibility of the stress marker HSPA9, HSP90B1, HSPA5 and HYOU was 
assessed. Peaks of accessibility: blue, identified peaks: red bars, difference: orange (positive 
values), green (negative values). Res: resistant cells, Sens: sensitive cells, Diff: difference. 
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Figure 45: Chromatin regions around HSPA8, JUNB, JUND and UBB show higher accessibil-
ity in resistant cells. Sensitive and resistant cell lines were subjected to bulk ATAC-sequenc-
ing, peaks were called using MACS2 and accessibility was visualized using Integrative Ge-
nomics Viewer. Accessibility of the stress markers HSPA8, JUNB, JUND and UBB was assessed. 
Peaks of accessibility: blue, identified peaks: red bars, difference: orange (positive values), 
green (negative values). Res: resistant cells, Sens: sensitive cells, Diff: difference. 
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5 Discussion 

5.1 Single-cell RNA sequencing revealed inter- and intratumoral heteroge-

neity in naïve melanoma samples  

BRAFV600E driven melanomas were generated in a Tg(mitfa:BRAFV600E);tp53-/-; mitfa-/- 

zebrafish line and samples of three treatment naïve tumors were used to generate scRNA-

seq libraries with the inDrop platform. All libraries were sequenced on an illumina Nextseq 

instrument and 7705 single melanoma cells from all three samples were collectively ana-

lysed using the R package Seurat.  

The pre-processing analysis showed that most cells were of high quality and passed the 

thresholds for quality control (fig. 11). Most cells had between 200 and 2500 unique genes 

per cell, less than 15000 RNA molecules per cell and less than 5% mitochondrial RNA reads. 

Those measures were used to filter out low quality cells, multiplets and cells with high mito-

chondrial read numbers.  

The scatter plots visualize that the number of unique genes per cell and RNA molecules per 

cell correlated, whereas the percentage of mitochondrial RNA and number of RNA molecules 

per cell did not show a correlation (fig. 12).  

The heatmap of the first principal component (fig. 14) illustrates genes that mainly drive 

heterogeneity and discriminates the dataset. The two major transcriptional states that can 

be separated are characterized by markers for melanoma cells and immune cells, respec-

tively. Crestin and sox4a are markers for melanoma cells and the c1qa and c1qb complement 

factors allow to narrow down the immune cells to macrophages. This pattern was similarly 

seen in other principle components that primarily seemed to separate specific cell types. 

According to the standard deviations of the various principal components (fig. 15), the first 

18 PCs were used for further downstream analysis.  

Dimensional reduction demonstrates that naïve melanomas form distinct and partly over-

lapping clusters for each sample (fig. 16). The tumors show both unique and conserved cell 

clusters, that suggest a high degree of both inter- and intratumoral heterogeneity at baseline 

even in an inbred and genetically well-defined animal model of melanoma which is known 

to have a low genetic mutation burden (Yen et al. 2013). 
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Similar to what Rambow et al. were observing (Rambow et al. 2018), our data shows that 

even prior to initial treatment, naïve melanoma cells show significant inter- and intratumoral 

heterogeneity. In contrast to the melanoma cells, non-melanoma stromal cells were readily 

identified using established transcriptional markers, suggesting that the majority of tumor 

heterogeneity is driven by the tumor cells proper-prior to initiation of therapy. 

Further, our scRNA-seq data suggests specific transcriptional cell states already in naïve mel-

anoma. E.g. the melanoma markers mitfa and sox10 were differentially expressed in mela-

noma cells. This leads to the assumption that specific tumor states pre-existing in naïve mel-

anoma shape the development and progress of melanoma by the acquisition of distinct tran-

scriptional subpopulations.    

5.2 Dabrafenib resistant tumors arise with variable kinetics  

The kinetics of drug response in BRAFV600E driven tumors was followed in the Triple 

zebrafish line (fig. 20). From the injection into the single-cell stage of the embryo it took 

approximately 4 months for fish to develop tumors. The fish were treated daily with dabraf-

enib and the tumor response was monitored weekly. As anticipated, tumors in the DMSO 

treated control group increased in size until they were sacrificed due to their tumor burden. 

The short period from tumor development to a large tumor burden further underlines the 

aggressiveness of this cancer type and the fish model. As was expected, the tumors of the 

dabrafenib treated group decreased in size over the first 3 weeks. As in human patients, 

resistance arose with variable kinetics over the course of several months that varied be-

tween animals. The high rate of resistance in zebrafish correlate with the poor prognosis 

that is seen in human melanoma patients suggesting that initial drug tolerance may not be 

mediated by genetic means given the known low mutational burden in these tumors (Yen et 

al. 2013) and that transcriptional and epigenetic adaptation maybe an important mediator 

in the development of drug resistance. Thus, this model provides an opportunity to examine 

these changes with single cell resolution to identify additional therapy options for patients.  
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5.3 Single-cell ATAC sequencing identifies distinct normal and heterogene-

ous tumor cell states 

BRAFV600E driven tumors were modelled in the Triples line and samples were taken from 

four disease relevant time points: control DMSO treated tumors, short-term treated drug 

sensitive tumors, minimal disease, and drug resistant tumors. Differences in chromatin ac-

cessibility were investigated using scATAC-seq to identify epigenetic states associated with 

specific disease relevant time points. The tumors clustered into groups based on their epi-

genetic landscape and accessibility of specific motifs associated with various clusters were 

identified (fig. 21). Much as in the treatment naïve setting, the data suggests that a single 

tumor can harbor melanoma cells in several multiple epigenetic states, even under the se-

lective pressure of drug treatment. Interestingly, subsets of cells from resistant tumors and 

minimal disease clustered together (fig. 22). This suggests that the minimal disease state 

represents a transition state from responsive to resistant tumors. 

Our results seem to support the concept of tumor heterogeneity with cells from various ep-

igenetic states co-existing within a tumor. Shaffer et al (Shaffer et al. 2017) proposed the 

model of transient gene expression. Non-genetic rare cell variability accounts for drug re-

sponse by epigenetic reprogramming of those cells. Essentially, pre-resistant melanoma cells 

move in and out of the transient pre-resistance state and upon drug treatment turn into fully 

resistant cells. We believe that minimal disease state that we and others (Rambow et al. 

2018) have observed represents an intermediate or pre-resistant cell state that acquire 

most, but not all, of the epigenetic features needed to contribute to development of overt 

drug resistance given relatively minor shifts we see in a subset of resistance tumors from the 

minimal disease state. 

5.3.1 Motif accessibility defines melanoma cell states and suggests “stress-like” 

state in resistant cells  

Accessibility of various motifs was analysed and clusters of differential motifs were calcu-

lated for all four disease relevant time points. Resistant cells cluster into two major epige-

netic states based on different motif accessibilities: an MITF related motif cluster and a 

“stress-like” motif cluster (fig. 26). MITF is a master regulator of melanocyte development 

and high expression correlates with a high degree of melanocyte maturation and differenti-

ation. The MITF related motif is associated with high accessibility of RUNX3, TEAD3, MITF 

and EPAS1. Those motifs are in line with previous findings of the MITFhigh or differentiated 
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cell state (Hoek et al. 2008). The TFAP2C and SNAI2 motifs were previously identified as 

markers for the neural crest-like state and were highly enriched throughout treatment with 

dabrafenib – suggesting that expression of neural crest factors may underly the epigenetic 

and transcriptional response to MAPK pathway inhibition within the model. The tumor sup-

pressor RUNX3 is a downstream target of the TGF-β signalling pathway and besides regulat-

ing angiogenesis and cell death it has been shown to inhibit migration and invasion in mela-

noma (Zhang et al. 2017). 

 The other motifs XBP1, ATF3, ATF6, CREB3, ALX4, ID2, MYC and the AP2 factors FOS and 

JUNB point toward a “stress-like” state in a subset of resistant cells.  Those findings are in 

line with the “stress-like” cancer cell state Baron et al found in melanoma cells on the tran-

scriptional level (Baron et al. 2020). The neural crest marker MYC is enriched in a subset of 

resistant cells. This leads to the assumption that resistant cells either move towards a highly 

differentiated cell state characterized by high MITF accessibility or a neural crest-like/ 

“stress-like” state characterized by low MITF accessibility and high accessibility of DNA con-

taining several neural crest (TFAP2A, ID2, MYC) and stress related motifs (ATF3, ATF6, XBP1). 

The short-term treated drug sensitive phenotype clusters shared high motif accessibility of 

both states, which suggest a common epigenetic and transcriptional response to MAPK path-

way inhibition that allows these cells to not “commit” to a specific cell state. Notably, the 

AP-2 factor motifs are highly enriched in the short-term treated phenotype clusters suggest-

ing that the neural crest cell state is an early response to MAPK pathway inhibition. Cells of 

the minimal disease state exclusively shared stress-like motifs which points to the likelihood 

that over the course of the drug treatment, eventually, cells fully acquire a “stress-like” state 

that allows them to survive prolonged MAPK pathway inhibition and provide the basis for 

the development of resistance. As previously discussed, this suggests that minimal disease 

cells are a result of transient gene expression that epigenetically acquire a state of drug tol-

erance that develops into full resistance upon prolonged drug treatment. Of note, this the-

ory is not mutually exclusive from the acquisition of specific genetic mutations that may lead 

to drug resistance.  

Moreover, the control cells share motifs of both states with higher abundance of the 

MITFhigh-accessibility state. This suggests that the MITFhigh-accessibility state is not exclusive to the 

resistant cells whereas the stress motif is a cell state specifically acquired upon drug treat-

ment. A subset of the control cells is highly accessible for markers for the MITFhigh-accessibility 
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and neural crest state which underlines the intratumoral heterogeneity. Those findings 

would seem to show that the “stress-like” state provides cells with a survival benefit. 

5.3.2 Dabrafenib induces dramatic epigenetic shifts  

Comparing two phenotypes based on motif enrichment scores allowed to identify motifs 

that show differential accessibility at the respective time points (fig. 27, 28). This was done 

to follow the epigenetic changes that occur over the course of the treatment and to find 

candidate drivers that shape the chromatin landscape upon development of drug resistance. 

Comparing the control cells versus the short-term treated drug sensitive state, the first 

showed high accessibility of RUNX1, MITF and ETS2 motifs. Losing accessibility of those mo-

tifs upon drug treatment is in line with the gradual dedifferentiation of melanoma cells oth-

ers have observed (Tsoi et al. 2018; Rambow et al. 2018). The short-term treated drug sen-

sitive cells are enriched in accessibility for the neural crest related motifs SOX4, SNAI1 and 

SNAI2 and the stress related factor ATF6 and AP1 related motifs (JUN, FOS, etc.). The initial 

decrease in MITF accessibility and the increased accessibility of neural crest and stress asso-

ciated motifs indicates the shift towards a neural crest-like state early on in the course of 

the disease. Over prolonged dabrafenib treatment, the accessibility of stress-related motifs 

further increased and motifs for ATF3/6, XBP1 and HEY1 are more accessible in the minimal 

disease state compared to the short-term treated drug sensitive state. As discussed previ-

ously, the fully resistant state can be discriminated into two major epigenetic states: a dif-

ferentiated resistant disease (MITFhigh-accessibility) and a neural crest-like/ “stress-like” resistant 

disease. Compared to minimal disease cells, both have higher accessibility of sites containing 

motifs for AP-2 factors including TFAP2A and TFAP2C. The stress motifs XBP1 and ATF6 are 

specific for the neural crest-like/ “stress-like” state whereas the differentiated resistant cell 

state is defined by high accessibility of the differentiation marker MITF. This supports the 

hypothesis of drug responsive cells that acquire a “stress-like” cell state that allows survival 

in response to MAPK pathway inhibition. This is consistent with a model described by Tsoi 

et al suggesting a gradual gene expression shift upon BRAF inhibition in melanoma cells (Tsoi 

et al. 2018). Their data points towards a treatment-induced shift of differentiation following 

a trajectory over a neural crest-like cell state and a transitory cell state to a melanocytic cell 

state. Our data suggests the dedifferentiation of drug responsive cells and minimal disease 

cells and subsets of resistant cells which differentiate after developing resistance.    
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It can be concluded that resistant cells are in either of two major epigenetic states with intra- 

and intertumoral heterogeneity: an MITFhigh-accessibility state and a neural crest/ “stress-like” 

state. The latter is gradually acquired early on in the course of drug treatment and is likely a 

crucial epigenetic feature in both initial tumor response to MAPK pathway inhibition, cell 

survival and the development of overt drug resistance. Meanwhile, the relationship between 

the MITFhigh-accessibility
 state and the minimal disease state is less clear as they appear to have 

very different epigenetic phenotypes.  The two states seem to be mutually exclusive from 

one another in the resistant phenotype, whereas the sensitive and minimal disease are over-

lapping and could potentially use co-operativity to fully acquire drug resistance.  

5.4 Single-cell RNA sequencing defines transcriptional tumor cell states 

and supports existence of “stress-like” state in resistant cells 

Single-cell RNA sequencing was performed in parallel to transcriptionally define tumor cells 

from control tumors, short-term treated drug sensitive tumors, minimal disease tumors and 

resistant tumors. As anticipated from the scATAC-seq data, the scRNA-seq data analysis 

showed distinct clustering of tumor cells from the respective time points with significant 

degrees of both inter- and intratumoral heterogeneity (fig. 29). Again, known markers were 

used to identify melanoma cells, T-cells, macrophages, red blood cells, B-cells, fibroblasts, 

epithelial cells and neutrophils and exclude non-melanoma cells from the further analysis 

(fig. 30).  

To reconstruct the pseudo-time trajectory of melanoma cells, a monocle-based trajectory 

analysis was conducted (fig. 33). Our findings are in line with previous results and confirm 

the co-existence of two major transcriptional states in resistant melanoma cells: an mitfa-

high state and a neural crest-like/ “stress-like” state (fig. 34). The pre-branch cells are in a 

proliferative state, that have high levels of mcm2, pcna and cdk1, all of which are involved 

in DNA replication, proliferation and cell cycle progression. This constitutes a refinement of 

the previous clustering by Hoek et al who combined differentiated and proliferative cells in 

the MITFhigh cell type (Hoek et al. 2008). Our trajectory analysis demonstrates that prolifer-

ating and differentiated cells exhibit transcriptionally distinct clusters. The proliferative state 

is likely a transient cell state from where cells upon drug treatment exit the cell cycle and 

move towards either a differentiated or neural-crest/ “stress-like” state. Transcriptionally, 

the MITFhigh cell state can be compared with the previously defined differentiated cell state. 

The other branch of the analysis can be further described as neural crest or “stress-like” 
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state. The scATAC-seq data showed two major epigenetic states- an MITFhigh-accessibility and a 

neural crest/ “stress-like” state. The scRNA-seq data is in good agreement with the scATAC-

seq data and presents a refinement of the identified cell states. The neural crest state is 

transcriptionally defined by high expression of snai2 and tfap2a which correlates with the 

scATAC-seq data. The stress-related factors fosab, jun and xbp1 from the scRNA-seq highly 

overlap with the “stress-like” state found on the epigenetic level.    

5.5 In vitro validation of the “stress-like” state as driver of resistance 

Many markers of the “stress-like” state like the AP-1 factors fos and jun  are involved in a 

variety of stress responses but others like xbp1, atf4 or atf6 suggest endoplasmic reticulum 

stress is a major mediator of this state (Szegezdi et al. 2006). Therefore, we focused on ER 

stress for the validation of the “stress-like” state in the following experiments. 

A375 human melanoma cells were continuously treated with increasing doses of dabrafenib 

from 0.1 nM to 100 nM over a period of 3 weeks to generate a drug resistance cell line. This 

resistant cell line as well as a drug sensitive cell line were used for the in vitro validation of 

the “stress-like” state in resistant tumor cells.  

5.5.1 Sensitive and resistant melanoma cells respond differently to pharmaco-

logic ER stress inhibition 

According to the scATAC-seq data, accessibility of DNA containing the stress related XBP1 

motif is highly enriched in a subset of resistant melanoma cells. The scRNA-seq data con-

firmed those results so in order to interfere with the stress state, the drug toyocamycin 

which interferes with ER stress by inhibiting XBP1 splicing (Ri et al. 2012) was used. The dif-

ferential drug response of sensitive and resistant cells was measured using a viability assay 

(fig. 37). On low doses (0-15 nM) of toyocamycin both cell lines showed comparable drug 

response. On higher doses (30-60 nM) the resistant cell line showed significantly reduced 

viability compared to the sensitive cell line. This lends support to previous findings of a 

“stress-like” state benefitting survival in resistant cells (Baron et al. 2020).  

Our findings are in line with previous publications on ER stress in resistant melanoma. Induc-

tion of a “stress-like” state confers resistance under both MEK and BRAF inhibition and com-

bined inhibition of BRAF and autophagy restored drug sensitivity in BRAFi-resistant xeno-

grafts (Ma et al. 2014; Baron et al. 2020). The BRAF inhibitor vemurafenib was shown to 

decrease levels of antiapoptotic proteins and induce ER stress- mediated apoptosis which 
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was reversed upon knock down of ATF4, an important regulator of ER stress (Beck et al. 

2013).  

The vulnerability of subsets of cells towards iron dependent oxidative stress and the differ-

ential drug response over the course of treatment and differentiation states underlines the 

importance of a “stress-like” state in the pathogenesis of melanoma progression (Tsoi et al. 

2018), although our data points towards ER stress rather than oxidative stress.  These differ-

ences can be explained in part by overlapping regulators of the various stress states. Further, 

viewing the sum of cellular processes that are happening in parallel, it is very likely that a 

general stress state is acquired, involving ER stress, oxidative stress or mitochondrial stress.  

5.5.2 Markers of “stress-like” state are differentially expressed in sensitive and 

resistant melanoma cells upon ER stress and BRAF inhibition    

The expression of stress-related markers was investigated in the sensitive and resistant cell 

line with 5 hours dabrafenib, toyocamycin and combination (dabrafenib + toyocamycin) 

treatment. XBP1 with is fundamental role in ER stress was of major interest, so the total 

levels and the spliced levels of XBP1 were measured (fig. 38). The resistant cell line seems to 

have higher basal levels of total XBP1 which points towards a “stress-like” state in those 

cells. The levels of total XBP1 did not vary in the sensitive cell line, but the levels of spliced 

XBP1 decreased with dabrafenib and combination treatment. Contrary to expectations, the 

levels of spliced XBP1 were higher in sensitive cells treated with toyocamycin alone. In the 

resistant cell line total XBP1 was expressed to a lower level upon combination and toyo-

camycin treatment. For spliced XBP1 the combination treatment was found to be most po-

tent in decreasing the levels.  

The neural crest associated markers SOX4 and SOX10 increased upon dabrafenib and com-

bination treatment, but not toyocamycin alone, in sensitive cells (fig. 39, 40). This is con-

sistent with the in vivo data showing dabrafenib treatment selecting for cells in a more neu-

ral crest-like state. In the resistant cells, there was an increase in SOX4 and SOX10 upon 

dabrafenib and toyocamycin treatment, however, levels dramatically decreased on the com-

bination treatment. This suggests that the resistant cells are at least somewhat dependent 

on ER stress as a signal to reinforce the neural crest state. 

The stress markers ATF3 and DDIT3 increased in sensitive cells with dabrafenib and combi-

nation treatment (fig. 41, 42). Again, this suggests an increase in stress state mainly due to 

dabrafenib. The toyocamycin treatment decreased ATF3 and DDIT3 levels to a minimum. In 
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resistant cells, there was a drop in ATF3 and DDIT3 levels upon combination treatment which 

is in line with the observations for the neural crest markers SOX4 and SOX10.  

Toyocamycin is a potent inhibitor of IRE-1a mediated XBP1 splicing, but the levels of the 

neural crest marker SOX4 and the stress marker ATF3 were higher than expected in resistant 

cells treated with toyocamycin. The observed increase could be interpreted as being a result 

of resistant cells which need further growth inhibition (provided by the addition of dabraf-

enib) to reduce levels of those markers or a drug dependency that has developed over pro-

longed dabrafenib treatment.  

The decreased levels of the neural crest markers SOX4 and SOX10 and the stress related 

markers ATF3 and DDIT3 on the combination treatment could lead to the hypothesis of re-

versibility of the “stress-like” state upon combination of dabrafenib with a stress inhibitor. 

As toyocamycin alone did not seem to have a decreasing effect on the levels of neural crest 

and stress markers, it could be possible that the basal stress level is rather low and triggered 

upon dabrafenib treatment.   

5.5.3 Bulk ATAC-sequencing confirms “stress-like” state in resistant cells  

As part of the validation of the epigenetic “stress-like” state, bulk ATAC-seq was performed 

on the resistant and sensitive cell lines (fig. 43-45). The accessibility of markers for the neural 

crest state and the “stress-like” state were compared between the cell lines. The neural crest 

marker ATF4 and the stress related markers ATF3, DDIT3, HSPA9, HSP90B1, HSPA5, YOU, 

HSPA8, JUNB, JUND and UBB showed higher accessibility in resistant cells than in sensitive 

cells. This is in good agreement with the scATAC-seq and scRNA-seq data and strengthens 

our confidence of the existence of a “stress-like” state in resistant cells.  

HSPA5 is a main regulator of ER stress involved in the correct folding of proteins and quality 

control in the ER lumen. HSP90 was identified as a marker for progression of melanoma and 

inhibitors are in clinical trials (McCarthy et al. 2008). We found that the ER stress regulator 

HSP90B1 was higher accessible in resistant melanoma cells.  HSPA9 is related to mitochon-

drial stress and YOU is an oxygen-regulated protein suppressing hypoxia-induced apoptotic 

cell death (Honrath et al. 2017). The higher accessibility of factors for various stress types 

suggest an interplay between ER and mitochondrial/oxygen stress in resistant cells. 
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5.6 Conclusion, future work and outlook  

Using our Zebrafish model system, we proved the successful in vivo modelling of drug re-

sistance to BRAF inhibition in a BRAFV600E driven melanoma. As in human patients, the high 

number of samples that developed resistance underlines the importance of further research 

of the mechanisms driving resistance and the work on new approaches of therapy.  

Defining the resistant cell state on a transcriptional and epigenetic level on single-cell basis 

has revealed inter- and intratumoral heterogeneity and allowed us to further characterize 

the cell states that were previously defined by Hoek et al. and Rambow et al. Our data shows 

that many epigenetic states co-exist within the same tumor and revealed the differential 

accessibility of chromatin according to various disease states. The emergence of a dominant 

“stress-like” epigenetic state at the point of minimal disease is of immense clinical im-

portance and can be regarded as a step towards enhancing our understanding of epigenetic 

mechanisms underlying drug resistance in malignant melanoma as this would be the ideal 

point to intervene clinically. 

Further, we have succeeded in validating the “stress-like” state on the transcriptional level. 

We have obtained comprehensive results demonstrating the trajectory of melanoma cells 

upon developing resistance. Proliferation and differentiation were previously combined in 

the MITFhigh cell state however, we have found that cells from a proliferative phenotype 

upon prolonged dabrafenib treatment either move towards a differentiated or a neural 

crest/ “stress-like” cell state.  

As both, the scRNA-seq and scATAC-seq data suggested XBP1, a major player in ER stress, as 

a main factor contributing to intratumoral heterogeneity, the effects of inhibition of ER 

stress were investigated. Inhibiting the stress-state resulted in lower viability of dabrafenib 

resistant cells compared to sensitive cells. Also, the levels of markers of the neural crest and 

stress-like cell state responded differently to ER stress inhibition and dabrafenib treatment. 

All in all, the levels in sensitive cells showed lower fluctuation of stress markers. In resistant 

cells, especially the dabrafenib and toyocamycin combination treatment potently reduced 

markers for the neural crest and “stress-like” state. Taken together, these findings suggest 

that the stress-like state is a crucial feature of cells to develop resistance and grow under 

BRAF inhibition. Furthermore, it seems like drug sensitivity could be restored on stress inhi-

bition. Further data collection is required to more specifically narrow down the stress-like 

state and its interplay with the other cell states.  
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The in vitro validation of the “stress-like” cell state was an important methodology and al-

lowed us to exclude the previous hypothesis that the stress-like cell state is an artifact from 

scRNA-seq data due to cell dissociation and sorting methods (van den Brink et al. 2017). Our 

bulk ATAC-seq data shows that several regions of markers for the “stress-like” state (XBP1, 

ATF3, ATF6, DDIT3, UBB) are more accessible in resistant cells compared to sensitive cells 

which is in line with our scRNA-seq and scATAC-seq data.  

We have provided comprehensive results following the transcriptional and epigenetic land-

scape of melanoma cells from an untreated state over a sensitive phenotype to a minimal 

disease state and resistant state.  

Although we have contributed to further definition of the disease relevant states in mela-

noma the specific mechanisms of the “stress-like” state to confer drug resistance remains to 

be elucidated.  

Future work will focus on the in vivo validation of candidate genes by overexpression exper-

iments. Another interesting approach would be to use both, dabrafenib and a stress inhibitor 

in an in vivo experiment and follow up tumor progress.  
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