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1 Introduction

1.1 Abstract
The following report investigates strategies to emulate and manipulate the delayed

oscillatory behavior demonstrated in the barrel cortex in response to a biphasic current injection.
This data was gathered as a part of the SYNCH project, and the phenomenon is believed to play a
role in short term working memory of somatosensory stimuli. The primary reference for this
target behavior was a series of Powerpoint slides of composite depth electrode recordings, and
later raw data from the recordings themselves. The first phase of this work explores the
conditions in which network-wide oscillations could be captured in simulation in response to the
same stimuli used in vivo, and confirms earlier suspicions that they are mediated by inhibitory
neurons. The behavior is demonstrated in two models - a network of 500 generalized integrate
and fire neurons (microscopic model), and a mean-field population model (mesoscopic model), in
which activity in the excitatory and inhibitory populations is captured by a population firing rate
[26, 35]. The second phase of this project explores which features of these oscillations can be
manipulated, within the constraints of current injections possible in vivo. While oscillatory
frequency and duration varies widely in response to a single current injection, ultimately it was
possible to fix the duration of the oscillatory period using multiple current injections.

1.2 SYNCH Project
This work falls under the umbrella of the European Union’s Horizon 2020 project SYNCH

(A SYnaptically connected brain-silicon Neural Closed-loop Hybrid system). The goal of this
project is to produce a closed-loop neural-hybrid system, which reads information out from the
mouse cortex, interprets it on a neuromorphic chip, and projects a response back onto the cortex.
Eventually, it would explore the coadaptation of the artificial and biological networks, and their
clinical applications to neurological disorders [14]. My work considers the challenge of
projecting behavior onto the mouse cortex, and is performed in collaboration with the Vassanelli
Lab at the University of Padua. The model system investigated in the biological data is whisker
somatosensation in the mouse barrel cortex.

2 Background

2.1 Biological Networks
The network of the brain comprises nearly 100 billion individual units called neurons.

The interactions between these units, across the orders of magnitude from individual cells, local
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populations, and brain regions, mediate all thought, learning, and environmental interactions over
the lifetime of an animal. While our capacity to understand these interactions is dwarfed by the
sheer size and complexity of even simple model organisms, our understanding builds from a few
fundamental principles.

2.1.1 Anatomy of a Neuron

Neurons have three sections - the dendrites, cell body, and axon. Electrical signals are
received at the dendrites: projections from the cell body with a complex morphology resembling
the arbor of a tree. These signals are integrated as they pass down the “branches” of this tree
towards the body of the cell, or soma. Once a critical voltage is achieved at the soma, the neuron
produces an action potential or “spike,” a signal that propagates down the neuron’s axon,
synapsing on to the dendrites of other cells, and perpetuating the spread of information through
the brain [36]. According to the fundamental Hebbian principle, the more often one neuron
synapses onto another, the increased synaptic reliability of that connection [19]. Thus, experience
mediates changes in the anatomical structure of the brain, in order to support learning and
memory.

2.1.2 Neuron Subtypes

These 100 billion neurons are diverse in their electrophysiological and synaptic properties.
Broadly categorized, there are two types of neurons: excitatory and inhibitory. Excitatory neurons
have an amplifying effect, increasing the likelihood of a spike in the neurons they synapse on to.
Excitatory pyramidal neurons are the dominant neuron type in the cortex, and are relatively
homogenous when compared with the other major category of cortical neuron - the inhibitory
neurons. Inhibitory neurons are more opaque, as their function is instead a subtle dampening of
behavior, a decrease in the likelihood of activity in neurons they synapse on to. These inhibitory
neurons can be further subdivided into somatostatin, parvalbumin, and ionotropic receptor
expressing subtypes, with diverse electrophysiology and connectivity profiles [38].

In addition to these cortex-wide categories, 90% of the mammalian cortex is striated into
six layers, from the outermost Layer 1, which is primarily inhibitory, to the innermost Layer 6
[31]. Each of these layers has distinct combinations of cell types and densities, and play different
roles in the routing of information through the brain [3, 23, 38].

2.2 Simulated Networks
Simulation is an essential technique in Neuroscience. There are three principal

components to a neural network that is intended to simulate a biological behavior (this is distinct
from artificial neural networks, which have the added nuance of a learning rule). First, there are
the biophysical properties of a neuron. The dynamics of an individual neuron’s behavior were
first reduced to a system of equations by Hodgkin and Huxley in 1952. These equations have
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been used to describe and simulate neurons with complex morphologies in an accurate manner,
however these models are also computationally intensive [15, 20]. These equations have also
been reduced to more efficient systems, in which a neuron is abstracted to a single point, and its
behavior captured by the fluctuation of the membrane voltage over time and a spiking threshold
(see equations). These equations have been demonstrated to be surprisingly accurate to the more
detailed biophysical models [5, 13].

The second part of a network simulation is the connectivity - the specificity of synapses
occurring between axons and dendrites. Layers within the brain have different connection
probabilities, as do inhibitory and excitatory populations [21]. The connectivity can be scaled
according to the spatial arrangement of neurons [33] and can also be adjusted within a moderate
region in order to achieve balanced network activity that resembles activity seen in vivo [7].

The final component is the input that drives network activity. The brain is not a silent
system waiting for a sensory stimulus. There is a significant amount of ongoing background
activity into which new information is integrated. Network simulations typically have some
underlying drive, such as a poisson pool of randomly firing neurons or a base depolarizing current
to emulate this sustained activity. It is also possible to stimulate the system with injected current
or patterned stimuli.

In addition to these components, there is the analysis and interpretation of system behavior
- in a complex model, there is a spectrum of features that can be saved from the network,
including the spikes, the membrane voltage of each neuron, or more population-wide features
such as spike rate or synchrony level. What is primarily depicted in the following research are
raster plots - these represent the spikes or action potentials released by cells over the course of the
simulation. The y-axis is the neuron number (in this case, the population is generic and there is
no special importance to the order of these neurons) and the dot on the x-axis represents a single
event for the neuron. These are qualitative observations, and cannot be compared perfectly to the
biological data, which is recorded from a depth electrode (spikes are deduced from changes in
conductance).

2.2.1 Benefits of Simulation

There are numerous benefits to using simulation over in vivo experiments. While all
models are imperfect descriptions of the phenomenon they emulate, when analyzing a system as
complex as the brain, a perfect simulation would be just as opaque to researchers as data gathered
in vivo. Simulation allows scientists to limit the scope and scale of their experiments so that
causality can be more reliably determined. These simulations also offer an omniscient
perspective, an ability to see and monitor the properties of each individual neuron over the course
of a trial, a possibility that is in the distant experimental future. In a sense, it is an opportunity to
tap into the disparate data sets generated in experimental neuroscience, and bind them together to
form a cohesive model that can be further explored [15].

Alongside this omniscient perspective is complete control over simulation features, that is
unbounded by biological constraints. Simulations offer a space where networks which could not
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exist in biology can be probed in order to establish a more complete spectrum of behavior, for
example a population of neurons with all-to-all connectivity, unreasonably fast integration times,
or no noise. Even randomized features of the network can be held constant from trial to trial, by
the power of random seeding. Additionally, the navigation of simulations between levels of
resolution, from biophysically detailed reconstructions of neurons [20, 18], to point neuron
simulations [4,5,7,9,10,13,33,37], to mean-field approximations of population behavior [35, 22,
17], have allowed scientists to explore the level of detail necessary to capture the behavior they
study, and dramatically increase the speed with which experiments can be conducted. In this
report, the typical trial with a population of 500 neurons can be conducted at about 4x the speed
of in vivo behavior. This is further improved by the use of computer clusters and parallel
processing, and opens up the data gathered to optimization and machine learning procedures.

A final benefit of simulation to highlight here is the comparatively low barrier of entry and
cost in biological resources of simulation techniques. Many simulation paradigms, particularly at
the resolution of point neuron and population models, can be performed on a laptop computer, and
require no more complex experimental construction. These experiments can also source from
existing data, and do not require expensive optical setups or additional mouse lives.

2.3 Mouse Barrel Cortex
The recordings emulated here (Figure 1) are captured in the somatosensory cortex of mice,

in a region integrating tactile signals from whisking activity known as the barrel cortex. The
barrel cortex offers a well-investigated model of cortical column and receptive field organization
[16]. Within this region, each whisker is associated with a densely locally connected and
discernible area known as a barrel. Cortical Layer 4 of this somatosensory region receives
feedforward information from the thalamus, as is typical of early sensory regions, where it is
processed by dense local circuitry that has been explored extensively [16]. This region also has a
number of afferent projections to the secondary somatosensory cortex, motor cortex, thalamus,
pons, and brain stem [2].

Connectivity and neuron-subtype distribution within the barrel cortex is in many ways
distinct. While the widely accepted average ratio of excitatory to inhibitory neurons in the cortex
is 4:1, only about 11% of neurons in the barrel cortex are inhibitory [24, 16]. These inhibitory
neurons receive intense feedforward excitation from the thalamus, primarily targeted towards
Layer 4, where projections from the thalamus are densest, a feature which likely plays a critical
role in the formation of receptive fields, sparse coding, and the resetting of network balance after
a strong sensory stimulus [3, 23, 12, 10]. This intense inhibition is facilitated by dense
connectivity between the fast-spiking interneurons and excitatory cells within each barrel, and
dense afferent connectivity from L4 to the surrounding layers [23, 24].

The qualitative behavior that is the focus of this report is the rapid oscillations seen in
response to whisker stimulation in the barrel cortex in anesthetized mice. There are several
notable differences between the oscillatory response generated from the whisker stimulation (via
thalamus) and electrode stimulation (direct to barrel cortex) in the same recorded region. While
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electrode stimulation and whisker stimulation both produce oscillatory behavior, for a similar
duration of about one second following stimulus presentation, there are some qualitative
differences in the recordings (Figure 1). The electrode stimulus results in larger oscillation
intensities, perhaps resulting from a larger spatial spread of the current injection. The frequency
of these oscillations is also much slower, in the range of 10-12Hz. There is also a peak in spiking
activity at onset of the whisker stimulus that is not seen with the current injection.

Figure 1: Recordings from barrel cortex. Channels 14-20 approximately align with Layer 4.
(Left) Oscillations in response to whisker stimulation. Top is a composite of 30 stimuli, recorded
across all 6 layers. Bottom represents a spike histogram over the same time course. (Center)
Zoom of the spike peak at stimulation of the whisker stimuli. (Right) Electrode biphasic
stimulation composite.

3 Modeling Strategies
Three types of modeling strategies were explored over the course of this project. The

Allen Institute visual cortex model [5] was investigated for its hyper-realistic connectivity,
although this strategy was ultimately eliminated, as it was computationally expensive and too
slow for optimization procedures. The remaining models explored were microscopic simulations
of individual point neurons, and mesoscopic simulations, in which the activity of the excitatory
and inhibitory populations was abstracted to a single node [35]. The mesoscopic model performs
marginally faster than the microscopic model (5x versus 4x real time). Oscillations were first
elicited from this model, as the connectivity is necessarily all-to-all, and one of the constraints
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considered in the results as required to produce oscillations is dense recurrent connectivity in a
population. After this initial breakthrough, this model was primarily used as a control, as its
structure eliminates topological concerns of clustering, in-degree and out-degree confounding
factors. It also could be expanded in future work to incorporate multiple layers or diverse
inhibition in an efficient fashion.

Figure 2: Diagram of the network, including correct connection probability notation and in vivo
stimulus details.

These simulations were performed on networks of 500 neurons, and for a duration of two
seconds, with stimulus onset at one second, unless otherwise noted (Figure 2). The stimulus was
identical to that used in the in vivo experiments, a biphasic current injection, and the duration and
amplitude of this injection was varied within a reasonable range (amplitude to ,. 01 µ𝐴 500 µ𝐴
duration or ). The time step of the simulation is 0.5 ms, unless the200 µ𝑆,  1 𝑚𝑠,  5 𝑚𝑠, 10 𝑚𝑠
duration of current injection is smaller than that, in which case the timestep is 0.2 ms - this change
has no apparent impact on network dynamics.

3.1 Microscopic Model
The microscopic population activity is governed by current-based generalized-integrate-

and-fire equations [26]. The membrane voltage of each point neuron evolves over time according
to the equation:
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𝑑𝑉(𝑡)/𝑑𝑡 = [ − 𝑔
𝐿
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Individual parameter descriptions and values are available in Table 1. Although possible
using this neuron type in NEST simulation software, no spike-triggered currents are used in these
simulations [25]. Each of these neurons is randomly connected based on a fixed indegree
reflective of the connection probability.

3.2 Mesoscopic Model
The mesoscopic model is governed by equations describing interacting populations of

neurons [25, 35]. The key value in the mesoscopic population model is that it accounts for the
effects of the finite size of a population of neurons. The population firing rate is corrected, such
that it demonstrates the random rate fluctuations seen in populations smaller than infinite size: a
more accurate model of the brain. The first integral in the equation below represents the expected
firing rate in the case of an infinite population of neurons, defined by the conditional firing
intensity given the time of the neuron’s last spike, and the density of last spike times in the
population. The second term corrects for finite population size using the population optimal
firing rate:

𝐴(𝑡) =
−∞

     𝑡

∫ λ(𝑡|𝑡 ) 𝑆(𝑡|𝑡 ) 𝐴
𝑁

(𝑡) 𝑑𝑡 +  Λ(𝑡)(1 −
−∞

     𝑡

∫ 𝑆(𝑡|𝑡 ) 𝐴
𝑁

(𝑡) 𝑑𝑡 )

The behavior of a single neuron is determined by the hazard function:

ℎ(𝑡) =  λ
0
 𝑒𝑥𝑝(

𝑉
𝑚

(𝑡)−𝐸
𝑠𝑓𝑎

(𝑡)

∆
𝑉

)

Since the mesoscopic model describes populations of neurons based on the GIF equations
used in the microscopic model, the same parameters are used in each situation [25].
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Table 1 - Network parameters used in both mesoscopic and microscopic models [30, 35]

Network Parameters

𝐶
𝑚

Membrane Capacitance 250 pF

𝑔
𝐿

Membrane Capacitance /𝐶
𝑚 

τ
𝑚

𝐸
𝐿

Reversal Potential 0 mV

𝑇
𝑟𝑒𝑓

Refractory period 4 ms

𝑉
𝑟𝑒𝑠𝑒𝑡

Voltage reset potential 0 mV

µ Depolarizing voltage, accounts for all external currents
µ =  𝑅(𝐼

𝑒𝑥𝑡
+ 𝑉

𝑟𝑒𝑠𝑡
)

24 mV

𝑞
𝑠𝑓𝑎

Increase in spike frequency adaptation after each emission 1 mV,  10 mV

τ
𝑠𝑓𝑎

Spike frequency adaptation time constant 100 ms, 1000 ms

∆
𝑢

Softness of threshold (noise level) 2.5 mV

τ
𝑚

Membrane time constant 20 ms

τ
𝑒

Excitatory synaptic time constant 3 ms

τ
𝑖

Inhibitory synaptic time constant 6 ms

𝑉
𝑡ℎ

Base firing threshold 15 mV

𝑐 Escape rate at firing threshold 10 Hz

3.3 Allen Institute Visual Cortex Model
Initial investigations for this project considered the large-scale visual cortex model

described in [5]. This model was appealing for several reasons. Foremost, it is currently the
largest publicly available cortical model, simulating nearly a millimeter of cortex. It contains
over 230,000 neurons, including one excitatory and three inhibitory subtypes with
electrophysiologically realistic features for 4 of the cortical layers. The model also is available at
two resolutions, a biophysically detailed model (i.e. containing spatially detailed dendritic arbors)
and a point neuron model, which uses the same connectivity as the more detailed model, but
abstracts each neuron to a single point, which behaves according to the generalized
leaky-integrate-and-fire modeling paradigm outlined in [37]. It is a proof of concept of the
accuracy of point-neuron moes, as the point neuron simulations were extremely accurate to the
biophysical simulations, but were conducted nearly 8,000x as fast as the more detailed model [5,
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13]. The incorporation of layers was an interesting feature to capture, in an effort to stimulate the
SYNCH project recordings, as the depth electrodes did span the cortical layers, and spatial spread
throughout those layers may have played a role in the ramp and decay of the oscillations. While a
different sensory system (vision instead of somatosensation), early sensory systems follow a
similar structure, with information traveling from the sensory organ, through the thalamus, and
the Layer 4 of the primary sensory cortex. While a somatosensory cortex model does exist, it is
not publicly available [32].

Ultimately, this model was not a good fit for the goals of this project. The runtime was
not optimal for exploring a large parameter space - while the simulation itself was reasonable to
perform on the computing resources available, constructing a network of that size in the Nest
simulation software took over an hour, even distributed over several computer nodes.
Additionally, the complexity of the model could have obscured the underlying cause of the
oscillations, as there were several sources of noise and randomization at each level of the
simulation. Finally, the base drive to the Allen Institute model is also complex, consisting of a
background source of shared activity, as well as a simulated Lateral Geniculate Nucleus. The
simulated LGN is a linear-non-linear poisson process which creates spike trains in response to a
time-dependant visual stimulus [5, 13]. It is difficult to disentangle the roles of each of these
network stimuli from the stimulus investigated in this project, the biphasic current injection, even
when using a simple “grey-screen” or poisson LGN stimulus.

4 Parameter Selection

4.1 Parameter sweeps
Because models are imperfect simulacrums of biological networks, the parameters

governing network activity cannot be directly pulled from biological data. Parameter sweeps are
a valuable tool in determining what values should be used in a simulation that are within a
biologically feasible range, but will still produce balanced, sustained network activity. In this
case, a grid-zoom parameter search is employed. First, plausible parameter ranges along two axes
of investigation were identified: network connectivity, and input stimulus. For each investigation,
a high granularity grid was constructed, considering all possible combinations of the target
parameters (in this case inter- and intra- neuron population connectivity, and input amplitude and
duration). Then multiple simulations were performed at each parameter combination, scoring the
performance of the simulation using a series of scoring functions. Using these scores, a subrange
of parameters that performs well was identified, and the sweep was constructed and rerun using a
lower-granularity grid.
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Function 1: Grid-Zoom Parameter Sweep - performs grid zoom parameter sweep across all
given variables [28]. Format for **kwargs: simulation_key = [lower_bound, upper_bound, step]

1 from sklearn.utils.extmath import cartesian
2 def grid_zoom(**kwargs):
3 keys = []
4 values = []
5 num_trials= 1
6 # unpack arguments, establish ranges
7 for key, value in kwargs.items():
8 keys.append(key)
9 values.append(np.arange(value[0], value[1],

value[2]))
10 num_trials = num_trials * len(values[-1])
11 run_params = cartesian(values) # Construct grid
12 # run grid zoom
13 current = 1
14 for run in run_params:
15 new_args = {}
16 filename = ""
17 for i, num in enumerate(run):
18 new_args[keys[i]]=num
19 filename = filename+"_"+str(keys[i])

+"_"+str(num)
20 sim = Simulation(**new_args,save =

filename,randomize = True)
21 sim.run_micro()

4.1.1 Scoring Strategies

Three general scoring metrics were considered in these parameter sweeps: synchrony,
oscillatory frequency, and oscillatory duration. Synchrony was measured using the
SPIKE-synchronization method from the PySpike python package. This is a pairwise coincident
detector, where two perfectly synchronized spike trains produce a score of 1 [27]. During the
initial oscillatory period, network average synchrony scores are almost exactly 1, and the variance
in pairwise scores is low, making this measurement an effective way of distinguishing the
duration of the initial oscillatory period from the residual synchrony that can be detected in some
samples. Any relationship between pre- and post- stimulus synchrony, as well as synchrony in
base current versus poisson driven networks, is still being investigated.

Distinct oscillations and their frequencies are determined using the scipy signal-analysis
Python package, which determines the intensity, width, and interpeak intervals of all peaks at least
20 ms apart and a standard deviation above the average prestimulus network activity. Frequency
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is calculated using only the peaks in the initial oscillatory burst, as this frequency sometimes
increases as intensity decreases.

Function 2: Population Synchrony - Calculate synchrony in network behavior. Format: array of
spike times for each neuron.  Precisely synchronized spikes produce a score of 1 [27].

1 import pyspike
2 def SPIKEdist(spike_trains):
3 sp = []
4 # Format spike trains for PySpike
5 for i in spike_trains:
6 sp.append(pyspike.SpikeTrain(i,

edges = (0.0,400.)))
7 # Calculate spike synchrony profile
8 spike_profile = pyspike.spike_sync_profile(sp)

9 print("SPIKE distance: %.8f" % spike_profile.avrg())
10 print("SPIKE profile integral: %.8f" %

(spike_profile.integral()[0]/2000.))
11 # Plot results
12 x, y = spike_profile.get_plottable_data()
13 plt.figure()
14 plt.plot(x, y)
15 return True

Function 3: Identifying Oscillation Peaks - given the rate for a single trial, returns the times of
the oscillatory peaks, the maximum prominence, the width of the individual peak and the interval
between peaks (Figure 5).  Calculated using the SciPy signal analysis package [40].

1 import scipy.signal as sig
2 def peaks(spike_rate, init_prom=0):
3 # Option to set a base prominence or re-calculate for

the given trial
4 if init_prom == 0:
5 prom = sig.peak_prominences(spike_rate,

sig.find_peaks(spike_rate)[0])[0]
6 init_prom = np.mean(prom)+np.std(prom)*2.5

7 peaks = sig.find_peaks(spike_rate,
prominence=init_prom, distance = 30)[0]

8 maxes = spike_rate[peaks]
9 widths = sig.peak_widths(spike_rate, peaks)[0]
10 ipi = np.diff(peaks, n=1)

11 return [peaks, maxes, widths, ipi, init_prom]
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Function 4: Calculating Frequency - calculates the frequency of oscillation in the initial set of
oscillatory peaks, based on the standard width of oscillations prior to any gaps, and disregarding
peaks that occur after a single oscillation is missed.

1 def osc_rate(peaks, widths_):
2 widths = np.zeros(len(peaks))
3 widths[1:] = widths_

4 if len(peaks) > 2:
5 combined = zip(peaks, widths)
6 no_gaps = []
7
8 for p, w in combined:
9 if w < (1.5*widths[1]):
10 no_gaps.append(p)
11 else:
12 break
13 rate = len(no_gaps)/(max(no_gaps)/1000)

14 else:
15 rate = 0
16 no_gaps = []
17 return [rate, len(no_gaps)]

4.1.2 Generic parameter sweep

My initial parameter sweep considered inter- and intra- population connectivity. The
range of connection probabilities was reflective of the range of values that have been measured in
cortical slices (𝑝

𝑒→𝑒
= 20% − 35%,  𝑝

𝑒→𝑖
= 30% − 60%,  𝑝

𝑖→𝑒
= 40% − 70%,

) [4]. The expectation, based on previous research where all-to-all𝑝
𝑖→𝑖

= 30% − 70%

connectivity produced the most coherent oscillations, was that denser local connectivity would be
favored [6, 8, 41]. The step of the connectivity sweep was 10%, and was later repeated on areas
of interest with a decreased granularity of 2%.

The most successful connectivity regimes had higher excitatory to inhibitory connectivity
( ) and inhibitory to inhibitory connectivity than recurrent excitatory 𝑝

𝑒→𝑖
≈ 55% (𝑝

𝑖→𝑖
≈ 35%)

connectivity ( ). Still, the recurrent connectivity within the excitatory population was𝑝
𝑒→𝑒

≈ 30%

high. Nearly all regimes with a lower connection probability between excitatory and inhibitory
populations ( ) than within the excitatory population ( ) produced synchronous, regular 𝑝

𝑒→𝑖
 𝑝

𝑒→𝑒

activity [9]. Oscillations with a similar gain and decay structure and frequency to the ICMS slides
could be found at a number of stimulus parameter combinations. In response to an identical
stimulus as in the slides ( for ) several connectivity regimes produced a very similar10 µ𝐴 200 µ𝑆
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result to the experimental recordings (Figure 3, top right), with a marginally faster frequency
(12.5 Hz, versus 10 Hz in the original).

At each connectivity combination, the magnitude and duration of current injection, and
base drive to the network was also considered .The amplitude of the biphasic current injected into
the inhibitory population spanned a range of orders of magnitude, from to . The. 01 µ𝐴 500 µ𝐴
duration of the input was or . The base depolarization for each200 µ𝑆,  1 𝑚𝑠,  5 𝑚𝑠, 10 𝑚𝑠
neuron is calculated according to the equation , but a range µ =  𝑅(𝐼

𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
+ 𝑉

𝑟𝑒𝑠𝑡
)  =  24 𝑚𝑉

of base depolarizations from was tested. Additionally, distinctµ =  16 𝑚𝑉 − 30 𝑚𝑉
depolarization values for the inhibitory and excitatory populations were considered, to investigate
how this impacted the balance of the network [35]. Beyond the simple binary of producing or not
producing oscillations, input had little impact on the performance of the oscillations. Input that
was too small (short in duration or small in amplitude) or a weak base drive to the network would
only produce a single post-stimulus feature. Otherwise, the input had no discernable effect on
oscillation duration or frequency.

4.1.3 Barrel cortex specific parameter sweep

Regardless of which layer current is initially injected in the ICMS slides, increased
activity is generally first seen in Layer 4. Although there are some exceptions to this trend, it
appears as if the oscillations are somewhat left-skewed in their intensity, and that the L4 region is
maximally engaged by the second or third oscillation (Figure 2, bottom left, channels 17-20).
This behavior is unsurprising, given the situation of Layer 4 within the barrel cortex. This region
has a greater number of recurrent excitatory connections than other layers, as well as a greater
number of afferent projections to other layers, with a comparatively small amount of efferent
feedback [24]. It is possible that the gain in signal can be partially attributed to the integration of
the current injection as it spreads across the cortex. Given these features and the fact that L4 is
the primary target of projections conveying whisking information from the thalamus, it is likely
that this oscillatory activity is driven primarily by Layer 4.

In light of this, in addition to the initial parameter sweep on networks using generic
cortical network properties (4:1 ratio of excitatory to inhibitory neurons), a parameter sweep was
conducted with network properties more specific to the barrel cortex. This region of the brain,
and in particular Layer 4, has significantly fewer inhibitory neurons than elsewhere - only about
11% of neurons are GABAergic. Additionally, there is evidence that excitatory connectivity is
slightly higher than the generic 20% probability of connection [24]. In combination to this higher
excitatory connectivity, the connectivity between inhibitory and excitatory pools within a
single barrel is dense (45%-60% inhibitory-to-excitatory connectivity, depending on inhibitory
subtype, and 25%-60% excitatory-inhibitory connection probability in L2/3, with potentially
denser connectivity in L4) [3, 23].

The results of this secondary sweep were very similar to the initial sweep, with two
regions of successful connectivity values.  One region that is similar to the original
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Depth Electrode Composite Oscillations over 42 Stimuli

Figure 3 - Microscopic network activity for the barrel cortex parameter sweep (top left), the
general parameter sweep (top right) and a sample from the ICMS slides provided by the
Vassanelli Lab (bottom).

( ) and one in which the excitatory to𝑝
𝑒𝑒

= 30%,  𝑝
𝑒→𝑖

= 50%, 𝑝
𝑖→𝑒

= 40%, 𝑝
𝑖→𝑖

= 30%

excitatory connectivity was fixed to the value seen in vivo, and less realistic inhibitory
connectivity ( , , ). This regime was more𝑝

𝑒→𝑒
= 24%  𝑝

𝑒→𝑖
= 70%  𝑝

𝑖→𝑒
= 35%, 𝑝

𝑖→𝑖
= 15%
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prone to synchronous events, with low inhibitory to inhibitory connectivity. It could, however,
sustain activity at much lower base currents, meaning that the network fired at lower initial firing
rate (2-4 Hz) and produced slower oscillations (10-12 Hz, as low as 8 Hz), that were more
reflective of the ICMS data (Figure 7). This region also demonstrated the greatest number of
simulations with consistent gain and decay in its signal response  (Figure 3, top left).

The requirement for low i-to-i connectivity is not wholly unbased. There is no single
review on inhibitory to inhibitory connectivity in barrel cortex, but in general Layer 4 of the
cortex has a higher concentration of parvalbumin interneurons, which preferentially synapse onto
themselves and excitatory neurons, but have low i-i connection probabilities compared to SST or
Htr3a neurons which typically target other inhibitory populations [5, 38].

4.2 Weight scaling
In the original [35] code, the weights were scaled such that they always matched a

simulation paradigm in which the population size was 1000 (800 E 200 I) and the probability of
connection between each population was 20%. This scaling prevented changes in activity
resulting from new connection probabilities, which was a requirement for producing oscillations
in the microscopic simulations, and was eliminated from the final simulation procedure.

4.3 Electrophysiological Parameters
Next, a broad exploration of the values governing neuron dynamics (Table 1) was

conducted to see if there were any easily identified stiff or sloppy dimensions. This search
indicated that these results were generally robust against small changes in network parameters
[29]. This was examined by checking whether an increase or decrease of a parameter by 10%
caused an immediate state change in network dynamics. While the response to the stimulus of
course evolved, dynamics were generally stable. There were two notable exceptions to this rule -
the parameter governing colored-noise current, , is sensitive to a tenth of a millivolt in the Δ

𝑢

original simulation paradigm. determines the softness of the spiking threshold, and describesΔ
𝑢

the range around the set threshold at which the neuron is guaranteed to fire ( ) and𝑉
𝑡ℎ

−  Δ
𝑢

unlikely to fire at all ( ). Functionally, this value represents the noise within the𝑉
𝑡ℎ

+  Δ
𝑢

population as well as fluctuations in background activity [11, 35]. While this sensitivity is
unsurprising, it suggests a limited range of depolarization/membrane voltages within the network.
This hypothesis is supported by the comparative response of a network driven by a poisson
population - the range of values that produce the same balanced network activity in the Δ

𝑢

microscopic simulation are much wider (> 1mV, compared to 0.01mV).
Following this adjustment, the relationship between the oscillations and the value wasΔ

𝑢

explored. The system appears to act as a damped oscillator, in which the excitatory/inhibitory
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bursts of activity would continue to appear
indefinitely in the absence of noise in the
system. therefore closely determinesΔ

𝑢

the duration of oscillations - higher levels
of noise in the network eliminates the
oscillations sooner, and lower valuesΔ

𝑢

coordinate with longer or indefinite
oscillatory phases (Figure 3). Network
firing state was also sensitive to changes in
the base weight. Further investigation of
how different weight scaling methods
impact dynamics  is warranted [4].

4.4 Poisson Drive and
Randomization
Earlier simulation paradigms had limited
randomization, and exhibited extremely
low trial to trial variability. Next, methods
of adding noise to the system were
explored. The initial membrane voltage
was randomly selected from a normal
distribution, with a low of -60mV and a
high of Initial weights were also− 30 𝑚𝑉.
randomized - in the original simulations,
excitatory weight was and. 3 𝑚𝑉
inhibitory if the number of1. 5 𝑚𝑉
connections is equal to the fixed target
value, and so this value was adjusted to a
range and𝑒 =  . 25𝑚𝑉 −. 35 𝑚𝑉 𝑒 =  
− 1 𝑚𝑉 −  − 2𝑚𝑉.

No comprehensive parameter sweeps
have been performed using a poisson drive
instead of a constant depolarizing input
voltage. This report only compared
specific parameter combinations of
interest. A regime with similar drive to the

depolarizing voltage used in the original
code   ( ,   maintains  a  base  ofµ = 24 𝑚𝑉)
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, with additional input from 100 neurons firing at a rate of 10 Hz, connected to theµ = 10 𝑚𝑉
excitatory population with a probability of 20%. The poisson input has only been explored for the
microscopic model, and significantly slows the runtime (2x realtime, instead of 1.1x).

Figure 5: Oscillatory behavior is inhibition mediated. (Top left) Excitatory Population activity
when current is injected to Inhibitory population only ( ).  (Top right) Excitatory activity𝑁

𝑖
= 100

when current is injected to all inhibitory neurons and 50 excitatory neurons.  (Bottom left)
Current to inhibitory neurons and 200 excitatory neurons.  (Bottom right) Current injected to
Excitatory neurons only.
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5 Results

5.1 Requirements for oscillation
Two simulation features were mandatory in eliciting oscillatory behavior after an injection

of current into the network. First, current injection had to be predominantly targeted to the
inhibitory population of neurons (Figure 5, top left). Injecting current to excitatory neurons as
well as inhibitory neurons lessened the amplitude of oscillatory response (Figure 5, top right,
bottom left), and injecting current to all neurons or only excitatory neurons produced no
oscillatory behavior (Figure 5 bottom right). The second requirement was either extremely dense
(greater than 70%) connectivity, or independent connection probabilities between neuron
populations (i.e. connection probability cannot be fixed at 20% regardless of neuron identity).
Given that this second connectivity scheme is more realistic to that seen in vivo, the following
focuses on populations with distinct connectivity.

5.1.1 Oscillation qualitative comparison

A majority of the simulations only produced oscillations until around the 500ms mark,
before rapidly decaying, consistent with the most intense oscillations in the ICMS slides. After
this point, frequency of oscillations in the simulations increases slightly as they decay, a change of
no more than 1.5 Hz. This may be consistent with the in vivo data, it is difficult to assess such a
small change visually.

As a further metric of comparison, the width and the interpeak intervals were scored. As
the intensity of the oscillations increases, the width of the peak decreases, corresponding to an
increase in interpeak intervals. These changes are on the order of 1-5ms, so very small, but were
seen across simulation paradigms (Figure 6).

Figure 6 - Raster plot of
oscillating network
activity in response to a

/ stimulus,50 µ𝐴 200 µ𝑆
and zoomed to show only
the 500 ms preceding
and following stimulus.
Intensity and IPI
increase, and a
subsequent decrease in
peak width can be seen
in the first three
oscillations.
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5.1.2 Post-stimulus delay

Lower inhibitory to inhibitory connectivity is related to a longer delay before oscillation
initiation post-stimulus. These delays last the duration of a single oscillatory period +/-5 ms
(Figure 7). These results required no adjustment of the inhibitory synaptic time constant,
although [39] suggests that this delay in vivo is mediated by receptors in response to a𝐺𝐴𝐵𝐴

𝐵

volley of spikes. The delay periods seen in these simulations are slightly shorter than in the
simulated mediated delay, however they seem consistent with the delay before the first 𝐺𝐴𝐵𝐴

𝐵

oscillation in the ICMS slides, especially given the higher base firing rates and oscillation
frequencies. Further exploration of the relationship between this delay and the time constant
governing inhibitory postsynaptic decay is required [1, 8].

Figure 7 - Examples of an
extended delay period in the
barrel cortex (top left) and
general (top right) microscopic
simulation paradigms, and a
mesoscopic simulation (bottom).
Orange line indicates inhibitory,
and blue excitatory activity - the
artifact at the beginning of the
inhibitory simulation is in
response to the direct current
injection.
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5.1.3 Synchrony in the network

At a number of both stimulus and connectivity combinations across those surveyed, the
networks would demonstrate large, defined oscillations for 500-800ms, which decay in intensity,
but some networks never fully resumed an asynchronous-irregular regime (Figure 8). This is not
mitigated by the addition of poisson input into the network. In some cases, the intensity of these
sustained oscillations appeared to themselves oscillate. It is not possible to determine the duration
of any residual oscillations in the ICMS slides, since the data shows just 1 second after stimulus,
but it does appear that in some trials, there is some small oscillations in network activity before
stimulus presentation. In some cases it appears there were some small, fast oscillations in these
simulations before the stimulus as well (Figure 3, bottom left).

Figure 8 - Microscopic simulations demonstrating a secondary oscillation. Simulation runtime
was extended to 2.5 seconds in order to completely capture this effect.

5.2 Microscopic & Mesoscopic Model Comparison
It should be noted that connectivity in the mesoscopic model is necessarily all-to-all, given

that the excitatory and inhibitory populations are represented by a single node. The weights
between those populations are, however, scaled to reflect the different connection probabilities.
On average, the behavior of the meso and micro scopic models are similar (Figure 9), and the
resulting firing and oscillation rates are within 1.5 Hz for each simulation paradigm, although
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identical signal gain is not seen in every simulation, and extreme changes in the parameters
governing spiking dynamics affect the simulations differently.

Figure 9 - Example of a mesoscopic (top) simulation. - population activity, - instantaneous𝐴
𝑁

𝐴

population firing rate. (Bottom) Excitatory activity of a microscopic simulation with the same
parameters.  Spike histogram below.
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5.3 Multiple Stimulation Strategies
Although the trial-to-trial response is highly variable in response to a single stimulus,

change in network behavior can be consistently affected with multiple current injections. Next, a
routine was developed to demonstrate one approach to controlling the number of oscillations in a
single trial using multiple current injections - this procedure required identifying two features of
the oscillatory response. First, the ideal time to inject current to perpetuate the oscillations.
Given that current injected during the population wide refractory period (the 60 ms following an
oscillation) has a very limited impact, considering the range of injection times from 20ms before
the oscillation peak to 10ms after. The most effective injection time was the first 2-5 ms after the
peak of an oscillation. Given this feature, it was possible to minimize the number of current
injections used, only injecting current after oscillations more than two standard deviations below
the mean oscillatory prominence. This strategy is therefore not exclusive to computer simulation
- because the injection period is after the oscillatory peak, it would be possible to determine when
to inject in vivo without leveraging the omniscient perspective of the simulation. Each injection
does slightly increase the subsequent inter-oscillatory interval by a few milliseconds, but this is
still within the range of inter-oscillatory interval variability seen over the course of trials without
secondary injections.

Function 5: NEST Code to Produce a Fixed Number of Oscillations

1 def fixed_number_oscillations(targ_num):

2 sim = Simulation(###Parameters###)

3 first = sim.run_micro()
4 current = len(first)
5 stimuli=[1000.]

6 while current != targ_num:
7 sim = Simulation(###Parameters###)
8 no_gaps = sim.run_micro()
9 current = len(no_gaps[0])

10 if current > targ_num-2:
11 last = no_gaps[0][-1*(current-targ_num)-2]
12 stimuli.append(last+1005.)
13 sim = Simulation(###Parameters###)
14 no_gaps = sim.run_micro()
15 break
16 else:
17 stimuli.append(no_gaps[0][-1]+1002.)

18 sim = Simulation(###Parameters###)
19 sim.run_micro()
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Figure 10 - example simulations, using the same random seed, of oscillatory responses with a
target length of 2 (top left), 7 (top right), and 14 (bottom left) periods. Green lines represent
biphasic current injections, and the final red line in each simulation is a hyperpolarizing current.
(Bottom right) current stimuli are identical to bottom left, but with no hyperpolarizing current.

The second feature required was how to exit the oscillatory state once the target duration
had been reached. Injection of a hyperpolarizing current to the inhibitory population returns the
network to the asynchronous state, although the amplitude of this current also varies from trial to
trial (Figure 10). If it is excessively large, it will simply initiate further oscillation; strong
hyperpolarizing current to the entire inhibitory population causes a burst in excitation, further
perpetuating oscillations. The hyperpolarizing current can be much smaller than the depolarizing
used to initiate the oscillations - about 1 nA versus . This was further scaled by the10 µ𝐴
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prominence of the penultimate oscillation, in order to avoid bursts of excitation. Although this is
more effective than scaling by a fixed value, it does not perform perfectly, particularly in longer
simulations - other methods of scaling the final current injection should be explored further.

6 Conclusion

Two features were required to achieve sustained oscillations in these spiking neural
network simulations. First, the network had to be wired with dense recurrent and inter-population
connectivity. Second, the stimulus had to be of sufficient intensity, with a significant amount of
background activity, in order to produce oscillating activity. A damped oscillator is an apt
metaphor for this behavior - a spring must have some recoil, and a pull to the spring must be of a
sufficient strength in order for oscillations to occur. Noise in the network acts like friction to the
spring. Increased noise into the system decreases the intensity and duration of the oscillations,
however small adjustments to features of the single current injection do not reliably affect the
same response. Additionally, there is a plateau in the intensity of network response to stronger
stimuli. Stimulus duration of more than 5 ms never produced oscillations with the desired
structure. Network response also stopped evolving for stimuli with an intensity greater than

, indicating an upper bound in the ability of a network to integrate extremely high50 µ𝐴
amplitude currents.

The most effective way to control oscillations was using multiple network simulations.
By injecting current slightly after the oscillatory peak, the behavior could be extended
indefinitely, or terminated abruptly using a slightly hyperpolarizing injection. In the future, this
strategy can be implemented in vivo, as the timing of these injections can be determined in an
online fashion.

6.1 Future Directions
These simulations will be used on two fronts. They will be employed by the University of

Padua to explore and optimize stimulation strategies before expending biological resources on the
task. They are further being used as a reinforcement learning environment, to explore strategies
of changing the stimulus to cause network response to better meet a desired behavior, or to
optimize the simulated behavior to be closer to the biological activity.

In addition to these two immediate projects, expanding the model to incorporate more
diverse inhibition would be an interesting test of the nature and timescale of this behavior. Layer
4 of the barrel cortex receives intense feedforward inhibition from the Thalamus, targeting fast
spiking (likely Parvalbumin) inhibitory cells [12]. The longer response time of other
subpopulations (SST or ionotropic) may diminish this behavior, or by a source of further
synchronization with their inhibitory-neuron targeted inhibition. It would also be interesting to
explore adding new cortical layers to the model, to investigate how the oscillations spread across
these distinct populations, and compare to the cross-layer data captured in the depth electrode
recordings. Incorporating dynamic synapses, where the strength of the synapse changes based on
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recent spiking history, would also be a valuable area to pursue, in an effort to more accurately
capture the rise and decay of oscillation intensity [34]. The most efficient approach to answer
these questions would be to implement these additional features in the mesoscopic model.
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