Digitalization of the Physical Performance
Test and Training

Master Thesis

In partial fulfillment of the requirements for the degree

"Master of Science in Engineering"

Study program:
Mechatronics & Smart Technologies - Electrical Engineering

Management Center Innsbruck

Supervisor:
Prof. Yeongmi Kim, PhD
Prof. Dr. Daniel Wiznia, MD
Prof. Dr. Rummana Aslam, MBBS

Author:
Ing. Wolfgang Grosek, BSc
2110620001

Declaration in Lieu of Oath

.l hereby declare, under oath, that this master thesis has been my independent work
and has not been aided with any prohibited means. | declare, to the best of my knowl-
edge and belief, that all passages taken from published and unpublished sources or
docments have been reproduced whether as original, slightlychanged or in thought,
have been mentioned as such at the corresponding placesof the thesis, by citation,
where the extend of the original quotes is indicated.”

l’\
|
Canmore, 24.09.2023 WW

Place, Date Signature

Acknowledgement

| would like to express my deepest appreciation to my supervisors and mentors at Yale
University and MCI. Starting with Prof. Yeongmi Kim, PhD, who helped me to define my
project idea right from the beginning and also helped me a lot throughout the course
of the project. Prof. Dr. Daniel Wiznia, MD, Prof. Dr. Rummana Aslam, MBBS, Larry
Wilen, Ph.D., and Vincent Wilczynski were crucial for the success of the project and
helped me wherever they could. | could always count on them and it was a pleasure
and honor to work with them at Yale University.

| also had great pleasure of working with Necolle Morgado-Vega, DO and her team
at YNHH Rehabilitation Center. They supported me a lot during the clinical trial and
helped me to use the sensors on patients in their Rehabilitation Center.

Special thanks to my friends all over the world, who | met during my stay in New Haven
and friends and family, who visited me during that time. They truly helped me to enjoy
my stay to the fullest and helped me to balance the stressful academic tasks.

Abstract

The measurement of the physical functions of the human body is of big interest, espe-
cially after a surgery, after an accident and for disabled or elderly people. After special
training or rehabilitation, the progress can be analyzed via measurement. The Modi-
fied Physical Performance Test consists of different tasks and with a point system the
performance of physical functions can be determined. However, until now this test is
carried out with a supervisor and a stopwatch. This leads to inaccuracy, aberrance and
missing data.

The aim of the digitalization of the Modified Physical Performance Test is to provide
objective test results. Wearable sensors, smart objects and computer software were
developed to measure the body position and movement. This will help to determine
patient progress, trigger timers and calculate a test score. All these factors will eliminate
inaccuracy and aberrance and facilitate the task of the supervisor. A training mode was
developed, which motivates the patient to further train their balance. This training mode
will help to improve future test scores.

A clinical trial with ten patients of the Yale rehabilitation unit in Milford hospital was
conducted. The outcome of the work showed a great correlation between the digital
test score and the evaluation of specialists in the corresponding field of rehabilitation
via the traditional Modified Physical Performance Test score.

It was shown that the proposed Digitalization of the Physical Performance Test might
be used for various patient groups. The test procedure is feasible and offers numerous
advantages compared to the traditional test.

Keywords: [IMU, joint replacement, orthopedics, Parkinson’s disease, Physical Per-
formance Test, rehabilitation, stroke, wearable.

Contents

[1._Introduction|

[1.2. Aim of the Project
[1.3. Objective

[1.4. Method and Planned Strategy|.

[1.5. Thesis Structure| .

[2. Literature, Basics

2.1. A ment in Rehabilitation

[2.1.1. BergBalance Test|

[2.1.2. Knee Injury and Osteoarthritis Outcome Score]

2.1.3. MPPTI . ..

[2.2. Digital Assessment in Rehabilitation|

[3.2. Digital MPPT Adaptation|.

[3.3._MPPT Sub-Task Definitions|

[3.3.1. 10StepWalk|

[3.3.2. 4StepStairWalk|.

[3.3.3. Turn360Degree

[3.3.4. Chair Rise (5x) Without Arms|

[3.3.5. Pick Up Object While Sitting/Standing|

[3.3.6. Balance With Feet Together/While in Tandem Position|

[3.5. Balance Game . .
[3.6. Wearable Design .

[3.7. Balance Board Design|

4, _Evaluation
|4.1. System Evaluation

4.1.1. Setup . . .

.2. Clinical Evaluation

D D - = a2

a B~ A W W W

10
11
13
16
18
20
22
24
25
26
27
29

4.2.3. Resultof Clinical Study 39

5. Discussion 40
6. Conclusion 41
Bibliography viil
[List of Figures IX
lList of Tables X
[List of Symbols Xl
|Abbreviations| Xl
|A._Codel X
A1, Wearable IMUESP32, Xl
A.2. For nsor ESP32. XV
A.3. MPPT Software XVII
A.4. me FollowCar| e XXXIX
IA.5. Game GameOQverScreen| XXXIX
A.6. Game MainMenul XL
IA.7. Game mattController XL
IA.8. Game PlayController] XLI
IA.9. Game ScoreManager, XLII
XL

\

1. Introduction

1.1. Problem Statement and Motivation

The measurement of the physical functions of the human body is of big interest, espe-
cially after a surgery, after an accident and for disabled or elderly people. After special
training or rehabilitation, the progress can be analyzed via measurement. The Modified
Physical Performance Test (MPPT) consists of different tasks and with a point system
the performance of physical functions can be determined. However, until now this test
is carried out with a supervisor and a stopwatch. This leads to inaccuracy, aberrance
and missing data.

1.2. Aim of the Project

The aim of the digitalization of the Modified Physical Performance Test is to standard-
ize the test results. With the help of wearable sensors, smart objects and computer
software, it is possible to measure the body position and movement. This will help to
determine patient progress, trigger timers and calculate a test score. All these factors
will eliminate inaccuracy and aberrance and facilitate the task of the supervisor.

1.3. Objective

The main objective of the thesis is the creation of a test to measure the physical perfor-
mance of patients. The population group consists of different patients, who all struggle
to do tasks of daily living. The sub tasks of the test measure different body functions
and can give an overview over the areas that the patient struggles with. The end result
of the test is a percentage score, that helps to show the abilities of the patient. The test
can be used over time to show rehabilitation progress.

After a literature research, the needed sensors for an evaluation of the patient move-
ment have to be defined. The selected sensor hardware has to be combined with an
microcontroller and a power source and must be embedded in a case. Additionally, a
device to measure balance must be developed. The measurements of the sensors are
evaluated at the end of the thesis.

The wearable sensor of the microcontroller has to capture the body movement of the

CHAPTER 1. INTRODUCTION

patient and send the measured values to the PC software. The PC software must eval-
uate those measured body movements of the patient. Additionally, the read data and
the test score should be saved to a file. In that way further data analysis can be carried
out.

1.4. Method and Planned Strategy

The planned strategy in order to fulfill the project is described by the following points:
Literature and market research, Definition of the specifications and test cases, Select-
ing sensors and creation of hardware, Software development, and Testing the imple-
mentation and further improvements.

The Literature and Market research shows the current situation and approach in terms
of rehabilitation digitalization and the different ways of using rehabilitation tests for pa-
tients. The definition of the specifications defines the tests used for the digital rehabil-
itation test and defines the measured quantities in each sub task. A definition of the
used sensors and microcontrollers is crucial for the success of the project. The hard-
ware for the wearables and balance board is defined. This design process includes the
development of prototypes and a final wearable design. In order to detect the patient
movements and calculate the test score, computer software is developed. The software
has to be developed for the wearables and for the PC program. The final step includes
the testing of the project and mentions further improvements. The project is part of a
clinical study in a hospital.

1.5. Thesis Structure

The chapters of the thesis describe the following content:

Chapter 2 gives an overview over state of the art in medical tests and digital rehabilita-
tion.

Chapter 3 describes the realization process of the project and lists the different obser-
vations and used methods.

Chapter[4 gives an overlook over the results and evaluates the findings.
Chapter 5 talks about the main results, and explains the interpretation.

Chapter[6 gives a summary over the key points of the thesis.

2. Literature, Basics

2.1. Assessment in Rehabilitation

In order to determine the physical status of a patient, it is important to get a test score.
In that way, the physical functions of the patient can be determined. Another benefit
is that the patients score can be compared over an extended time frame. In that way
rehabilitation success can be tracked. The most common test procedures are covered
in the following sections.

2.1.1. Berg Balance Test

The Berg Balance Test is used in the clinical environment to determine a patient’s
balance and especially the fall risk. The test consists of the following balance and func-
tional mobility sub tasks: Sitting to standing, Standing unsupported, Sitting with back
unsupported and feet supported, Standing to sitting, Transfers, Standing unsupported
with eyes closed, Standing unsupported with feet together, Reaching forward with out-
stretched arm while standing, Picking up object from floor from a standing position,
Turning to look behind over left and right shoulders while standing, Turn 360 degrees,
Placing alternate foot on step while standing unsupported, Standing unsupported one
foot on front, and Standing on one leg [1].

As it can be seen, the sub tasks involve everyday tasks and is aimed for elderly patients
and individuals with mobility impairments. The individual sub tasks are all graded on a
scale of 0 to 4. A score of 0 means the patient is not able to fulfill the task. A score
of 4 means the patient can perform the task without any assistance. At the end of the
assessment a final test score is calculated by summing up the sub task scores. The
end score is interpreted as:

+ 0 to 20: High fall risk
« 21 to 40: Moderate fall risk
* 41 to 56: Low fall risk

It is important to note, that some of the sub tasks are objective e.g. by time measure-
ments. However, some of the sub tasks are highly subjective, as it involves the assess-
ment of the rehabilitation worker. Therefore a standardized measurement behavior is
not guaranteed. [1]

CHAPTER 2. LITERATURE, BASICS

2.1.2. Knee Injury and Osteoarthritis Outcome Score

The Knee Injury and Osteoarthritis Outcome Score (KOOS) describes the quality of
life for a patient with knee related symptoms. The principle behind this test is a self-
reported questionnaire. The patients has to answer questions regarding pain, symp-
toms, function in daily living and sport, and quality of life. At the end of the test a score
from 0 to 100 percent is received. The test helps to get a comprehensive knee as-
sessment and offers a good overall evaluation. However, the honesty of the patient is
important, as the test can be manipulated by wrong answers. Additionally the test is
only question based, therefore there is no physical test aspect involved. [2]

2.1.3. MPPT

The MPPT is an important tool to measure the physical abilities of patients after surg-
eries, strokes, Parkinson’s and neurological diseases, chronic pain, as well as move-
ment and gait disorders. The different tasks of the MPPT can be seen in figure
However, the measurement with pen, paper and a stopwatch is the current approach
to carry out this test. This results in a lot of limitations [3].

Modified Physical Performance Test

Scoring Sheet
Name: Date:
Time Scoring Score
p (s)
1 | Lift a book and put it on a shelf S2sec=4d
Book: POR 1988 5.5 Ibs 21.-4gec=3 Trial 1:
Bed height 59 cm 4.1-63ec=2 L
Shelf height 118 cm ’f‘;‘:; Trial 2:
Al sitting with feet on the floor unatie
2 | Putonand remove a jackel. Trial 1:
1. Standing <10sec=4
2. Use of bath robe, button :g : “2%5::_ 32 Tral 2:
down shirt, hospital gown >20s0¢ ® 1
unable = 0
3 | Pick up nickel from fioor s2sec=4 Trial 1:
21-48ec=3
41-6s50c=2 Trial 2:
>6sec=1
unabie = 0
4 | 50-foot walk test (3.28 feet/meter) s15sec=4 Trial 1:
15.24 meters 15.1-20sec=3
20.1-25s8ec=2 Trial 2:
<15 sec = 3.33 feet/sec or 1.0misec >2580c = 1
unable = 0
5 | Climb cne flight of stairs s5sec=4 Trial 1:
51-10sec=3
101-15sec=2 Trial 2:
>15s8ec*1
unable = 0
6 | Chair Rise (5x) without arms <11sec=4 Trial 1:
11.1-139sec=3
14-169sec=2 Trial 2:
>17s0c=1
unable = 0
7 | Cimb 4 flights of stairs Number of flights of stairs up
and down (maximum of 4)
Unable = 0
8 | Turn 360 degrees n direction of Discontinuous steps = 0 Discontinuous
choice Continuous sleps = 2
Unsteady (grabs, staggers) =0 | Continuous
Steady =2
9 | Standing Balance in Full Tandem and | Ful Tandem Semi-tandem Side-by-side Side by side:
Semi-Tandem 4 10s 10s 10s
3 3-0s 10s 10s Semi-andem:
2 0-28 108 108
1 Unable 049s 10s Full tandem:
0 Unable 0-9s 0-9s
TOTAL SCORE maximum 36 | |

Figure 2.1.: A list of the composition of the Modified Physical Performance Test. The test in this
form consists of 9 sub-tasks [4].

CHAPTER 2. LITERATURE, BASICS

The first limitation is the inaccuracy in those manual tests. The evaluator must watch
the performance of the patient very closely and measure the time too. This results in
a very inaccurate measurement. It is also not guaranteed, that the evaluator judges
the patient in a correct way every time the test is taken and human errors can occur.
Another limitation is an inconsistency between evaluators. In this way no standardized
way of measurement is guaranteed.

Also, the evaluator can only measure the patient's movements in a very subjective way.
The patient’s movement can seem very good overall, but individual movements of body
parts are hard to judge. For a better detection of the joint position the patient often must
change his clothing and wear hospital clothes.

Storing, comparing and analyzing the data is causing further inaccuracies. The data
is measured by hand and then transferred to a spreadsheet. This is not ideal and can
lead to missing or incorrect data. The measurement is not continuous and leads to a
lack of data points and less frequent assessment.

2.2. Digital Assessment in Rehabilitation

There is a big focus on the digitalization of patient assessment and digitalization for
training purposes. The following section focuses on these topics and list various exam-
ples.

The two biggest focuses of current digital patient assessment lay on gait tracking and
balance tracking.

Examples for gait tracking are two different projects of MCI. Both projects focus on the
analysis of gait while walking and/or walking stairs. They consist of a wearable device
mounted to the feet in combination with an Android app. The assessment results in test
scores with sub scores and further details, such as walked distance, number of steps
and gait ratio.

Another example for patient assessment is a balance board designed at Yale University.
The balance board can be seen in Figure [2.2. The force sensors in combination with
an Arduino microcontroller are used in the balance board to determine the position of
the patient on the floor. The board is designed to measure the center of gravity of
the patient in a wide range. The assessment test consists of a static balance test and
a dynamic balance mode. In this dynamic mode the patient’s center of gravity has
to follow a balance area on screen which moves dynamically. The test results in a
percentage balance score.

CHAPTER 2. LITERATURE, BASICS

Figure 2.2.: The balance board at Yale university, including the board components and the as-
sessment test procedure. Image permitted by R. Aslam, Yale University.

A completely different approach to digital patient assessment is shown in [5]. The robot
developed in the project is used for the evaluation of patients. During the assessment
patients carry out the timed up and go test. This test involves the patient standing up
from seated position, walking three meters, turning around and walking back to the
chair, and sitting down again. The robot evaluates the patient’s lower limbs motion.
Additionally the robot follows the patient during the test and is also interacting with the
patient. At the end of the test the outcome of the evaluation is verified together with the
healthcare worker.

In order to measure gait and track steps, the Inertial Measurement Unit (IMU) is a
great tool. Especially the included gyroscope and the accelerometer offer the needed
capabilities to measure the leg angle and leg acceleration. A typical gait cycle can be

seen in figure [2.3.

NEW
A GAIT Initial Loading Mid- Terminal Initial Mid- Terminal
TERMS Contact Response stance Stance Preswing Swing Swing Swing

CLASSIC Heel Foot Midstance Heel Toe Midswing Heel
B gaT Strike Flat Off Off Strike
TERMS Acceleration Deceleration
STANCE PHASE — -\r —SWING PHASE ——
c 0 10 20 30 40 50 60 70 80 90 100

% of GAIT CYCLE

Figure 2.3.: An overview over the different components of the gate cycle [6].

As it can be seen in figure 2.3, the highlighted leg changes global position and also the
relation to the rest of the body changes. This change reflects in a change of leg angle
and a change of leg acceleration. A measurement of those two quantities can give an
overview of the current status of the leg in the gait cycle. A possible example approach
would be, if the leg angle reaches a certain value and at the same time acceleration in
forward direction of the leg is detected, a step is initialized and the initial swing phase
of the leg starts. If the angle of the leg goes to 0° and no acceleration is measured, the

CHAPTER 2. LITERATURE, BASICS

loading response of the gait can be detected.

Detailed literature for an advanced control algorithm to evaluate stair running perfor-
mance is shown in [7]. An option to measure foot motion tracking with the use of a
convolutional neural network and a six axis IMU is presented in [8]. The potential to
calculate an MPPT score automatically while wearing IMU sensors is proposed in [9].
The system uses machine learning for the score prediction. An approach for an exer-
cise in a home based way is presented in [10]. It also focuses on protein intake and
persuasive technology for older adults. The approach of a home based High-Intensity
Interval Training for Parkinson’s patients is presented in [11]. The project aims to be
feasible and safe and proves this claims by data collection. An idea for low appen-
dicular lean mass detection in older adults is explained by [12]. The method is called
bio-electrical impedance analysis. The validity of low appendicular lean mass detection
by using this method is not the best. However the process is able to detect low muscle
mass in adults.

The use of technology and sensors in physical training is of big importance. It helps
to store, compare and standardize results and makes improvements visible. This ap-
proach is used by Yale university in various projects and products.

One of those products is the Bulldog RepBox, which can be seen in a training environ-
ment in figure [13]. The product is used to count repetitions while doing different
kinds of workouts such as sit ups, push ups, squats, etc. A sensor in the product can
measure the distance between the person and the RepBox and therefore count repe-
titions. The distance between sensor and person can be calibrated, in order to match
the type of exercise.

Figure 2.4.: The Yale Bulldog RepBox used in a training session. [13]

Another project at Yale University which uses sensors in physical training is the Digital
Dot Drill Assessment. This project uses a traditional dot drill mat equipped with force
sensors, which can be seen in figure [2.5.

CHAPTER 2. LITERATURE, BASICS

Figure 2.5.: The Yale Digital Dot Drill Assessment mat used for training sessions.

The Dot Drill Assessment is usually used for training sessions with football or basketball
players. The player has to jump different types of patterns on the mat. The time to do
this exercise is taken by the coach. However, the player performs the exercise which
such a high speed that makes an evaluation of the foot position difficult. The digital
version helps to detect if the player hits the dots and also takes the time automatically.

3. System

3.1. Hardware

A microcontroller is an integrated circuit which is built in a compact form factor. It usually
consists of a processor, inputs/outputs, a memory chip and a clock generator. It is used
to control processes or devices in different applications and perform defined tasks.
Microcontrollers are used in various embedded systems and control engineering tasks
and other fields such as: Automotive, Industrial Automation, Consumer Electronics,
Internet of Things (IoT), Aerospace, and Medical Devices.

Microcontrollers are programmed either in general programming languages such as C
and C++ or tools as e.g. Arduino IDE. There are different controllers available such as
Arduino, Raspberry Pi, AVR or ESP32. Choosing the right microcontroller is very spe-
cific to the project. It mostly depends on the available peripherals, power consumption,
cost and tools for development. Depending on the project it could be of big interest
to choose a microcontroller with Bluetooth and/or WIFI support. Otherwise, wireless
communication with e.g. a PC is not easily possible without additional hardware or
shields.

A good overall understanding of the IMU hardware can be gained in [14]. To detect the
angular rate and orientation of a body, the IMU uses the sensor values of accelerom-
eters, gyroscopes, and sometimes magnetometers. They all deliver sensor values on
their own, but the real strength of the IMU lies in the combination of those sensor values.
When combining the three sensor values, e.g. to measure the angle with a complemen-
tary filter or a Kalman filter, the accuracy of the measured angle is increased [14][15].
The most important measured values of the IMU are the angular velocity and the ac-
celeration. The values can be measured directly by the IMU components. However,
they need a filter as they are not very accurate. The measurement of linear velocity
is also possible, because the integral of linear acceleration over time is the change in
velocity. However, this may already display inaccuracy, because of additional errors
and integration of noise.

IMUs are used to maneuver vehicles such as motorcycles, aircraft and spacecraft. In
recent years IMUs are also used in consumer electronics such as smartphones and
fithess trackers.

Force sensors are used to measure the force applied to the sensor surface area. The
working principle is the conversion of physical force into electrical quantities, which can

CHAPTER 3. SYSTEM

be measured by e.g. the inputs of a micro controller. The most common type of force
sensor is the strain gauge load cell. It consists of thin conductive stripes, also known
as strain gauges. If force is applied to this type of sensor, they start to bend. This bend
off the strain gauges results in a change of electrical resistance. This change can be
used to detect the applied force.

Force sensors are used in a variety of different fields such as: Medical Devices, Con-
sumer Electronics, Aerospace, Robotics, Material Science, and Automotive.

Important factors for choosing a specific force sensor are the linearity, temperature
stability, sensitivity and range of measurement. It is also important to calibrate the
force sensor to guarantee an accurate measurement result.

3D printing describes the creation of a three dimensional object out of various materials.
The used materials are plastic, resin, metal, powder, or carbon fiber. The object is
created from a digital model and printed layer by layer. A slicing software is used
in order to convert the digital 3D model, usually created in a Computer Aided Design
(CAD) program, into G-code which the 3D printer can read. There are different versions
of 3D printers. However, Delta and Cartesian printers are the most popular ones.

The material and printer decision is highly dependent on the use case. Different use
cases of 3D printers include prototyping, product development and education. With the
help of 3D printers objects can be created in a rapid way and highly customized way.

3.2. Digital MPPT Adaptation

Adaptations of the traditional MPPT have been made, in order to define the most impor-
tant test, cover all movements needed in everyday life, and include additional sensor
data. This helps to get a more objective and detailed score compared to the traditional
analog MPPT. The sub tests chosen and adapted from the traditional MPPT are the fol-
lowing: 10 step walk, 4 step stair walk, Turn 360 degree, Chair Rise (5x) without arms,
Pick up object while sitting, Pick up object while standing, Balance with feet together,
and Balance while in tandem position. In comparison to the traditional MPPT, some
tasks were removed or modified. The 15.24 m walking test was changed to 10 steps,
as this is about half the distance of the traditional MPPT distance and more feasible for
the patients. The steps are also easier to evaluate for the rehabilitation workers. Lifting
up a book and putting it on a shelf and picking up a nickel from the floor was changed
to picking up the sensor object while sitting/standing, to get sensor data via the object.
Climbing stairs is especially hard, so one flight of stairs was changed to 4 steps, as the
4 steps are already part of the clinic rehabilitation at Yale hospital. Therefore the climb
of 4 flights of stairs was removed, after feedback of the Yale rehabilitation workers. The
put on and remove a jacket sub-task of the traditional MPPT was removed, as this task
can not be measured in a reliable way by the IMU sensors.

Those tests cover the most important body movement groups and a variety of different
movements of everyday life. The tests and the different metrics are chosen together

10

CHAPTER 3. SYSTEM

with rehabilitation workers of the Yale university hospital. Out of the eight tests, the first
six use the IMU wearable and the last two use the new balance board adaption. The
IMU wearable position of each task will be covered in[3.3.

3.3. MPPT Sub-Task Definitions

This section has a focus on the software of the digital MPPT sub tasks and also
describes characteristics used in general. One main feature of the software, which is
written in Python, is the graphical user interface. The GUI can be seen in figure [3.1.
Figure [3.1 shows detailed information of the sub task results and also the result of the
total test. The GUI features a calibration button, which is pressed once the patient is
ready to perform the test and the sensors are placed on the body. This results in a
definition of the current wearable position as the position zero. A colored field next to
the sub task name shows the status of the current sub task. A red field shows if a
calibration is needed, a yellow light shows if a test is in progress, and a green light
shows that a test is finished.

Current Task: T1 Calibration . Calibrated

T1: Walk 10 steps Time: 0.0 Balance: 0.0 Score: 0.0

T2: Walk 4 stai steps Time: 0.0 Balance: 0.0 Score: 0.0

T3: Turn 360 degree Time: 0.0 Balance: 0.0 Score: 0.0

Ta: Sit to Stand 5 times Time: 0.0 Balance: 0.0 Score: 0.0

T5: Pick up object while sitting Time: 0.0 Balance: 0.0 Score: 0.0
T6: Pick up object while standing Time: 0.0 Balance: 0.0 Score: 0.0
T7: Balance 10 seconds feet together L/R Balance: 0.0 F/B Balance: 0.0 Score: 0.0

T8: Balance 10 seconds tandem L/R Balance: 0.0 Score: 0.0

Total Test Score: 0.0

Figure 3.1.: The graphical user interface of the digital MPPT.

Just as the software for the wearable, the PC software also features a Message Queu-
ing Telemetry Transport (MQTT) element. In the case of the PC software itis a MQTT
receiver, which receives the wearable string from the MQTT broker. The received string
is split into the individual variables and used in the program code. The variables are
additionally logged into a text file and saved to the PC hard drive.

11

CHAPTER 3. SYSTEM

Y; Qy; vév/

A big factor of the software is the conversion of the quaternions into Euler angles. It
is important to note that the original coordinate system of the IMU in the wearable is
based on the earth magnetic north pole. This means that the z-axis of the wearable
seen in figure[3.2 matches with the gravitational force direction of the earth. If the wear-
able is tilted around a axis and mounted on the body, this rotation has to be taken into
consideration. The quaternion rotation around the x-axis is characterized by equation
[3.1, equation [3.2, equation [3.3, and equation [3.4. The quaternion rotation around the
y-axis is characterized by equation [3.5, equation [3.6, equation [3.7, and equation [3.8.
The quaternion rotation around the z-axis is characterized by equation [3.9, equation

3.10, equation|3.11, and equation(3.12.

i 2,0,z
2% Oy %

V2
%—2
V2
(11—2
V2
QQ—2
V2
Q3—2
V2
%—2
V2
Q1—2
V2
QQ—Q
V2
Q3—2

Accel; Gyro; Magnet

Figure 3.2.: The axes description of the BNO055.[16]

- QOprime — \f * Qlprime (8.1)
“Q1prime + \f " QOprime (3.2)
© @2prime + \f * Q3prime (3.3)
" 43prime — \f * Q2prime (3.4)
* QOprime — \f * Q2prime (3.5)
*Qlprime — \f * Q3prime (3.6)
" Q2prime + \f * qoprime (3.7)
* @3prime + \f " Qlprime (3.8)

12

CHAPTER 3. SYSTEM

V2 V2

qo = 7 * qOprime — 7 * 43prime (39)
V2 V2

q1 = 7 * q1prime + 2 * @2prime (31 O)
V2 V2

q2 = 7 " Q2prime — 9 * qlprime (31 1)
V2 V2

q3 = 7 " 43prime + 9 * QOprime (31 2)

After the rotation the conversion from quaternions to Euler angles is needed. This is
described by equation |3.13, equation(3.14, and equation|3.15.

o= 321;0 ~atan2(2- (g0 - ql 4+ ¢2-¢3),1—2-(ql - ql +q2- q2)) (3.13)
B = 32@ ~asin(2-(g0-q2+¢3-ql)) (3.14)
T
360
T=o atan2(2-(q0-q3+ql-q¢2),1 —2-(q2-q2+ ¢3-¢3)) (3.15)

The sub task scoring system will take the traditional MPPT timescore into consider-
ation and also a newly measured sensor parameter, also defined as balancescore.
The sub scores are calculated as described by equation [3.16. The equation was de-
fined together with the rehabilitation workers at Yale hospital, to still keep a bigger
focus on the timing aspect of the MPPT and make smaller adjustments with the bal-
ancescore. Therefor the weight of the timescore was set to 75 %, and the weight of
the balancescore was set to 25 %. This equation is true for all sub tasks except for the
balance sub task, as this sub task is not time dependent. All scores are in percent,
therefore 100 is the best value and 0 the worst value. At the end the mean of all sub
tasks is calculated and results in a final test score.

score = timescore - 0.75 + balancescore - 0.25 (3.16)

3.3.1. 10 Step Walk

For this sub-task, wearable 1 is placed on the outside of the lower left leg, like it can be
seen in figure 3.3.

13

CHAPTER 3. SYSTEM

Wearable 1 —_1

Figure 3.3.: The position of wearable 1 on the outside of the left leg.

Wearable 2 is placed on the outside of the lower right leg. The wearables are mounted
with the velcro strap so that the wearable switch faces the same direction the patient
walks. The logic of the step detection is described by figure[3.4. The units for the values
in this flowchart and the following flowcharts are ° for the leg angles and m/s? for the
accelerations. The patient has to walk ten steps and the passed time is the total time
needed. The timer starts automatically as the patient takes the first step. A timescore is
generated which can be seen in table[3.1. Additionally timers are also started as soon
as a feet leaves the ground. This moment can be detected if a leg angle LegAngle
bigger 10° and a leg acceleration LegAcc bigger 2.5 m/s? is detected at the same time.
This corresponds to the gait behavior in figure [2.3. The time for right foot and left foot
is calculated and the ratio between the times. This results in a balance score. The ratio
percent calculation is defined by equation [3.17. If the balance score is under 25 % the
patient gets a balance score of 25 %, as the person is still able to perform the task.

Table 3.1.: The criteria for the timescore of sub task 1.

tiotal | S timescore | %

<8 100
>8-10.5 75
>10.5-13 50
> 13 25
- 0
balancescore = 100 — ‘ (ttom_tleﬁ — 1> : 100' (3.17)
tiotal — tm’ght

14

CHAPTER 3. SYSTEM

o 11

-

.

Figure 3.4.: The flowchart for the logic of sub task 1.

15

CHAPTER 3. SYSTEM

3.3.2. 4 Step Stair Walk

For this sub-task, wearable 1 is placed on the outside of the lower left leg. Wearable
2 is placed on the outside of the lower right leg. The wearables are mounted with the
velcro strap so that the wearable switch faces the same direction the patient walks. The
logic of the step detection is described by figure[3.5. The patient has to walk four steps
on a stair and the passed time is the total time needed. The timer starts automatically
as the patient takes the first step. The step start moment can be detected if a leg angle
LegAngle smaller —10° and a leg acceleration LegAcc bigger 1.5m/s? is measured at
the same time. A timescore is generated which can be seen in table [3.2. Additionally
timers are also started as soon as a feet leaves the ground. This corresponds to the
gait behavior in figure [2.3. The time for right foot and left foot is calculated and the ratio
between the times. The ratio percent calculation is defined by equation [3.17. If the
balance score is under 25 % the patient gets a balance score of 25 %, as the person is
still able to perform the task.

Table 3.2.: The criteria for the timescore of sub task 2.

tiotal /'S timescore | %

<5 100
>5-10 75
>10-10 50

>15 25

- 0

16

CHAPTER 3. SYSTEM

Figure 3.5.: The flowchart for the logic of sub task 2.

17

CHAPTER 3. SYSTEM

3.3.3. Turn 360 Degree

For this task Wearable 3 is placed around the chest. The wearable is mounted with
the velcro strap so that the wearable switch faces downside and therefore faces the
floor. The logic of the turn detection is described by figure [3.6. The patient has to turn
around 360 degree and keep as stable as possible. This test involves attentiveness
of the patient. Therefore the timer starts as the calibrate button in the graphical user
interface of the test is pressed. A timescore is generated which can be seen in table
[3.3. The balancescore is effected by the chest angles and the patient has to stand
as straight as possible while turning around. Both chest angles, maximum leaning
forward/backward angle achestmaz @and maximum leaning left/right angle Senestmaz, are
summed up and the average is calculated. This is described by equation [3.18. The
balancescore determination can be seen in table [3.4.

Table 3.3.: The criteria for the timescore of sub task 3.

tiotal | S timescore | %

<35 100
>35-55 75
>55-75 50
>7.5 25
- 0
anglechest _ Achestmaz ; ﬂchestmaa: (31 8)

Table 3.4.: The criteria for the balancescore of sub task 3.

anglechest 1 © balancescore | %

<20 100
>20-30 75
>30-40 50

> 40 25

18

CHAPTER 3. SYSTEM

Motion = False
TurnAngle = 0.0
StabilityAngle = 0.0
MaxStabilityAngle = 0.0

{

|5

!

Receive IMU data

1

(TurnAngle > 45
and
TurnAngle < 55)
e 3
(TurnAngle > -55
and
TurnAngle < -45)

|
g
>

Motion = True
%)

Motion == True
and
StabilityAngle >
MaxStabilityAngle

$
l

MaxStabilityAngle = StabilityAngle

¥ :

Motion == True

Print: d
an
Total Time e TumAngle <3 —_—
MaxStabilityAngle and
Score TumnAngle > -3

Figure 3.6.: The flowchart for the logic of sub task 3.

19

CHAPTER 3. SYSTEM

3.3.4. Chair Rise (5x) Without Arms

For this task wearable 1 is placed on the front of one upper leg and wearable 3 is
placed around the chest. Wearable 1 is mounted with the velcro strap so that the
wearable switch faces to the left side. Wearable 3 is mounted with the velcro strap so
that the wearable switch faces downside and therefore faces the floor. The logic of the
rise detection is described by figure [3.7. The patient has to go from sitting to standing
position five times without the use of the arms. The height of the chair is 50.8 cm. The
patient should keep his upper body as stable as possible and do not lean to the left or
right. The front/back chest angle is not used as a criteria for this test, as leaning forward
while getting up is a natural human behavior. The timer starts as soon as the first stand
up is recognized. The get up start moment can be detected if a leg angle LegAngle
bigger 40 ° is measured. A timescore is generated which can be seen in table[3.5. The
balancescore is effected by the left/right chest angle and the patient has to get up as
straight as possible. The balancescore determination can be seen in table3.6.

Table 3.5.: The criteria for the timescore of sub task 4.

tiotal | S timescore | %

<11 100
>11-14 75
>14-17 50

>17 25

- 0

Table 3.6.: The criteria for the balancescore of sub task 4.

Qenest | © balancescore | %

<20 100
>20-30 75
>30-40 50

> 40 25

20

CHAPTER 3. SYSTEM

Figure 3.7.: The flowchart for the logic of sub task 4.

2

g

CHAPTER 3. SYSTEM

3.3.5. Pick Up Object While Sitting/Standing

The patient has to pick up a smart object of the floor and place it on a table while sitting
and while standing. This results in two different sub tasks with different score criteria.
The smart object (wearable 4) is identical to the wearable mounted to the body, but
without a velcro strap. For the sitting part of the test, the height of the chair is 50.8 cm.
The table height is 71.76 cm. The logic of the pick up detection is described by figure[3.8.
The timer starts as soon as a movement of the object is detected. This movement of
the object is detected, if either of the acceleration values x 4., OF Yacc, OF 24cc IS bigger
0.5m/s?. A timescore is generated which can be seen in table [3.7. The balancescore
is effected by the hand movement of the patient while picking up the object, therefore
the mean acceleration MeanAcc is the measured quantity. In that way body tremor can
be detected. The logic behind the mean acceleration of the smart object to determine
the body tremor can be seen in figure [3.8. To calculate the MeanAcc, the Total Ace
is calculated by summing up zAcc and yAcc in every code run. zAcc is not summed
up, as this is the main axis of movement, to put the object from the floor to the table.
A Count variable gets increased by two in every code cycle, as the two acceleration
values are added every cycle. The balancescore determination can be seen in table
[3.8. If the acceleration values 4., and y .. are smaller 0.15m/s? and 4. is smaller
0.20m/s? at the same time, a stop of the smart object on the table is detected and the
timer stops.

Of 4. IS bigger 0.5m /s>

Table 3.7.: The criteria for the timescore of sub task 5 and sub task 6.

tiotal | S timescore | %

<2 100
>2-4 75
>4-6 50

>6 25

- 0

Table 3.8.: The criteria for the balancescore of sub task 5 and sub task 6.

MeanAcc/m/s* balancescore | %

<2 100
>2-25 75
>25-3 50

>3 25

22

CHAPTER 3. SYSTEM

| I

——
e

| ,
‘[—/

Figure 3.8.: The flowchart for the logic of sub task 5 and sub task 6.

23

CHAPTER 3. SYSTEM

3.3.6. Balance With Feet Together/While in Tandem Position

The patient has to stand on the balance board and stand still for ten seconds. This
is done first with the feet together and afterwards in tandem position. The logic of the
balance board and mean value calculation for left/right balance and front/back balance
can be seen in figure[3.9. The values S1, 52, $3, and S4 stand for the four force sensor
values. S1 is the value of the left foot front force sensor. S2 is the value of the left
foot back force sensor. S3 is the value of the right foot front force sensor. S4 is the
value of the right foot back force sensor. In order to calculate the mean left/right ratio
Stability LR, and the mean front/back ratio Stability F' B, the sensor ratios are summed
up and divided by the count ov variables. This summed up sensor ratios are Total LR
and Total FB. The final balance score for balance with feet together is described by
equation[3.19. The final balance score for balance while in tandem position is described
by equation [3.20. If the balance score is under 25 % the patient gets a balance score
of 25 %, as the person is still able to perform the task.

Stability LR + StabilityF' B
balancescore = 100 — ‘ < oty —g VYT 1) : 100‘ (3.19)
balancescore = 100 — ‘ <StabilityLR — 1> : 100‘ (3.20)

24

CHAPTER 3. SYSTEM

Start timer
Time = 0.0
TotalLR = 0.0
TotalFB = 0.0
Count =0

{

l N
Receive force sensor data

TotalLR = TotalLR + ((S1 + S2) / (S3 + S4))
TotalFB = TotalFB + ((S1 + S3) / (S2 + S4))

Print:
Total Time
StabilityLR = TotalLR /Count < Yes Time > 10

StabilityFB = TotalFB /Count
Score

Figure 3.9.: The flowchart for the logic of sub task 7 and sub task 8.

3.4. Wearable Software

The wearable software is used in the IMU version of the wearable device and the bal-
ance board. The main three parts of the software are the following: MQTT sender,
Receive sensor data, and IMU Calibration.

The first two sections are present in the IMU version of the wearable device and the
balance board version. The IMU Calibration including the LED blink is only present in
the IMU version of the wearable.

The MQTT sender part of the code uses the WIFI capabilities of the microcon-
troller(ESP32, Espressif Systems) to connect to a WIFI network and communicate via
an MQTT broker, e.g. a mosquitto server. The WIFI name, WIFI password and server
ID have to be defined. A local server was used in the beginning. Later a web server
was used, so that the program can also run on PCs of clinical workers, without installing
additional software such as Eclipse Mosquitto on their PC. Five topics are defined, one
topic for each one of the microcontrollers. The ESP32 tries to connect to the server. If
a connection is established, the board begins to read the sensor values. The received
values are stored in a string and published to the MQTT server. The string consists of

25

CHAPTER 3. SYSTEM

values, each separated by a comma. The values of the IMU version of the wearable are
the following: Quaternion w component, Quaternion x component, Quaternion y com-
ponent, Quaternion z component, Acceleration x direction, Acceleration y direction, and
Acceleration z direction.

The string values of the balance board software version are the following: Force Sensor
1, Force Sensor 2, Force Sensor 3, and Force Sensor 4.

The main quantity measured for the IMU are the quaternions and the linear ac-
celeration for each axis, which can be obtained using the Adafruit_Sensor.h and
Adafruit_BNOO055.h libraries provided by Adafruit. The getQuat() command provides
quaternions for the rotation axis. The use of the Adafruit command Ada fruitg NO055 ::
VECTOR,INEARACCEL is of big importance, as this delivers the acceleration and
removes the influence of the gravitation.

The force sensor values in the balance board adaptation are read by a reading of four
analog values.

The final part of the code in the IMU adaptation is important to check the calibration
status of the accelerometer, gyroscope, and magnetometer to ensure accurate mea-
surements [17]. The Adafruit function getCalibration delivers the calibration status of
the overall system, accelerometer, gyroscope, and magnetometer. The ESP32 fea-
tures an internal LED, which is used to display the calibration status. If full calibration
is achieved, the internal LED starts to blink. Before achieving full calibration status, the
LED is switched off.

3.5. Balance Game

The balance game acts as a training mode of the project, which helps to train the lower
body muscles and balance. The patient is motivated while exercising and practicing
in a game. The patient is able to control a character in a virtual environment, that is
programmed with the help of the UNITY game engine. This virtual environment can be
seen in figure[3.10.

26

CHAPTER 3. SYSTEM

SHSCORE: 598
OIMTS

Figure 3.10.: The interface of the balance game.

In order to not feel like traditional, repetitive recovery exercise, the game offers a game
character and the input of the character is provided by the balance of the user. The
game features objects, which the user has to avoid. The character moves forward in
an automatic way and the user balance input controls move the character to the left or
right side of the screen. The input device features the same software and hardware as
for the balance assessment of the digital MPPT part of the project. The UNITY software
consists of two main parts. There is an MQTT handler, which receives messages send
by the balance board hardware. The second part of the software is the game itself,
which handles the score calculation and the control of the character. The score is de-
termined by the time spent without touching an object. One frame in the game without
touching an object equals in one high score point. The left/right input is determined by
the L/R feet balance ratio. If the ratio is greater than 1, the character moves to the left.
If the ratio is smaller than 1, the character moves to the right. The character movement
behaves proportional to the L/R feet balance ratio. The high score is visible in the game
screen. The lighting and collision detection is provided by the UNITY game engine and
the integrated object handler. The game also features a game over screen and a start
menu. The game over screen appears as the user leaves the road.

3.6. Wearable Design

The wearable, which is used to track the limb and body movement, consists of the fol-
lowing main components: microcontroller (ESP32, Espressif Systems), IMU (BNOO055,
BOSCH), battery (LP502030 250 mAh, EEMB), electrical switch (KCD1-101, DaierTek),
wires, thermoplastic polyurethane (TPU) case, velcro strap, screws and nuts.

27

CHAPTER 3. SYSTEM

The exact version of the ESP32 used is the Adafruit HUZZAH32 - ESP32 Feather. This
version of the ESP32 offers a JST connector, which is used to connect LiPoly batteries.
The connection of ESP32 to BNO055 IMU can be seen in figure[3.11] The used battery
offers a capacity of 250mAh, 3.7V, and 0.9 Wh.

For the case of the wearable, 3D print technique is used. The chosen material is TPU.
The TPU offers a stable design, which is also able to absorb light impacts. This is
especially helpful if a patient collides with an object while wearing the wearable. A lot
testing was done to find the ideal infill pattern and infill percentage for the 3D print. The
ideal infill pattern was found to be "Cross" with an infill percentage of 20 %.

OO,
: |l‘.

—-—

a
a
a
o
=
A
3
N
v
-
a
s
P4
=
s

www.mischianti.org

Figure 3.11.: Connection of the ESP32 to the BNO055.[18]

The infill pattern and infill percentage are used for the wearable design. The design
can be seen in figure The design features a screw on lid and holes in the base
plate for the installation of ESP32 and BNOO055 via screws and bolts. There are slots
for the installation of a velcro strap in horizontal and vertical direction and cutouts for
the charging port and electrical switch.

Figure 3.12.: The design of the IMU Wearable. The dimensions are 81 mm - 36 mm - 26.5 mm.

CHAPTER 3. SYSTEM

The installation of the components in the wearable case can be seen in figure

Figure 3.13.: The wiring of the wearable inside the case. The electrical switch, IMU, ESP32,
and battery can be seen from top left to bottom right.

3.7. Balance Board Design

The balance board adaption features a shoe sole design for each individual foot. The
board is used to measure patient balance and consists of the following main compo-
nents: microcontroller (ESP32, Espressif Systems), force sensors (FSR 406, Inter-
link Electronics), resistors (100 €2), external battery (10 000 mAh, EasyAcc), wires, TPU
case, TPU soles, screws and nuts.

In order to power the balance board the external battery is connected via the micro USB
port of the microcontroller. The wire connection of ESP32 to the four force sensors and
resistors can be seen in figure [3.14.

The sole design can be seen in figure The sole design features eight individual
pieces. Four pieces for the right sole and four pieces for the left sole. The reason for the
four pieces per side is the sandwich design of the TPU sole. Two sensors are placed
in the bottom parts of each side and the top parts are placed on them and fixed via
plug connectors. The used infill pattern and infill percentage is identical to section
The CAD design features groves for the cables and sensor connectors, four groves for
placement of the force sensors, a split/puzzle design, and plugs for clipping the sensor
halves together. The sensors are fixed inside the TPU material by an adhesive film
on the backside of the sensors. Balance tracking is possible by the placement of two
sensors per foot in the sole. One sensor is placed at the front part of the sole, the
other sensor is placed in the rear part of the sole. Wires are attached to the sensor
connectors via soldering. The puzzle design of the sole is needed, in order to fit the
sole on the bed of the used 3D printer. The Ender 3 printer features a square printing
surface of 220 mm. The length of the sole is 300 mm. Therefore a print with the puzzle
design approach is possible on the Ender 3. After the sensors are placed in the bottom
sides of the sole, the top part can be fixed via the plug connectors.

29

CHAPTER 3. SYSTEM

The soles are placed under the shoes of the patients and the soles have to be centered
under the shoes. This is done while the patient is sitting. The reasons to put the soles
under the shoes and not in them, are because of time, hygienic reasons, and because
the patient can also do the test if the soles are too large. It would not be possible to
put too large soles inside the shoe, but it is possible to put them under the shoes and
center them.

The rest of the electrical hardware is soldered onto a Electrocookie Solderable PCB
Board and placed in a box with a lid. The design for the box can be seen in figure [3.16]

Figure 3.14.: Connection of the ESP32 to the force sensors and resistors.

Figure 3.15.: The CAD design of the sole used to measure balance.

30

CHAPTER 3. SYSTEM

Figure 3.16.: The CAD design of the sole box used to store the electrical components. The
electrical components are a microcontroller and resistors, connected by wires on
a PCB Board.

31

4. Evaluation

4.1. System Evaluation

In order to evaluate the system different tasks are carried out and plots of the measured
quantities are created. Those plots contain the measured values of the wearables and
the balance board.

4.1.1. Setup

The setup for the evaluation of the force sensors consists of different weights placed on
the force sensor, while the sensor is inside the TPU sole. The weights are stacked on
the sensor surface by using a CAD created object, which can be seen in figure [4.1. In
order to place the 3D printed object precisely on the sensor surface area, an angle tool
is used, which is also created via 3D print out of Polylactic Acid (PLA).

Figure 4.1.: The weight mount for the test of the force sensor. Weights are placed around the
cylinder on top. The bottom features a 40 mm - 40 mm square contact surface to
place the FSR underneath.

In order to evaluate the angle values of the BNOOQ55, the value of the IMU is com-
pared to an encoder. The experimental setup for the comparison can be seen in figure
l4.2. The wearable is attached around the outside of the forearm. The encoder shaft is
attached to the outside of the forearm by using a velcro strap and a 3D printed plate at-
tached to the shaft. A rotation around the encoder shaft is performed while the encoder
is attached to a stable surface. The type of optical rotary encoder is "LPD3806-600BM-
G5-24C" and it offers 600 values per resolution. The encoder is connected to two digital
inputs of the ESP32 and the BNOO055 is also connected to the same ESP32.

32

CHAPTER 4. EVALUATION

Figure 4.2.: The experimental setup for the comparison between IMU and encoder angle val-
ues.

The evaluation of the measured IMU quantities is done while participating in the digital
MPPT in a test environment at Yale Center for Engineering. The values are logged into
a text file while performed and plotted afterwards for evaluation purposes.

4.1.2. Results

The sensor weight distribution on the sensor surface of 40 mm - 40 mm can be seen in
figure[4.3. The plot features twelve calibration points. It shows a nearly linear behavior
from 1kg until 9kg. The R square value of 0.97 is high and indicates an excellent fit
of the regression model to the data. The weight present in the measurement plot is
concentrated on the sensor area. Tests with a patient with full weight of 85 kg balanced
over only one sensor have shown an analog value of 1700 and therefore equals 11 kg
concentrated weight. Tests with the same twelve calibration points on a contact surface
of 60 mm - 60 mm have shown no change of the analog value. This shows the weight
distribution over the whole TPU sole.

33

CHAPTER 4. EVALUATION

4500
® Data
Linear Fit: y = -203.8338x + 4128.4091 (R® = 0.97191)
.
4000
e
3500 - e
o
3 3000 - ~
K .
(2]
g .
© .
C L Ny
£ 2500 .
o
*
2000 °
.
e
.
1500
1000 1 1 1 1 1 1 J
0 2 4 6 8 10 12 14
Weight / kg

Figure 4.3.: The distribution of weight on the force sensor compared to the resulting analog
value, including the linear regression.

The comparison between angle value of IMU and encoder can be seen in figure [4.4.
No major lag can be detected. However, there are angle differences when the angles
reach their peak values. The absolute mean error is 3.478 degree.

80 - “IMu 7
/ / \ / _\\ — — “Encoder
60 - I\ / | \ , 1
/ I/ \ /
40+ / / | \ / g
I] I
| J
20 - I [-
< /
|
-20 + -
b \ |
40 | 4
40 I \ \ |
| \ \
L\ 7 |
-60 | .
Vi \\ \ A
)
-80 I
0 2 4 6 8 10
Time/s

Figure 4.4.: The comparison between IMU and encoder angle values.

Figure [4.5 shows the measured data of the walking sub task. Steps are indicated by
the peaks of leg forward rotation angle g and leg forward acceleration a,.

34

CHAPTER 4. EVALUATION

20 115
Leg forward rotation angle /3
— — Leg forward acceleration a
I 10
| 1
! | A\
| | |
N g ik
[N I J
H\ /\ | ¥ \ %
AT / Iy \ | | |\ P de E
TRV R % S
U \/ | | ! | g
/\ I | \ J | H r =
I nl - 3
y il VIl 78
i I/ g
Vo A <
. V
30 F / 4-10
|
‘1
-40 - -1-15
-50 L L L L L L o0
0 1 2 3 4 5 6
Time/s

Figure 4.5.: The measured values of sub task 1.

Figure[4.6 shows the measured data of the stair walking sub task. Steps over stairs are
indicated by the peaks of leg forward rotation angle g and leg upward acceleration a,,.

|
Leg forward rotation angle /3
— — Leg upward acceleration a,

Angle / °
Acceleration / m/s?

Time/s

Figure 4.6.: The measured values of sub task 2.

Figure [4.7 shows the measured data of the turning 360 degree sub task. The turning
is indicated by a ramp of « from 0° to 360 °. Angles a and g are small, as they visualize
that the upper body is level.

35

CHAPTER 4. EVALUATION

50 T T

O —— == = S E T T = - = :-:,:,:_:.:_::f’:“
|
-50 ‘ 4
-100 ‘ 4
o -150 - M i
~
@ \ \
=4 \
s \
< -200 [\ ‘ .
|
-250 ‘ 4
-300 \& ‘ 4
-350 |-|— — Chestangle o ~J
—-—- Chestangle 3
Chest angle ~
_400 1 | 1 1 1 1 1 1 |

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Time/s

Figure 4.7.: The measured values of sub task 3.

Figure [4.8 shows the measured data of the sit to stand sub task. Upper leg angle o
indicates the transition from sit to stand with the five peaks. Chest angle g is small, as
it visualize that a left tilt or right tilt of the upper body is not existent.

Angle / °

Leg angle o
— — Chestangle 3
1

-20

0 5 10 15 20 25
Time/s

Figure 4.8.: The measured values of sub task 4.

Figure [4.9 shows the measured data of the picking up an object sub task. The data is
measured by the IMU in the smart object. The acceleration in z direction a, is signifi-

36

CHAPTER 4. EVALUATION

cantly higher than a, and a,;, as the object is lifted from the floor to a table in z direction.
The pick up of the object is detected after 0.55s.

Acceleration / m/s?

— — Object acceleration a,
-4 || — - — - Object acceleration ay 4

Object acceleration a,

-5 I I L L
0 0.5 1 1.5 2

Time/s

Figure 4.9.: The measured values of sub task 5 and sub task 6.

Figure 4.10 shows the measured data of the balance sub task. The data shows a
balanced behavior of the patient in both cases, as the ratio is almost 1.

1.25 T T T T T T T T T

/R

1.2

1.15

-
-

Balance Ratio
(=]
(9]

0.95 -

0.9

0.85 I I ! I I

Time/s

Figure 4.10.: The measured values of sub task 6 and sub task 7. The actual balance of the
patient is very good and corresponds with the plot.

37

CHAPTER 4. EVALUATION

4.2. Clinical Evaluation

The project is used and tested in the clinical environment. Patients participate in the
digitized MPPT and the result is compared to the traditional MPPT.

4.2.1. Institutional Review Board

In order to let participants take part in the project, a detailed description of the project,
the methods used, and the used hardware has to be send to the Institutional Review
Board. They have to decide if the university adheres to federal regulations. This is
important to make sure that the human participants in research are protected. Without
this approval of the Institutional Review Board (IRB) no patient can be recruited to
participate in the trial and no data is able to be collected.

The project gained full approval of the Yale University IRB. With this consent ten pa-
tients of the Yale rehabilitation unit in Milford hospital were able to participate in the
clinical trial.

4.2.2. Study Setup

First wearable 1 and wearable 2 are mounted to both lower legs. Then the computer
software is started. After the first sub-task the patients goes to the bottom of the stairs.
The patient has to stand in neutral position and the calibration button in the graphical
user interface on the PC is pressed. After walking the stairs, the patient can take off
wearable 1 and wearable 2. The patient has to put on wearable 3 around the chest. The
rehabilitation worker has to press the calibration button in the graphical user interface
on the PC and the patient turns 360 degree. After this sub-task, the patients has to sit
on the chair and attach wearable 1 at the upper leg. Then the calibration button in the
graphical user interface on the PC is pressed. After doing the sub-task, the wearables
can be removed of the patient’s body. Wearable 4 is placed on the floor and has to
be picked up while sitting, after the calibration button is pressed. After that, the same
is done while the patient is standing. For the last two tests, the patient has to stand
on the soles to balance. The calibration button in the graphical user interface on the
PC is pressed and the first balance sub-task starts. The same is done for the second
balance test afterwards. The total score is calculated at the end. At the same time, the
rehabilitation worker grades the patient with the traditional MPPT. Therefore the time is
measured and the grading in the corresponding sub-tasks is done by the rehabilitation
worker.

38

CHAPTER 4. EVALUATION

4.2.3. Result of Clinical Study

The test results of the ten patients are collected and compared to the traditional MPPT
test. Table [4.1 shows the result comparison of patient 1 to patient 10.

Table 4.1.: The clinical trial patient data.

Patient Patient Patient Patient Patient Patient Patient Patient Patient Patient
1 2 3 4 5 6 7 8 9 10

Traditional MPPT Score / % 90.625 62.500 71.875 46.875 50.00 31.250 25.000 59.375 31.250 43,750
Digital MPPT Score / % 89.500 64.00 72.625 52.125 56.250 38.625 27.125 61.375 31.375 43.000

Task 1 Traditional Score / % 100 75 75 75 50 25 25 25 100 100
Task 1 Digital Score / % 97 78 78 79 61 41 41 40 96 97
Task 2 Traditional Score / % 100 50 75 75 50 75 25 25 75 75
Task 2 Digital Score / % 81 44 78 73 60 80 41 41 74 69
Task 3 Traditional Score / % 75 50 25 25 25 25 25 25 75 50
Task 3 Digital Score / % 81 63 44 44 44 44 38 44 81 63
Task 4 Traditional Score / % 50 25 25 25 25 25 25 25 0 25
Task 4 Digital Score / % 63 44 44 44 44 44 44 44 0 44
Task 5 Traditional Score / % 100 100 75 75 75 0 0 100 0 0
Task 5 Digital Score / % 100 100 81 81 81 0 0 100 0 0
Task 6 Traditional Score / % 100 100 100 0 75 0 0 75 0 0
Task 6 Digital Score / % 100 94 94 0 81 0 0 81 0 0
Task 7 Traditional Score / % 100 100 100 100 100 100 100 100 0 100
Task 7 Digital Score / % 98 89 69 96 79 100 53 95 0 7
Task 8 Traditional Score / % 100 0 100 0 0 0 0 100 0 0
Task 8 Digital Score / % 96 0 93 0 0 0 0 46 0 0

In order to see a possible correlation between the two scores, data analysis is used.
Before checking the correlation the normality of the values has to analyzed in SPSS.
The focus is on the Shapiro-Wilk Test, as this test is ideal for a sample size smaller than
50. The Shapiro-Wilk delivers a Sig. number greater than 0.05 Therefore the collected
data is normally distributed.

As normality in the data is detected, the Pearson Correlation method can be used
to analyze for correlation. By using SPSS the Pearson Correlation method shows a
correlation r of 0.990. This indicates a strong correlation as the maximum correlation
yields to a r of 1.

39

5. Discussion

The results indicate that the used wearable including the IMU offers a great precision to
measure movements of the human body. The IMU angle measurement has an absolute
mean error of 3.478 °. The comparison with the ideal value of the encoder show almost
no offset regarding the angle value. The data suggest that the body movement in the
sub tasks is objectively measurable. Steps, turning, bending can be clearly seen in
the data plots and behave as predicted. The study demonstrates a strong correlation
between traditional MPPT and the digitized version with an r of 0.990.

The results met the expectations and even proofed almost perfect accuracy. This is
expected as the IMU BNOO55 is used in a lot of different projects and products and
known for the high accuracy and reliability.

These results build on existing evidence of the great use cases for digitalization in
patient assessment, training and rehabilitation. Those fields are of big importance and
the use of digitalization, sensors, and computer software deliver a lot of benefits to the
sectors.

It is beyond the scope of this study to focus on all available patient population groups.
The main focus is on joint fracture and joint replacement patients in the rehabilitation
center. Also the main focus of the MPPT are patients that are still able to follow simple
instructions and do those simple sub tasks.

Avenues for future research include the development of a test for patients with con-
ditions which prevent them from taking part in the MPPT. Such conditions could be if
they are bound to a wheelchair, or are not able to follow the instructions for the test
procedure. This would enable even more population groups to participate in patient
assessment.

40

6. Conclusion

This research aimed on the development of hardware and software to offer better pa-
tient assessment. It is shown that the project offers a fast, standardized and accurate
way of assessing the patient’s physical performance. The patient results can be com-
pared and progress can be tracked. The IMU angle measurement results are com-
parable to angle measurements of an encoder. The clinical study and the presented
correlation between traditional patient assessment and digital patient assessment show
further proof for this better patient assessment.

This digital approach of patient assessment is chosen as the traditional one has too
many downsides. The patient movements are not measured, there are human errors
involved and the procedure is no standardized. The digital version solves all those
problems. The use of an IMU offers a small form factor and accurate results. The
results of the digital MPPT match give a good overview over the physical abilities of a
patient and match with the expected results.

The clinical study was carried out mainly with joint fracture and joint replacement pa-
tients in the rehabilitation center. One option for further studies would be the test on
participants with Parkinson’s disease or stroke patients. They are also struggling in
daily life and the test would suit them perfectly. Another possibility would be the use of
the wearable for other approaches such as different medical assessment tests or the
use of sensors in combination with a VR headset for rehabilitation purposes.

The project shows that digitization in patient assessment brings many benefits and can
be used for a big variety of different patient population groups. The advantages for
the patient and rehabilitation worker are immense. The patient feedback is positive
and they feel encouraged by the feedback of the computer test in combination with the
Sensors.

41

Bibliography

[1] K. Berg, Ed., The Balance Scale: Responding to clinically meaningful changes.
CAN: Canadian Journal of Rehabilitation, 1997.

[2] E. M. Roos and L. S. Lohmander, The Knee injury and Osteoarthritis
Outcome Score (KOOS): from joint injury to osteoarthritis. Health and
quality of life outcomes 1, 2003, November 03. [Online]. Available: https:
//doi.org/10.1186/1477-7525-1-64 [Accessed: 2023, Aug 08]

[3] AbilityLab, Modified Physical =~ Performance Test. Chicago, IL,
2013. [Online]. Available: https://www.sralab.org/rehabilitation-measures/
modified-physical-performance-test [Accessed: 2022, Aug 03]

[4] H. S. C. of Tompkins County, Modified Physical Performance Scoring Sheet.
Ithaca, NY, 2021. [Online]. Available: https://hsctc.org/wp-content/uploads/2017/
07/Modified-Physical-Performance- Test.pdf [Accessed: 2022, Aug 03]

[5] V. Vasco et al., HR1 Robot: An Assistant for Healthcare Applications. Frontiers
in robotics and Al, 2022. [Online]. Available: https://doi.org/10.3389/frobt.2022.
813843 [Accessed: 2022, Mar 07]

[6] H. Uustal and E. Baerga, Eds., Physical Medicine and Rehabilitation Board Re-
view. NY, USA: Demos MedicalPublishing: New York, 2004.

[7] L. Ojeda et al., Estimating Stair Running Performance Using Inertial Sensors.
Basel, Switzerland, 2017. [Online]. Available: https://doi.org/10.3390/s17112647
[Accessed: 2022, Sep 03]

[8] J. D. Sui and T. S. Chang, Deep Gait Tracking With Inertial Measurement Unit.
Institute of Electronics, National Chiao Tung University, 2019. [Online]. Available:
https://arxiv.org/pdf/2205.04666.pdf [Accessed: 2022, Aug 03]

[9] VY. Zhang et al., “Can wearable devices and machine learning techniques be
used for recognizing and segmenting modified physical performance test items?”
IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 30, pp.
1776-1785, 2022.

[10] J. van den Helder et al., “A digitally supported home-based exercise training pro-
gram and dietary protein intervention for community dwelling older adults: protocol
of the cluster randomised controlled vitamin trial.” BMC Geriatrics, vol. 18, no. 183,
2018.

Vil

https://doi.org/10.1186/1477-7525-1-64
https://doi.org/10.1186/1477-7525-1-64
https://www.sralab.org/rehabilitation-measures/modified-physical-performance-test
https://www.sralab.org/rehabilitation-measures/modified-physical-performance-test
https://hsctc.org/wp-content/uploads/2017/07/Modified-Physical-Performance-Test.pdf
https://hsctc.org/wp-content/uploads/2017/07/Modified-Physical-Performance-Test.pdf
https://doi.org/10.3389/frobt.2022.813843
https://doi.org/10.3389/frobt.2022.813843
https://doi.org/10.3390/s17112647
https://arxiv.org/pdf/2205.04666.pdf

BIBLIOGRAPHY

[11] C. Harpham et al., “Co-creating a feasible, acceptable and safe home-based high-
intensity interval training programme for people with parkinson& rsquo;s: The
hiit-home4parkinson& rsquo;s study,” International Journal of Environmental Re-
search and Public Health, vol. 20, no. 9, 2023.

[12] van den Helder J. et al., “Bio-electrical impedance analysis: A valid assessment
tool for diagnosis of low appendicular lean mass in older adults?” Front. Nutr.,
vol. 9, 2022.

[13] Y. University, About Bulldog RepBox. Bulldog RepBox, 2018. [Online]. Available:
https://bulldogrepbox.com [Accessed: 2023, Mar 07]

[14] I. A. Faisal et al., “A review of accelerometer sensor and gyroscope sensor in imu
sensors on motion capture,” J. Eng. Appl. Sci, vol. 15, no. 3, pp. 826—829, 2019.

[15] A. Becker. (2023) Introduction to kalman filter. [Online]. Available: https:
/'www.kalmanfilter.net [Accessed: 2023, May 14]

[16] B. Sensortec, Datasheet BNO055. Bosch, 2023. [Online]. Avail-
able: https://www.bosch-sensortec.com/media/boschsensortec/downloads/
datasheets/bst-bno055-ds000.pdf [Accessed: 2023, Mar 07]

[17] K. Townsend, Adafruit BNO055 Absolute Orientation Sensor. Adafruit Industries,
2020. [Online]. Available: https://www.sigmaelectronica.net/wp-content/uploads/
2017/03/adafruit-bno055-absolute-orientation-sensor.pdf [Accessed: 2022, Mar
07]

[18] R. Mischianti, BNOQO055 for esp32, esp8266, and Arduino: wiring
and advanced Bosch library. blog of digital electronics and program-
ming, 2023. [Online]. Available: https://www.mischianti.org/2022/11/03/
bno055-for-esp32-esp8266-and-arduino-wiring-and-advanced-bosch-library-2/
[Accessed: 2022, Mar 09]

Vil

https://bulldogrepbox.com
https://www.kalmanfilter.net
https://www.kalmanfilter.net
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bno055-ds000.pdf
https://www.sigmaelectronica.net/wp-content/uploads/2017/03/adafruit-bno055-absolute-orientation-sensor.pdf
https://www.sigmaelectronica.net/wp-content/uploads/2017/03/adafruit-bno055-absolute-orientation-sensor.pdf
https://www.mischianti.org/2022/11/03/bno055-for-esp32-esp8266-and-arduino-wiring-and-advanced-bosch-library-2/
https://www.mischianti.org/2022/11/03/bno055-for-esp32-esp8266-and-arduino-wiring-and-advanced-bosch-library-2/

List of Figures

[2.1. Composition of the Modified Physical Performance Test| 4
2. YaleBalanceBoard 6
[2.3. Gaitcyclecomponents|. 6
[2.4. Yale Bulldog RepBox 7
25. YaleDotDrillmatl 8
[B.1. GUIoverview 11
B2, BNOOSS AXESl. -« « v o v vt e e e e e 12
[3.3. Wearable1leg| 14
[3.4. SubTask 1 Flowchart| 15
[3.5. SubTask2 Flowchart| 17
[38.6. SubTask3 Flowchartl 19
[3.7. SubTask4 Flowchart| 21
[3.8. Sub Task 5 and Sub Task 6 Flowchart| 23
[3.9. Sub Task 7 and Sub Task 8 Flowchart| 25
[3.10.Balance Game Interface 27
.11.ESP32 BN nnection 28
[3.12.Wearable Design 28
[3.13.Wearable wiring| L 29
[3.14.ESP32 Force Sensor Connection| 30
[3.15.Sole CAD Design|. 30
[3.16.Sole Box CAD Design| 31
l4.1. Weight Mount Force Sensor 32
|4.2. Experiment Comparison IMU Encoder 33
[4.3. Weight Sensor Value Distribution| 34
[4.4. Comparison IMU Encoder| 34
5. M red D Task 1l 35
4.6. Measured DataSubTask?2 35
7. M red D Task3 36
4.8. Measured DataSubTask4| 36
9. M red D Task 5 an Task6l 37
4.10.Measured Data Sub Task6and Sub Task 7] 37
[B.1. The normality analysis of the test scoresinSPSS.| XLII
[B.2. The Pearson Correlation analysis of the test scores in SPSS.| XL

List of Tables

List of Symbols

symbol

name

unit

q0prime
q1prime
q2prime
43prime
q0
q1
q2

q3
(8

B
gl

init. first quat. comp.
init. second quat. comp.
init. third quat. comp.
init. fourth quat. comp.
mod. first quat. comp.

mod. second quat. comp.

mod. third quat. comp.
mod. fourth quat. comp.
angle Alpha

angle Beta

angle Gamma

Qehestmaz Max. alpha angle chest
Behestmaz Max. beta angle chest
brrmean Mean left right bal. ratio

bremean. Mean front back bal. ratio

Xl

Abbreviations

MPPT
KOOS
IMU
MQTT
loT
CAD
TPU
PLA
IRB

Modified Physical Performance Test

Knee Injury and Osteoarthritis Outcome Score
Inertial Measurement Unit

Message Queuing Telemetry Transport
Internet of Things

Computer Aided Design

Thermoplastic Polyurethane

Polylactic Acid

Institutional Review Board

Xl

A. Code

A.1. Wearable IMU ESP32

#include <Wire.h> //Code used for IMU modules
#include <Adafruit_Sensor.h>

#include <Adafruit_BNO055.h>

#include <WiFi.h>

#include <PubSubClient.h>

#define ONBOARD_LED 13

//HHH R E A F A HHF When Msoquitto is running on your laptop ##########f4H###FFH##HH
#define AIO_SERVER "192.168.68.117" // your IP address

#define AIO_SERVERPORT 1883 // use 8883 for SSL

#define AIO_USERNAME "

#define AIO_KEY mn

J/ R HF When Msoquitto is running on your laptop ##########HHFFFHFFHFHEHE

1700 177777777771777/7/Definitions WIFI and MQTT////////////////]7//1/711771/1/171771771/17

const char+ ssid = "yale_wireless"; //"yale wireless"; //"HSC_Guest"; //"Mesh :)";
const charx password = ""; //"84LionSt";
const char* mgtt_Server = "broker.mgtt.cool";//or own PC AIO_SERVER; for own Mosquitto broker

const int mgttPort = 1883;

const char+ publishTopic = "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/1"; // make a unique topic for yourself -->
Topic ".../1" used for IMU1l, ".../2" for IMU2 etc.

const char+ subscribeTopic = "AAL_MCI_esp_Subscribe/WolfgangGrosek"; // make a unique topic for yourself

const char+ clientName = "AAL_MCI_esp_WolfgangGrosek_1"; // make a unique topic for yourself --> Client Name "..
_1" used for IMUl, ".._2" for IMU2 etc.

const charx mgttUser = "yourMQTTuser MCI_AAL_"; // for secure connection

const char* mgttPassword = "yourMQTTpasswordpass"; // for secure connection

WiFiClient espClient; // make the name unique
PubSubClient client (espClient);

///11117/7/7/7/7///////Definitions BNO and Calculation/////////////////////1/1//////]////

bool calib = false; //calibration status

float w = 0.0, x = 0.0, y = 0.0, z = 0.0, offset_x = 0.0, offset_y = 0.0, offset_z = 0.0;
uintl6_t BNOO0S55_SAMPLERATE_DELAY_MS = 10; //how often to read data from the board
uintl6_t PRINT_DELAY_MS = 500; // how often to print the data

uintl6_t printCount = 0; //counter to avoid printing every 10MS sample
// Check I2C device address and correct line below (by default address is 0x29 or 0x28)
// id, address

Adafruit_BNOO0S55 bno = Adafruit_BNO055(55, 0x28);

imu::Vector<3> v;

String angle_str;

////1/////////////Definitions for blink LED//////////////////////////////

// constants won’t change. Used here to set a pin number:

const int ledPin = ONBOARD_LED; // the number of the LED pin

// Variables will change:
int ledState = LOW; // ledState used to set the LED

// Generally, you should use "unsigned long" for variables that hold time
// The value will quickly become too large for an int to store

unsigned long previousMillis = 0; // will store last time LED was updated

// constants won’t change:
const long interval = 100; // interval at which to blink (milliseconds)

X1

66

71

76

81

86

91

96

101

106

111

116

121

126

131

136

141

APPENDIX A. CODE

N Nl

void setup(void)
{
Serial.begin(115200);
setup_wifi();
client.setServer (mgtt_Server, 1883);
//client.setCallback (callback) ;

while (!Serial) delay(10); // wait for serial port to open!
bno.begin (OPERATION_MODE_IMUPLUS); // set operation mode
if (!bno.begin())
{
Serial.print ("No_BNOO055_detected");
while (1);
}
bno.setMode (OPERATION_MODE_IMUPLUS) ;
pinMode (ONBOARD_LED, OUTPUT);
delay (1000);

void setup_wifi() {
delay (10);
// We start by connecting to a WiFi network
Serial.println();
Serial.print ("Connecting to");
Serial.println(ssid);

WiFi.begin (ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay (500);
Serial.print (".");

Serial.println("");

Serial.println("WiFi_connected");
Serial.println("IP_address:_");
Serial.println(WiFi.localIP()); // print your IP address

// constant mgtt connection
void reconnect () {
// Loop until we’re reconnected
while (!client.connected()) {
Serial.print ("Attempting MQTT_connection...");
// Attempt to connect
if (client.connect (clientName)) {
Serial.println("connected");
// Once connected, publish an announcement...
//client.publish (publishTopic, "Reconnected");
// ... and resubscribe
client.subscribe (subscribeTopic) ;

else {

Serial.print ("failed, rc=");

Serial.print (client.state());
Serial.println("_try_again_in_5_seconds");
// Wait 5 seconds before retrying

delay (5000);

void loop (void)
{
if (!client.connected()) {
reconnect () ;
}
client.loop();

unsigned long tStart = micros(); //count time

imu::Quaternion quat = bno.getQuat(); //get quaternions to describe orientation
imu::Vector<3> accel = bno.getVector (Adafruit_BNOO055::VECTOR_LINEARACCEL) ;

if (printCount % BNOOS55_SAMPLERATE_DELAY_MS >= PRINT_DELAY_MS)

//enough iterations have passed that we can print the latest data

displayCalStatus();
printCount = 0;

XV

146

151

156

161

166

171

176

181

186

191

196

201

206

1

APPENDIX A. CODE

}

else {
printCount = printCount + 1;
}
while ((micros() - tStart) <
{
//poll until the next sample is ready

angle_str = String(quat.w(), 4);

String angle_strl = String(quat.x(), 4);

String angle_str2 = String(quat.y(), 4);

String angle_str3 = String(quat.z(), 4);

String accel_strl = String(accel.x());

String accel_str2 = String(accel.y());

String accel_str3 = String(accel.z());

String string = angle_str + "," + angle_strl + ","

accel_str2 + "," + accel_str3;

char angle[string.length() + 1] = {0};

string.toCharArray (angle,
//Serial.println (angle);
//Seria
//seri
client.publish (publishTopic,
angle[0] = 0;

.println(string);

.println(angle);

angle, 4)

delay (50); //10ms ideal //

50ms

string.lengt

hQ

;i

+ 1)

(BNOO55_SAMPLERATE_DELAY_MS = 1000))

//converting long to a string

+ angle_str2 + "," + angle_str3 + ",

because of clinic

2 -

/%
Display sensor calibration status
*/

2 -

void

{

displayCalStatus (void)

/* Get the four calibration values (0..3) =x/
/* Any sensor data reporting 0 should be ignored, =*/
/+ 3 means ’fully calibrated" */
uint8_t system, gyro, accel, mag;
system = gyro = accel = mag = 0;
bno.getCalibration (&system, &gyro, &accel, &mag);
if (system » gyro x accel * mag == 81) //used to determine full calibration --> calib ==
{
unsigned long currentMillis = millis();
calib = true;
if (currentMillis - previousMillis >= interval) {

// save the last

previousMillis = currentMillis;
// if the LED is off turn it on and
if (ledState == LOW) {
ledState = HIGH;
} else {
ledState = LOW;

}

// set the LED with the ledState of

digitalWrite (ledPin, ledState);

time you blinked the LED

vice-versa:

the variable:

A.2. Force Sensor ESP32

#include <Wire.h>

#include <Adafruit_Sensor.h>
<WiFi.h>

<PubSubClient.h>

#include
#include

Aiidsisssdisasisssdssi
#define AIO_SERVER
#define AIO_SERVERPORT
#define AIO_USERNAME

"192.168.68.117"
1883

"

//Code

used for balance module

When Msoquitto is running on your laptop ##############ftH#####ES

// address

//

your IP

use 8883 for SSL

XV

+ accel_strl + ", " +

//packaging up the data to publish to mgtt whoa...

true —--> LED blink

21

26

31

36

41

46

51

56

61

66

71

81

86

APPENDIX A. CODE

#define AIO_KEY "
//#iddhER A FAAS When Msoguitto is running on your laptop ########FFFFFFFFFFFFFFa4

/17117 7777777/77/7/7/77////Definitions WIFI and MQTT///

const char+ ssid = "yale_wireless"; //"yale wireless"; //"HSC_Guest™";
const char+ password = ""
const char* mgtt_Server = "broker.mgtt.cool";//or own PC AIO_SERVER; for own Mosquitto broker

const int mgttPort = 1883;

const char+ publishTopic = "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/5"; // make a unique topic for yourself -->
Topic ".../5" used for sole sensors

const char+ subscribeTopic = "AAL_MCI_esp_Subscribe/WolfgangGrosek"; // make a unique topic for yourself

const char+ clientName = "AAL_MCI_esp_WolfgangGrosek_5"; // make a unique topic for yourself --> Client Name "..
_5" used for sole sensors

const charx mgttUser = "yourMQTTuser_ MCI_AAL_"; // for secure connection

const char+ mgttPassword = "yourMQTTpasswordpass"; // for secure connection

WiFiClient espClient; // make the name unique
PubSubClient client (espClient);

///11777/77//7/7///////Definitions BNO and Calculation/////////////////////1/////////1/]/

bool calib = false; //calibration status

float sensorValuel;

float sensorValue2;

float sensorValue3;

float sensorValued;

uint1l6_t BNOOS55_SAMPLERATE_DELAY_MS = 10; //how often to read data from the board
uint1l6_t PRINT_DELAY_MS = 500; // how often to print the data

uintl6_t printCount = 0; //counter to avoid printing every 10MS sample

uintl6_t zahler = 0; // used to count how often loop was executed after calib

String angle_str;

void setup(void)
{
Serial.begin(115200);
setup_wifi();
client.setServer (mgtt_Server, 1883);
//client.setCallback (callback) ;

void setup_wifi() {
delay (10);
// We start by connecting to a WiFi network
Serial.println();
Serial.print ("Connecting_to");
Serial.println(ssid);

WiFi.begin (ssid, password);

while (WiFi.status() != WL_CONNECTED) {
delay (500);
Serial.print (".");

}

Serial.println("");

Serial.println("WiFi_connected");
Serial.println("IP_address:_");
Serial.println(WiFi.localIP()); // print your IP address

// constant mgtt connection
void reconnect () {
// Loop until we’re reconnected
while (!client.connected()) {
Serial.print ("Attempting MQTT_connection...");
// Attempt to connect
if (client.connect (clientName)) {
Serial.println("connected");
// Once connected, publish an announcement...
//client.publish (publishTopic, "Reconnected");
// ... and resubscribe
client.subscribe (subscribeTopic) ;

else {
Serial.print ("failed, rc=");

Serial.print (client.state());

XVI

91

96

101

106

111

116

121

126

IS

24

29

34

39

APPENDIX A. CODE

Serial.println(" _try_again_in_5_seconds");

t 5 seconds be

/ e retrying
delay (5000);

oid loop(void) //used to measure sensor value to 4 and senc

{
//RIGHT E

sensorValue2
sensorValuel

//RIGHT F

)OT

sensorValue4

sensorValue3

if (!client.connected()) {
reconnect () ;
}

client.loop();

angle_str = String(sensorValuel); //converting float to a strin

ring angle_strl = String(sensorValue2);

String angle_str2 = g (sensorvalue3) ;

String angle_str3 = ¢ sensorValued) ;

String string = angle_str + "," + angle_strl + "," + angle_str2 + "," + angle_str3;
char angle[string.length() + 1] = {0};
string.toCharAz /(angle, string.length() + 1); // ing th 1b

client.publish (publishTopic, angle, 4);
angle[0] = 0;

/empty char

y(50); //50ms time delay sufficent

A.3. MPPT Software

import random #import libraries

import time

import math

import matplotlib.pyplot as plt

import matplotlib.animation as animation
import tkinter as tk

from matplotlib import style
from paho.mqtt import client as mqtt_client

broker = ’'broker.mqtt.cool’ #define broker and port for mqtt
port = 1883
topic = "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/1"

topiclt = "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/2"
topic2 = "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/3"
topic3 = "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/4"
topic4 = "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/5"

Generate a Client ID with the subscribe prefix.
client_id = f’subscribe -{random.randint(0,_100)}"’
username = ’emqx’

password = 'public’

T1_IMU1AngleX =[]
T1_IMU1AngleY =[]
T1_IMU1AngleZ =[]
T1_IMU1AccX =[]
T1_IMU1AccY =[]
T1_IMU1AceZ =[]
T1_IMU1Time =[]

T1_IMU2AngleX =[]
T1_IMU2AngleY =[]
T1_IMU2AngleZ =[]
T1_IMU2AccX =[]
T1_IMU2AccY =[]
T1_IMU2AccZ =[]
T1_IMU2Time =[]

XVl

#definition of list variables for each subtask T1-T8

#topics for each wearable/ESP32

44

49

54

59

64

69

74

79

84

89

94

99

104

109

114

1

9

APPENDIX A. CODE

T2_IMU1AngleX =[]
T2_IMU1AngleY =[]
T2_IMU1AngleZ =[]
T2_IMU1AccX =[]
T2_IMU1AceY =[]
T2_IMU1AceZ =[]
T2_IMU1Time =[]

T2_IMU2AngleX =[]
T2_IMU2AngleY =[]
T2_IMU2AngleZ =[]
T2_IMU2AccX =[]
T2_IMU2AccY =[]
T2_IMU2AccZ =[]
T2_IMU2Time =[]

T3_IMU1AngleX =[]
T3_IMU1AngleY =[]
T3_IMU1AngleZ =[]
T3_IMU1AccX =[]
T3_IMU1AccY =[]
T3_IMU1AceZ =[]
T3_IMU1Time =[]

T4_IMU1AngleX =[]
T4_IMU1AngleY =[]
T4_IMU1AngleZ =[]
T4_IMU1AccX =[]
T4_IMU1AccY =[]
T4_IMU1AceZ =[]
T4_IMU1Time =[]

T4_IMU2AngleX =[]
T4_IMU2AngleY =[]
T4_IMU2AngleZ =[]
T4_IMU2AccX =[]
T4_IMU2AccY =[]
T4_IMU2AceZ =[]
T4_IMU2Time =[]

T5_IMU1AngleX =[]
T5_IMU1AngleY =[]
T5_IMU1AngleZ =[]
T5_IMU1AccX =[]
T5_IMU1AccY =[]
T5_IMU1AceZ =[]
T5_IMU1Time =[]

T6_IMU1AngleX =[]
T6_IMU1AngleY =[]
T6_IMU1AngleZ =[]
T6_IMU1AccX =[]
T6_IMU1AccY =[]
T6_IMU1AceZ =[]
T6_IMU1Time =[]

T7_Sensori =[]
T7_Sensor2=[]
T7_Sensor3=[]
T7_Sensor4 =[]
T7_Time =[]

T8_Sensorl =[]
T8_Sensor2 =[]
T8_Sensor3=[]
T8_Sensor4 =[]
T8_Time=[]

_MESSAGE = {'TOPIC": " "}
_SUBTASK = {'TASK’: " "}
_NEW = {'NEW’: True}

#MPPT subtask 1:
_T1_TIME = {’STARTTIME’: 0.0, 'ENDTIME’: 0.0}
_T1_SCORE = { 'BALANCE’: 0.0, ’'SCORE’: 0.0}

_T1_LEFT_CALIB = {'CALIB’: False, 'X’: 0.0, 'Y': 0.0, 'Z’: 0.0}

_T1_LEFT_STEP = {’'INSTEP’: False, 'STEP’: 0}
_T1_LEFT_TIME = {’STEPTIME’: 0.0, 'STARTSTEP’: 0.0}

XV

#definition of variables for each subtask T1-T8

124

129

134

139

144

149

154

159

164

169

174

179

184

189

194

199

APPENDIX A. CODE

_T1_RIGHT_CALIB = {'CALIB': False, 'X': 0.0, 'Y': 0.0, 'Z’: 0.0}
_T1_RIGHT_STEP = {’INSTEP’: False, 'STEP’: 0}
_T1_RIGHT_TIME = {’'STEPTIME': 0.0, ’'STARTSTEP’': 0.0}

#MPPT subtask 2:
_T2_TIME = {’STARTTIME’: 0.0, 'ENDTIME’: 0.0}
_T2_SCORE = {’'BALANCE’: 0.0, 'SCORE’': 0.0}

_T2_LEFT_CALIB = {'CALIB’: False, 'X’: 0.0, 'Y': 0.0, 'Z’: 0.0}
_T2 LEFT_STEP = {’INSTEP’: False, 'STEP’: 0}
_T2 _LEFT_TIME = {’STEPTIME’: 0.0, 'STARTSTEP’: 0.0}

_T2 RIGHT_CALIB = {'CALIB’: False, 'X’': 0.0, 'Y': 0.0, 'Z’: 0.0}
_T2 RIGHT_STEP = {’INSTEP’: False, 'STEP’: 0}
_T2_RIGHT_TIME = {’STEPTIME': 0.0, ’'STARTSTEP’: 0.0}

#MPPT subtask 3:

_T3_TIME = {’STARTTIME': 0.0, 'ENDTIME’': 0.0}
T3 TURN = {'MOTION’: False, 'X’: 0.0, 'Y’: 0.0}
_T3 SCORE = {'BALANCE’: 0.0, 'SCORE’: 0.0}

_T3 CHEST_CALIB = {°'CALIB’: False, 'X’: 0.0, 'Y’: 0.0, 'Z’: 0.0}
_T3_CHEST_STEP = {’INSTEP’: False, 'STEP’: 0}
_T3 CHEST_TIME = {’STEPTIME’: 0.0, 'STARTSTEP’: 0.0}

#MPPT subtask 4:
T4 TIME = {’STARTTIME’: 0.0, 'ENDTIME’: 0.0}
_T4 SCORE = { 'BALANCE’: 0.0, 'SCORE’': 0.0}

_T4_TILT = {"X’: 0.0, 'Y’: 0.0}
_T4 CHEST _CALIB = {'CALIB’: False, 'X’': 0.0, 'Y': 0.0, 'Z’: 0.0}

_T4 RIGHT_CALIB = {'CALIB': False, 'X’': 0.0, 'Y': 0.0, 'Z’: 0.0}
_T4 RIGHT_STEP = {’INSTEP’: False, 'STEP’: 0}
_T4_RIGHT_TIME = {’STEPTIME': 0.0, ’'STARTSTEP’: 0.0}

#MPPT subtask 5:

_T5_TIME = {’STARTTIME': 0.0, 'ENDTIME': 0.0}
_T5_ACC = {'MEANACC': 0.0, 'COUNT': 0}

_T5 SCORE = { 'BALANCE’: 0.0, 'SCORE’': 0.0}

_T5 OBJECT_CALIB = {'CALIB’: False, 'X': 0.0, 'Y': 0.0, 'Z’: 0.0}
_T5_OBJECT_STEP = {’INSTEP': False, 'STEP’: 0}
_T5_OBJECT_TIME = {’'STEPTIME’: 0.0, 'STARTSTEP’: 0.0}

#MPPT subtask 6:

_T6_TIME = {’STARTTIME’: 0.0, 'ENDTIME’: 0.0}
_T6_ACC = {'MEANACC': 0.0, 'COUNT’: 0}
_T6_SCORE = { 'BALANCE’: 0.0, 'SCORE’: 0.0}

_T6_OBJECT_CALIB = {'CALIB’: False, 'X’: 0.0, 'Y’: 0.0, 'Z’: 0.0}
_T6_OBJECT_STEP = {’INSTEP': False, 'STEP’: 0}
_T6_OBJECT_TIME = {’'STEPTIME’: 0.0, 'STARTSTEP': 0.0}

#MPPT subtask 7:

_T7_TIME = {’STARTTIME': 0.0, 'ENDTIME’: 0.0}
_T7_BALANCE = {'LR’: 0.0, 'FB’: 0.0}

T7 MEAN = {'LR': 0.0, 'FB’: 0.0, 'COUNT': 0}
_T7_CALIB = {'CALIB’: False}

_T7_SCORE = {'SCORE’: 0.0}

#MPPT subtask 8:

_T8_TIME = {’STARTTIME’: 0.0, 'ENDTIME’: 0.0}

_T8 BALANCE = {’'LR’: 0.0}

_T8 MEAN = {'LR’: 0.0, 'FB’: 0.0, 'COUNT': 0}

_T8_CALIB = {'CALIB’: False}

_T8 SCORE = {’SCORE’: 0.0}

#MPPT Total : #General var definitions for total test
_SCORE = {’'SCORE’: 0.0}

_TIME = {’STARTTIME’: 0.0}

def connect_mqtt() —> mqtt_client: #connect to maqtt
def on_connect(client, userdata, flags, rc):
if rc == 0:
print ("Connected_to MQTT_Broker!")
else:
print("Failed _to_connect, _return_code %d\n", rc)

client = mqtt_client.Client(client_id)

XIX

204

209

214

219

224

229

234

239

244

249

254

259

264

269

274

279

284

APPENDIX A. CODE

de

-

def

def

def

client.username_pw_set(username, password)
client.on_connect = on_connect
client.connect(broker, port)

return client

subscribe (client: mqtt_client):

#subscribe to different clients and define

def on_message(client, userdata, msg): #what happens if message is received (subtask and wearable number)

#print (f"Received ‘{msg.payload.decode()}‘ from ‘{msg.topic}‘ topic")

_MESSAGE['TOPIC’] = {msg.topic}

if _MESSAGE['TOPIC’] == {’'AAL_MCI_esp_Publish_Poti/WolfgangGrosek/1 '} and
T1Leftfoot(msg)

_SUBTASK['TASK"] == {'T1'}:

if _MESSAGE['TOPIC’] == { AAL_MCI_esp_Publish_Poti/WolfgangGrosek/2 '} and _SUBTASK['TASK'] == {'T1’}:
T1Rightfoot (msg)
if _MESSAGE['TOPIC’] == {'AAL_MCI_esp_Publish_Poti/WolfgangGrosek/1 '} and _SUBTASK['TASK'] == {'T2’}:
T2Leftfoot (msg)
if _MESSAGE['TOPIC’] == {'AAL_MCI_esp_Publish_Poti/WolfgangGrosek/2 '} and _SUBTASK['TASK'] == {'T2’}:
T2Rightfoot (msg)
if MESSAGE['TOPIC’] == {’'AAL_MCI_esp_Publish_Poti/WolfgangGrosek/3 '} and _SUBTASK['TASK'] == {’'T3'}:
T3Chest(msg)
if _MESSAGE['TOPIC’] == { AAL_MCI_esp_Publish_Poti/WolfgangGrosek/1 '} and _SUBTASK['TASK'] == {'T4’}:
T4Rightfoot (msg)
if _MESSAGE['TOPIC’] == {’AAL_MCI_esp_Publish_Poti/WolfgangGrosek/3 '} and _SUBTASK['TASK’'] == {’'T4’}:
T4Chest(msg)
if _MESSAGE['TOPIC’] == { AAL_MCI_esp_Publish_Poti/WolfgangGrosek/4 '} and _SUBTASK['TASK'] == {'T5"}:
T50bject (msg)
if _MESSAGE['TOPIC’] == {’'AAL_MCI_esp_Publish_Poti/WolfgangGrosek/4 '} and _SUBTASK['TASK'] == {’'T6’}:
T60bject (msg)
if _MESSAGE['TOPIC’] == { AAL_MCI_esp_Publish_Poti/WolfgangGrosek/5 '} and _SUBTASK['TASK'] == {'T7’}:
T7Balance (msg)
if _MESSAGE['TOPIC’] == {’'AAL_MCI_esp_Publish_Poti/WolfgangGrosek/5'} and _SUBTASK['TASK'] == {’'T8'}:
T8Balance (msg)
client.subscribe (topic) #subscribe to topics for each wearable
client.subscribe (topic1)
client.subscribe (topic2)
client.subscribe (topic3)
client.subscribe (topic4)
client.on_message = on_message
calibration () : #needed to define zero angle position/start position
_T2_LEFT_CALIB['CALIB’] = True
print("Calibrated")
rotatequa (qOprime, giprime, g2prime, g3prime, axis): #needed if wearable is attached different as original
#coordinate system
if axis ==
q0 = (math.sqrt(2)/2) « qOprime - (math.sqrt(2)/2) = qlprime;#rotate about x
ql = (math.sqrt(2)/2) = giprime + (math.sqrt(2)/2) = qOprime;
g2 = (math.sqrt(2)/2) = g2prime + (math.sqrt(2)/2) = q3prime;
g3 = (math.sqrt(2)/2) » g3prime — (math.sqrt(2)/2) = q2prime;
if axis == 1:
q0 = (math.sqrt(2)/2) = qOprime - (math.sqrt(2)/2) = g2prime;#rotate about y
ql = (math.sqrt(2)/2) » gliprime - (math.sqrt(2)/2) = q3prime;
g2 = (math.sqrt(2)/2) = g2prime + (math.sqrt(2)/2) = qOprime;
g3 = (math.sqrt(2)/2) = g3prime + (math.sqrt(2)/2) = qlprime;
if axis == 2:
g0 = (math.sqrt(2)/2) « qOprime - (math.sqrt(2)/2) = q3prime;#rotate about z
ql = (math.sqrt(2)/2) = giprime + (math.sqrt(2)/2) = qg2prime;
g2 = (math.sqrt(2)/2) = g2prime - (math.sqrt(2)/2) « qlprime;
g3 = (math.sqrt(2)/2) = g3prime + (math.sqrt(2)/2) = qOprime;
phi = (360/(2+3.141592653)) «math.atan2(2«(q0+q1+92+q3) ,1-2+(q1+q1+g2+q2)); #quat to euler angle
if (2+(q0+92-g3+q1)) <-1: theta = (360/(2+3.141592653))+math.asin(-1)
elif (2+(q0+g2-g3+q1)) >1: theta = (360/(2+3.141592653))«math.asin (1)
else: theta = (360/(2+3.141592653))«math.asin(2+(q0+g2-93+ql));
chi = (360/(2+«3.141592653)) »math.atan2(2+(q0+q3+q1+g2) ,1-2+(q2+«q2+93+q3)) ;
return phi, theta, chi;
T1lLeftfoot(msg) : #Subtask1 wearable left foot
if _T2 LEFT_CALIB['CALIB’] ==True: #only start if wearable calibrated
temp = list (map(float, msg.payload.decode().split(","))) #split string to individual values

XX

289

294

304

309

314

324

334

339

344

349

354

359

APPENDIX A. CODE

if len(temp)==7: #make sure number of elements is 7

temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3], O) #rotation and quat to
euler angles

temp[0]=temp[0]-_T1_LEFT_CALIB['X’] #actual value is angle minus offset

temp[1]=temp[1]-_T1_LEFT_CALIB['Y’]

temp[2]=temp[2]-_T1_LEFT_CALIB['Z’]

if _T1_LEFT_CALIB[’'X’] == 0.0: #used to define offset with first run
_T1_LEFT_CALIB['X’] = temp[O0];
_T1_LEFT_CALIB['Y’] = temp[1];
_T1_LEFT_CALIB['Z’] = temp[2];
_TIME['STARTTIME ']=time . time ()

else:
T1_IMU1AngleX.append(temp[0]) #starting from second run, no offset needed because already defined
T1_IMU1AngleY . append (temp[1])
T1_IMU1AngleZ . append (temp[2])

T1_IMU1AccX. append (temp[4])
T1_IMU1AccY . append (temp[5])
T1_IMU1AccZ . append (temp[6])
T1_IMU1Time.append(time.time ()-_TIME['STARTTIME’]) #define current time stamp

#print(f"Angle: {temp[1]}")

if (temp[4] > 2.5) and (_T1_LEFT_STEP ['INSTEP'] == False) and (temp[1] > 10.0): #in step movement
_T1_LEFT_STEP [’INSTEP’] = True
_T1_LEFT_TIME['STARTSTEP’] = time.time ()
if (_T1_LEFT_STEP [’'STEP’] == 0) and (_T1_TIME['STARTTIME'] == 0.0): #starttime definition
_T1_TIME[*STARTTIME’] = time .time ()

if (temp[4] > -0.4) and (_T1_LEFT_STEP [’INSTEP’] == True) and (temp[1] < 6.0): #step is over
_T1_LEFT_STEP [’INSTEP'] = False
_T1_LEFT_STEP ['STEP’] += 1 #increase step counter
print(f"Left_Steps: { T1_LEFT_STEP_['STEP’]}")
_T1_LEFT_TIME['STEPTIME'] = _T1_LEFT_TIME['STEPTIME'] + (time.time() - _T1_LEFT_TIME[STARTSTEP'])
#calc time foot in air

if _T1_LEFT_STEP [’'STEP’] + _T1_RIGHT_STEP [’'STEP’] == 10: #if 10 steps detected finish calculations
and save to file, go to next subtask
_T1_TIME['ENDTIME'] = time.time () - _T1_TIME[STARTTIME'] #calc of total time for 10 steps

print ()

print(f"TotalTime:_{_T1_TIME[ENDTIME ']} ")

#print(f"StepTime: {_T1_LEFT_TIME[STEPTIME ']}")

print (f"TimeonFoot_Left: { T1_TIME['ENDTIME'] _-_ _T1_LEFT_TIME[STEPTIME']}")

print (f"TimeonFoot_Right:_{_T1_TIME[ENDTIVE '] _—___T1_RIGHT_TIME['STEPTIME ']} ")

if _T1_TIME[ENDTIME'] <= 8.0: #define score for time
_T1_SCORE['SCORE’] = 100

elif _T1_TIME[’ENDTIME'] > 8.0 and _T1_TIME[ENDTIME'] <= 10.5:
_T1_SCORE['SCORE’] = 75

elif _T1_TIME['ENDTIME’] > 10.5 and _T1_TIME['ENDTIME’'] <= 13:
_T1_SCORE['SCORE’] = 50

elif _T1_TIME[’ENDTIME'] > 13.0:
_T1_SCORE['SCORE’] = 25

#define score for L/R balance:
Balance = 100 - abs ((((_T1_TIME['ENDTIME’] - _T1_LEFT_TIME['STEPTIME']) /(_T1_TIME['ENDTIME'] -
_T1_RIGHT_TIME['STEPTIME'])) -1)«100)
if Balance < 25:
Balance = 25

_T1_SCORE['BALANCE’] = Balance
_T1_SCORE['SCORE’] = (_T1_SCORE['SCORE’] « 0.75) + (Balance » 0.25) #total T1 score

print (f"Balance: _{Balance}")
print(f"Score:_{ T1_SCORE['SCORE’]}")

with open(’MPPTResults. txt’, ’a’) as f: #save to text file
f.write (’\n_New_Patient!!!!\n")
f.write ('Test1:")

f.write (’\n_T1_IMU1AngleX:\n")

for line in T1_IMU1AngleX:
f.write(str(line))
fowrite(’,")

f.write (’\n_T1_IMU1AngleY:\n")

for line in T1_IMU1AngleY:
f.write(str(line))

XXI

364

369

374

379

384

389

399

404

409

414

419

424

429

434

439

444

APPENDIX A. CODE

f.owrite(’,’)

f.write (’\n_T1_IMU1AngleZ:\n")

for line in T1_IMU1AngleZ:
f.write(str(line))
f.owrite(’,")

f.write ("\n_T1_IMU1AccX:\n")

for line in T1_IMU1AccX:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T1_IMU1AccY:\n")

for line in T1_IMU1AccY:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T1_IMU1AccZ:\n")

for line in T1_IMU1AccZ:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T1_IMU1Time:

for line in T1_IMU1Time:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T1_IMU2AngleX:\n")

for line in T1_IMU2AngleX:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T1_IMU2AngleY :\n")

for line in T1_IMU2AngleY:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T1_IMU2AngleZ:\n")

for line in T1_IMU2AngleZ:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T1_IMU2AccX:\n")

for line in T1_IMU2AccX:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T1_IMU2AccY :\n")

for line in T1_IMU2AccY:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T1_IMU2AccZ:\n")

for line in T1_IMU2AccZ:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T1_IMU2Time :

for line in T1_IMU2Time:
f.write(str(line))
f.owrite(’,”)

=

n’)

=

n’)

f.write ("\n_Total_Time_" + str(_T1_TIME['ENDTIME']))
f.write ("\n_Balance " + str(Balance))
f.write ("\n_Score_" + str(_T1_SCORE['SCORE’]))

print (f"Subtask_T2:_Walking_Stairs") #go to next task
_T2_LEFT_CALIB['CALIB’] = False

_SUBTASK['TASK’] = {'T2"}

_NEW['NEW’] = {True}

def T1Rightfoot(msg): #Subtask1 wearable right foot
if _T2_LEFT_CALIB['CALIB’] ==True:

temp = list(map(float, msg.payload.decode().split(",")))

if len(temp)==7:
temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3],
temp[0]=temp[0]-_T1_RIGHT_CALIB['X"]
temp[1]=temp[1]-_T1_RIGHT_CALIB['Y’]
temp[2]=temp[2]-_T1_RIGHT_CALIB['Z’]

if _T1_RIGHT_CALIB['X’] == 0.0:
_T1_RIGHT_CALIB['X’] = temp[0];
_T1_RIGHT_CALIB['Y’] = temp[1];
_T1_RIGHT_CALIB['Z’] = temp[2];
_TIME['STARTTIME ' |=time . time ()

XX

0)

449

454

459

464

469

474

479

484

489

494

499

504

509

514

519

524

APPENDIX A. CODE

else:
T1_IMU2AngleX .append(temp[0])
T1_IMU2AngleY .append(temp[1])
T1_IMU2AngleZ . append (temp[2])

T1_IMU2AccX . append (temp[4])
T1_IMU2AccY . append (temp[5])
T1_IMU2AccZ . append (temp[6])
T1_IMU2Time . append(time . time ()-_TIME['STARTTIME])

#print (f"ACC: {temp[4]}")

if (temp[4] > 2.5) and (_T1_RIGHT_STEP [’INSTEP’] == False) and (temp[1] > 10.0):
#print(f"UP")
#print(f"Ang: {temp[1]}")
#print(f"acc: {temp[4]}")
_T1_RIGHT_STEP [’INSTEP’] = True
_T1_RIGHT_TIME['STARTSTEP’] = time.time ()
if (_T1_RIGHT_STEP ['STEP’] == 0) and (_T1_TIME['STARTTIME'] == 0.0):
_T1_TIME['STARTTIME’] = time.time ()

if (temp[4] > -0.4) and (_T1_RIGHT_STEP [’INSTEP’] == True) and (temp[1] < 6.0):
#print (f"DOAN")
_T1_RIGHT_STEP [’'INSTEP’] = False
_T1_RIGHT_STEP ['STEP’'] += 1
print (f"Right_Steps: {_T1_RIGHT_STEP_['STEP']}")
_T1_RIGHT_TIME['STEPTIME’] = _T1_RIGHT_TIME['STEPTIME'] + (time.time() - _T1_RIGHT_TIME[STARTSTEP’
1

if _T1_LEFT_STEP ['STEP'] + _T1_RIGHT_STEP ['STEP'] == 10:
_T1_TIME[’ENDTIME’] = time.time () - _T1_TIME['STARTTIME]

print ()

print(f"TotalTime:_{_T1_TIME[ENDTIME ']} ")

#print (f"StepTime: {_T1_LEFT_TIME['STEPTIME ']}")

print(f"TimeonFoot_Left: {_T1_TIME[ENDTIME']_-_ . T1_LEFT_TIME[STEPTIME ']}")
print (f"TimeonFoot_Right:_{_T1_TIME['ENDTIME']_-___T1_RIGHT_TIME['STEPTIME ']} ")

if _T1_TIME[ENDTIME’] <= 8.0:
_T1_SCORE['SCORE’] = 100

elif _T1_TIME[ENDTIME'] > 8.0 and _T1_TIME['ENDTIME'] <= 10.5:
_T1_SCORE['SCORE’] = 75

elif _T1_TIME[’ENDTIME’] > 10.5 and _T1_TIME['ENDTIME’] <= 13:
_T1_SCORE['SCORE’] = 50

elif _T1_TIME[ENDTIME'] > 13.0:
_T1_SCORE['SCORE’] = 25

Balance = 100 - abs ((((_T1_TIME[ENDTIME’] - _T1_LEFT_TIME[STEPTIME']) /(_T1_TIME['ENDTIME'] -
_T1_RIGHT_TIME['STEPTIME’])) -1)«100)
if Balance < 25:
Balance = 25

_T1_SCORE[BALANCE’] = Balance
_T1_SCORE[’SOORE’] = (_T1_SCORE[’SCORE’] + 0.75) + (Balance » 0.25)

print (f"Balance:_{Balance}")
print(f"Score: {_T1_SCORE[’SCORE’]}")

with open(’MPPTResults.txt’, ’a’) as f:
f.write (’\n_New_Patient!!!!\n")
f.write(’'Testl:’)

f.write (’\n_T1_IMU1AngleX:\n")

for line in T1_IMU1AngleX:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T1_IMU1AngleY:\n")

for line in T1_IMU1AngleY:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T1_IMU1AngleZ:\n")

for line in T1_IMU1AngleZ:
f.write(str(line))
fowrite(’,")

f.write (’\n_T1_IMU1AccX:\n")

for line in T1_IMU1AccX:
f.write(str(line))
fowrite(’,”)

f.write ("\n_T1_IMU1AccY:\n")

XX

529

534

539

544

549

554

559

569

574

579

589

594

599

APPENDIX A. CODE

print (f"Subtask_T2:_Walking_Stairs")
_T2 LEFT_CALIB['CALIB’] = False

for line in T1_IMU1AccY:
f.write (str(line))
f.write(’,")

f.write (’\n_T1_IMU1AccZ:\n")

for line in T1_IMU1AccZ:
f.write (str(line))
fowrite(’,")

f.write ("\n_T1_IMU1Time:\n")

for line in T1_IMU1Time:
f.write(str(line))
f.write(’,")

f.write (’\n_T1_IMU2AngleX:\n")

for line in T1_IMU2AngleX:
f.write (str(line))
f.write(’,")

f.write (’\n_T1_IMU2AngleY :\n")

for line in T1_IMU2AngleY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T1_IMU2AngleZ:\n")

for line in T1_IMU2AngleZ:
f.write (str(line))
f.write(’,")

f.write ("\n_T1_IMU2AccX:\n")

for line in T1_IMU2AccX:
f.write (str(line))
f.write(’,")

f.write ("\n_T1_IMU2AccY :\n")

for line in T1_IMU2AccY:
f.write (str(line))
fowrite(’,")

f.write (’\n_T1_IMU2AccZ:\n")

for line in T1_IMU2AccZ:
f.write (str(line))
fowrite(’,")

f.write (’\n_T1_IMU2Time:\n")

for line in T1_IMU2Time:
f.write (str(line))
f.write(’,")

f.write ("\n_Total_Time_" + str(_T1_TIME[ENDTIME’]))

f.write ("\n_Balance_" + str(Balance))

f.write ("\n_Score_" + str(_T1_SCORE['SCORE’]))

_SUBTASK['TASK'] = {’T2’}
_NEW['NEW’] = {True}

def T2Leftfoot(msg):

#Subtask2 wearable left foot,

if _T2 LEFT_CALIB['CALIB’] ==True:

temp = list(map(float, msg.payload.decode().split(",

if len(temp)

temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3],
temp[0]=temp[0]-_T2_LEFT_CALIB['X"]
temp[1]=temp[1]-_T2_LEFT_CALIB['Y’]
temp[2]=temp[2]-_T2_LEFT_CALIB['Z’]

if _T2 LEFT_CALIB['X'] == 0.0:
_T2_LEFT_CALIB[’'X’] = temp[0];
_T2_LEFT_CALIB['Y'] = temp[1];

_T2_LEFT_CALIB['Z"]

temp[2];

_TIME['STARTTIME ']=time . time ()

else:

T2_IMU1AngleX. append (temp[0])
T2_IMU1AngleY .append(temp[1])
T2_IMU1AngleZ . append (temp[2])

T2_IMU1AccX . append (temp[4])

T2_IMU1AccY . append (temp[5])

T2_IMU1AccZ . append (temp[6])
(

T2_IMU1Time.

#print(f"Angle: {temp[1]}")

if (temp[5] > 1.

calculations similar to T1 with different values

XXIV

)))

append(time .time ()-_TIME['STARTTIME '])

0)

5) and (_T2_LEFT_STEP ['INSTEP’] == False) and (temp[1] < —10.0): #if (temp[4] < —-2.5)

APPENDIX A. CODE

and (_T2_LEFT_STEP [’'INSTEP’] == False) and (temp[1] < -10.0):
print (f"UP")
_T2_LEFT_STEP [’INSTEP'] = True
_T2_LEFT_TIME['STARTSTEP'] = time.time ()
if (_T2_LEFT_STEP ['STEP’'] == 0) and (_T2_TIME['STARTTIME'] == 0.0):
_T2 TIME['STARTTIME’] = time.time ()

if (temp[5] < 0.4) and (_T2 LEFT_STEP [’INSTEP’] == True) and (temp[1] > -6.0): #if (temp[4] > -0.4)
and (_T2_LEFT_STEP [’INSTEP’] == True) and (temp[1] > -6.0):
print (f"DOM")
_T2_LEFT_STEP [’INSTEP’] = False
_T2_LEFT_STEP ['STEP’] += 1
print(f"Left_Steps:_ {_T2 LEFT_STEP_['STEP’]}")
_T2 LEFT_TIME['STEPTIME’] = _T2 LEFT_TIME['STEPTIME’] + (time.time() - _T2_LEFT_TIME[STARTSTEP'])

if _T2 LEFT_STEP ['STEP'] + _T2 RIGHT STEP ['STEP']| == 4: #if _T2 LEFT_STEP ['STEP'] + _T2 RIGHT STEP
['STEP’] == 4: #if _T2 LEFT_STEP ['STEP'] == 4:
_T2_TIME[’ENDTIME’] = time.time () — _T2_TIME['STARTTIME’]

print ()

print(f"TotalTime:_{_T2_TIME[ENDTIME ']} ")

#print(f"StepTime: {_T2 LEFT_TIME['STEPTIME ']}")

print (f"TimeonFoot_Left: { T2 TIME['ENDTIME'] _-_ T2 LEFT_TIME[STEPTIME]}")

print (f"TimeonFoot_Right:_{_T2_TIME[ENDTIME '] _-___ T2 RIGHT_TIME['STEPTIME ']} ")

if _T2_TIME['ENDTIME’] <= 5.0:
_T2 SCORE['SCORE’] = 100

elif _T2 _TIME[’ENDTIME'] > 5.0 and _T2_TIME['ENDTIME’] <= 10:
_T2 SCORE['SCORE’] = 75

elif _T2 TIME['ENDTIME'] > 10 and _T2 _TIME['ENDTIME’] <= 15:
_T2 SCORE['SCORE’] = 50

elif _T2 TIME[’ENDTIME'] > 15.0:
_T2 SCORE['SCORE’] = 25

Balance = 100 - abs ((((_T2_TIME['ENDTIME’] - _T2_LEFT_TIME['STEPTIME']) /(_T2_TIME['ENDTIME'] -
_T2_RIGHT_TIME['STEPTIME'])) -1)«100)
if Balance < 25:
Balance = 25

_T2_SCORE[’BALANCE’] = Balance
_T2_SCORE['SCORE’] = (_T2_SCORE['SCORE’] + 0.75) + (Balance » 0.25)

print (f"Balance: _{Balance}")
print(f"Score:_{ T2 SCORE['SCORE']}")

with open(’'MPPTResults.txt’, 'a’) as f:
f.write(’\n_Test2:’)

f.write (’\n_T2_IMU1AngleX:\n")

for line in T2_IMU1AngleX:
f.write(str(line))
f.owrite(’,")

f.write (’\n_T2_IMU1AngleY:\n")

for line in T2_IMU1AngleY:
f.write(str(line))
f.owrite(’,’)

f.write (’\n_T2_IMU1AngleZ:\n")

for line in T2_IMU1AngleZ:
f.write(str(line))
f.owrite(’,’)

f.write (’\n_T2_IMU1AccX:\n")

for line in T2_IMU1AccX:
f.write(str(line))
f.owrite(’,”)

f.owrite ('\n_T2_IMU1AccY:\n")

for line in T2_IMU1AccY:
f.write(str(line))
f.owrite(’,")

f.write (’\n_T2_IMU1AccZ:\n")

for line in T2_IMU1AccZ:
f.write(str(line))
f.owrite(’,")

f.write (’\n_T2_IMU1Time:

for line in T2_IMU1Time:
f.write(str(line))
f.owrite(’,")

f.write (’\n_T2_IMU2AngleX:\n")

for line in T2_IMU2AngleX:
f.write(str(line))
f.owrite(’,”)

=

n’)

XXV

689

694

699

704

709

714

719

724

729

734

739

744

749

754

764

APPENDIX A. CODE

f.write (’\n_T2_IMU2AngleY :\n")

for line in T2_IMU2AngleY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2AngleZ:\n")

for line in T2_IMU2AngleZ:
f.write(str(line))
fowrite(’,”)

f.write (’\n_T2_IMU2AccX:\n")

for line in T2_IMU2AccX:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2AccY :\n")

for line in T2_IMU2AccY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2AccZ:\n")

for line in T2_IMU2AccZ:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2Time:\n")

for line in T2_IMU2Time:
f.write(str(line))
fowrite(’,")

f.write ("\n_Total_Time_" + str(_T2_TIME['ENDTIME']))
f.write ("\n_Balance_" + str(Balance))
f.write("\n_Score " + str(_T2 SCORE['SCORE’]))

print (f"Subtask _T3:_Turning _360_degree")
_T2_LEFT_CALIB['CALIB’] = False
_SUBTASK['TASK’] = {'T3"}

_NEW['NEW’] = {True}

def T2Rightfoot(msg):

if len(temp)==7:

#Subtask2 wearable right foot, calculations similar to T1 with different values
if _T2_LEFT_CALIB['CALIB’] ==True:
temp = list(map(float, msg.payload.decode().split(",")))

temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3], O0)
temp[0]=temp[0] -_T2_RIGHT_CALIB['X"]

temp[1]=temp[1]-_T2_RIGHT_CALIB['Y’]

temp[2]=temp[2] -_T2_RIGHT_CALIB[’'Z"]

#print(f"acc: {temp[4]}")

if _T2 RIGHT_CALIB[’'X’] == 0.0:
_T2_RIGHT_CALIB['X'] = temp[0];
_T2_RIGHT_CALIB['Y'] = temp[1];
_T2_RIGHT_CALIB['Z’] = temp[2];
_TIME[*STARTTIME’]=time . time ()

else:
T2_IMU2AngleX . append (temp[0])
T2_IMU2AngleY . append(temp[1])
T2_IMU2AngleZ . append (temp[2])

T2_IMU2AccX . append (temp[4])
T2_IMU2AccY . append (temp[5])
T2_IMU2AccZ . append (temp[6])
T2_IMU2Time . append (time . time () -_TIME['STARTTIME '])

#print (f"ACC: {temp[4]}")

if (temp[5] < -1.5) and (_T2 RIGHT_STEP [’INSTEP’] == False) and (temp[1] < -10.0): #if (temp[4] <
-2.5) and (_T2 LEFT _STEP [’'INSTEP’] == False) and (temp[1] < -10.0):
print(f"UPr")
#print(f"Ang: {temp[1]}")
#print(f"acc: {temp[4]}")
_T2 RIGHT_STEP [’INSTEP’] = True
_T2_RIGHT_TIME['STARTSTEP’] = time.time ()
if (_T2_RIGHT_STEP ['STEP’] == 0) and (_T2_TIME['STARTTIME'] == 0.0):
_T2_TIME['STARTTIME '] = time.time ()

if (temp[5] > -0.4) and (_T2 _RIGHT_STEP [’INSTEP’] == True) and (temp[1] > -6.0): #if (temp[4] > -0.4)
and (_T2_RIGHT_STEP [’INSTEP '] == True) and (temp[1] > -6.0):
print (f "DOAMN")
_T2 RIGHT_STEP [’INSTEP’] = False
_T2 RIGHT_STEP ['STEP’] += 1
print(f"Right_Steps:_{_T2 RIGHT_STEP_['STEP']}")
_T2_RIGHT_TIME['STEPTIME'] = _T2_RIGHT_TIME['STEPTIME'] + (time.time() - _T2_RIGHT_TIME['STARTSTEP’

XXVI

APPENDIX A. CODE

1

if _T2 LEFT _STEP ['STEP'] + _T2 RIGHT_STEP ['STEP’] == 4: #if _T2 LEFT_STEP ['STEP’] + _T2 RIGHT STEP
['STEP'] == 4: #if _T2 LEFT STEP ['STEP’] == 4:
_T2_TIME[’ENDTIME’] = time.time () — _T2_TIME['STARTTIME ']

print ()
print(f"TotalTime:_{_T2_TIME[ENDTIME ']} ")
#print (f"StepTime: {_T2_LEFT_TIME['STEPTIME ']} ")
print (f"TimeonFoot_Left: {_T2 TIME[ENDTIME '] _-_. T2 LEFT_TIME[STEPTIME ']} ")
print (f"TimeonFoot_Right: _{_T2 TIME[ENDTIME']_-_ . T2 RIGHT_TIME[STEPTIME ']} ")
if _T2_TIME['ENDTIME'] <= 5.0:
_T2 SCORE['SCORE’] = 100
elif _T2_TIME[’ENDTIME’] > 5.0 and _T2_TIME['ENDTIME’] <= 10:
_T2_SCORE['SCORE’'] = 75
elif _T2_TIME['ENDTIME'] > 10 and _T2_TIME[ENDTIME'] <= 15:
_T2 SCORE['SCORE’] = 50
elif _T2 TIME[’ENDTIME'] > 15.0:
_T2_SCORE['SCORE’'] = 25

Balance = 100 - abs ((((_T2_TIME['ENDTIME’] - _T2_LEFT_TIME['STEPTIME']) /(_T2_TIME['ENDTIME'] -
_T2_RIGHT_TIME['STEPTIME'])) -1)«100)
if Balance < 25:
Balance = 25

_T2 SCORE['BALANCE’] = Balance
T2 SCORE[SCORE’] = (_T2_SCORE['SCORE’] + 0.75) + (Balance + 0.25)

print (f"Balance: _{Balance}")
print (f"Score: _{_T2 SCORE['SCORE’]}")

with open(’MPPTResults. txt’, 'a’) as f:
f.write(’\n_Test2:’)

f.write (’\n_T2_IMU1AngleX:\n")

for line in T2_IMU1AngleX:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU1AngleY:\n")

for line in T2_IMU1AngleY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU1AngleZ:\n")

for line in T2_IMU1AngleZ:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU1AccX:\n")

for line in T2_IMU1AccX:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU1AccY:\n")

for line in T2_IMU1AccY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU1AccZ:\n")

for line in T2_IMU1AccZ:
f.write(str(line))
f.owrite(’,")

f.write (’\n_T2_IMU1Time:\n")

for line in T2_IMU1Time:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2AngleX:\n")

for line in T2_IMU2AngleX:
f.write(str(line))
f.owrite(’,")

f.write (’\n_T2_IMU2AngleY :\n")

for line in T2_IMU2AngleY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2AngleZ:\n")

for line in T2_IMU2AngleZ:
f.write(str(line))
fowrite(’,")

f.write ("\n_T2_IMU2AccX:\n")

for line in T2_IMU2AccX:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2AccY :\n")

for line in T2_IMU2AccY:

XXVII

849

854

859

864

869

874

884

889

894

899

904

909

914

919

924

APPENDIX A. CODE

f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2AccZ:\n")

for line in T2_IMU2AccZ:
f.write(str(line))
fowrite(’,")

f.write (’\n_T2_IMU2Time:\n")

for line in T2_IMU2Time:
f.write(str(line))
f.owrite(’,")

f.write ("\n_Total_Time_" + str(_T2_TIME[ENDTIME']))
f.write ("\n_Balance_" + str(Balance))
f.write ("\n_Score_" + str(_T2_SCORE['SCORE’]))

print(f"Subtask _T3:_Turning _360_degree")
_T2_LEFT_CALIB['CALIB'] = False
_SUBTASK['TASK’] = {’'T3"}

_NEW['NEW’] = {True}

def T3Chest(msg) : #Subtask3 wearable chest
if _T2 LEFT_CALIB['CALIB’] ==True:
if _T3_TIME['STARTTIME’'] == 0.0:
_T3_TIME['STARTTIME] = time.time ()
print(f" ")

temp = list(map(float, msg.payload.decode().split(",")))
if len(temp)==7:
temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3], 1)
temp[0]=temp[0] -_T3_CHEST_CALIB['X’]
temp[1]=temp[1]-_T3_CHEST_CALIB['Y’]
temp[2]=temp[2] -_T3_CHEST_CALIB['Z’]

if _T3 CHEST_CALIB['X'] == 0.0:
_T3 CHEST_CALIB['X"] = temp[O0];
_T3 CHEST_CALIB['Y'] = temp[1];
_T3_CHEST_CALIB['Z’] = temp[2];
print(f"CalibZ: _{temp[2]}")
_TIME['STARTTIME ']=time . time ()

else:
T3_IMU1AngleX.append(temp[0])
T3_IMU1ANgleY . append (temp[1])
T3_IMU1AngleZ . append (temp[2])

T3_IMU1AccX . append (temp[4])
T3_IMU1AccY . append (temp[5])
T3_IMU1AccZ . append (temp[6])
T3_IMU1Time . append(time . time ()-_TIME['STARTTIME])

print (f"Winkel:_{temp[2]}")

if (abs(temp[0]) > _T3 TURN[’'X’] and _T3_TURN['MOTION’] == True): #detect max x angle
#print(f" 1")
_T3_TURN['X’]=abs(temp[0])

if (abs(temp[1]) > T3 TURN[’Y’] and _T3 TURN[MOTION’]
#print (" 1)
_T3 TURN['Y’]=abs (temp[1])

True) : #detect max y angle

if ((temp[2] > -55) and (temp[2] < -45)) or ((temp[2] > 45) and (temp[2] < 55)): #detect if turning
print(f"TurnActive")
_T3_TURN['MOTION'] = True

if _T3_ TURN['MOTION’] == True and (temp[2] < 3) and (temp[2] > -3): #detect full turn and save to

file and print

print (f"SUCESS")

_T3_TIME['ENDTIME’] = time.time () — _T3_TIME['STARTTIME]

print ()

print(f"TotalTime:_{_T3_TIME['ENDTIME ']} ")

print (f"MaxXAngle:_{_T3 TURN['X']}")

print (f"MaxYAngle: {_T3_TURN['Y’]}")

XXVl

929

934

939

944

949

954

959

969

974

979

989

994

999

1004

APPENDIX A. CODE

if _T3_TIME[’ENDTIME'] <= 3.5:
_T3 SCORE['SCORE’] = 100

elif _T3 TIME[’ENDTIME'] > 3.5 and _T3_TIME['ENDTIME'] <= 5.5:
_T3_SCORE[’SCORE’] = 75

elif _T3_TIME[’ENDTIME'] > 5.5 and _T3_TIME['ENDTIME’] <= 7.5:
_T3 SCORE['SCORE’] = 50

elif _T3 TIME[’ENDTIME'] > 7.5:
_T3_SCORE[’SCORE’] = 25

if (_T3_ TURN[’'X’]+_T3_ TURN[’'Y’])/2 <= 20.0:
Balance = 100

elif (_T3_TURN['X']+_T3_TURN[’'Y'])/2 > 20.0 and (_T3_TURN[’'X’]+_T3_TURN['Y'])/2 <= 30.0:
Balance = 75

elif (_T3_TURN['X']+_T3_TURN['Y'])/2 > 30.0 and (_T3_TURN['X']+_T3_TURN['Y'])/2 <= 40.0:
Balance = 50

elif (_T3_TURN['X']+_T3_TURN['Y'])/2 > 40.0:
Balance = 25

_T3 SCORE['BALANCE’] = Balance
_T3 SCORE[’SOORE’] = (_T3_SCORE[’SCORE’] + 0.75) + (Balance » 0.25)

print(f"Balance: _{Balance}")
print(f"Score:_{ T3 SCORE['SCORE’]}")

with open(’MPPTResults. txt’, 'a’) as f:
f.write(’\n_Test3:")

f.write (’\n_T3_IMU1AngleX:\n")

for line in T3_IMU1AngleX:
f.write(str(line))
fowrite(’,")

f.write (’\n_T3_IMU1AngleY:\n")

for line in T3_IMU1AngleY:
f.write(str(line))
fowrite(’,”)

f.write (’\n_T3_IMU1AngleZ:\n")

for line in T3_IMU1AngleZ:
f.write(str(line))
fowrite(’,")

f.write (’\n_T3_IMU1AccX:\n")

for line in T3_IMU1AccX:
f.write(str(line))
fowrite(’,")

f.write (’\n_T3_IMU1AccY:\n")

for line in T3_IMU1AccY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T3_IMU1AccZ:\n")

for line in T3_IMU1AccZ:
f.write(str(line))
fowrite(’,")

f.write (’\n_T3_IMU1Time:\n")

for line in T3_IMU1Time:
f.write(str(line))
fowrite(’,")

.write ("\n_Total_Time:_" + str(_T3_TIME['ENDTIME’]))
.write ("\n_Max_Angle_X:_" + str(_T3_TURN['X"]))
.write ("\n_Max_Angle_Y:_ " + str(_T3_TURN[’'Y’]))
.write ("\n_Balance:_" + str(Balance))

.write ("\n_Score:_" + str(_T3_ SCORE['SCORE’]))

print (f"Subtask_T4:_Standing_up")
_T2 LEFT_CALIB['CALIB’] = False
_SUBTASK['TASK’] = {'T4"}
_NEW['NEW’] = {True}

def T4Rightfoot(msg): #Subtask4 wearable right side
if _T2 LEFT_CALIB['CALIB’] ==True:

temp = list(map(float, msg.payload.decode().split(",")))

if len(temp)==7:
temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3], 2)
temp[0]=temp[0] -_T4_RIGHT_CALIB['X’]
temp[1]=temp[1]-_T4_RIGHT_CALIB['Y’]
temp[2]=temp[2]-_T4_RIGHT_CALIB['Z’]

if _T4_RIGHT_CALIB['X’'] == 0.0:

XXIX

1009

1014

1019

1024

1029

1034

1039

1044

1049

1054

1059

1064

1069

1074

1079

1084

1089

APPENDIX A. CODE

_T4_RIGHT_CALIB['X’] = temp[0];
_T4_RIGHT_CALIB['Y’] = temp[1];
_T4_RIGHT_CALIB['Z’] = temp[2];
_TIME['STARTTIME ']=time . time ()

else:

T4_IMU1AngleX. append (temp[0])
T4_IMU1AngleY .append(temp[1])
T4_IMU1AngleZ . append (temp[2])

T4_IMU1AccX . append
T4_IMU1AccY . append
T4_IMU1AccZ . append
T4_IMU1Time . append

temp[4])
temp[5])
temp[6])
time . time ()-_TIME['STARTTIME '])

print(f"Angle: _{temp[1]}")

if

if

_T4_TIME[*STARTTIME’] == 0.0 and temp[1] > 5:

_T4_RIGHT_STEP [’'STEP’] == 5:
_T4_TIME["ENDTIME’] = time.time () — _T4_TIME['STARTTIME’]

_T4_TIME[*STARTTIME’] = time .time ()

(temp[1] > 40) and (_T4 _RIGHT_STEP ['INSTEP'] == False):

print (f"UP")

#print(f"Ang: {temp[1]}")
#print(f"acc: {temp[4]}")

_T4 RIGHT_STEP [’INSTEP’] = True

(temp[1] < 10) and (_T4 _RIGHT STEP [’'INSTEP'] == True):

print (f"DOAMN")
_T4 _RIGHT_STEP [’INSTEP’] = False
_T4 RIGHT_STEP ['STEP’] += 1

print ()
print(f"TotalTime:_{_T4_TIME[ENDTIME ']} ")
#print (f"StepTime: {_T4 LEFT_TIME['STEPTIME ']} ")

if _T4_TIME[ENDTIME’] <= 11.0: #time score
_T4_SCORE['SCORE’] = 100

elif _T4_TIME['ENDTIME’] > 11.0 and _T4_TIME['ENDTIME’'] <=

_T4_SCORE['SCORE’] = 75

elif _T4 _TIME[’ENDTIME'] > 14.0 and _T4_TIME['ENDTIME’] <=

_T4_SCORE["SCORE’] = 50
elif _T4_TIME['ENDTIME’] > 17.0:
_T4 SCORE['SCORE’] = 25

if _T4 TILT['X'] <= 20.0: #balance score
Balance = 100

elif _T4_TILT['X'] > 20.0 and _T4_TILT['X’] <= 30.0:

Balance = 75

elif _T4 TILT['X’] > 30.0 and _T4_TILT[’X’] <= 40.0:

Balance = 50
elif _T4 _TILT['X'] > 40.0:
Balance = 25

_T4_SCORE['BALANCE’] = Balance
_T4_SCORE['SCORE’] =

print (f"MaxXAngle: {_T4_TILT['X']}")
print (f"Balance: _{Balance}")
print(f"Score:_{_T4 SCORE['SCORE']}")

with open(’MPPTResults.txt’, ’a’) as f:
f.write(’\n_Test4:’)

f.write (’\n_T4_IMU1AngleX:\n")

for line in T4_IMU1AngleX:
f.write(str(line))
fowrite(’,”)

f.write (’\n_T4_IMU1AngleY:\n")

for line in T4_IMU1AngleY:
f.write(str(line))
fowrite(’,")

f.write (’\n_T4_IMU1AngleZ:\n")

for line in T4_IMU1AngleZ:
f.write(str(line))

XXX

#start timer

4.0:

7.0:

(_T4_SCORE['SCORE’] » 0.75) + (Balance » 0.25)

#detect if patient is fully standing

#detect if patient is fully sitting

#stop after five attempts and print/save to file

1094

1099

1104

1109

1114

1119

1124

1129

1134

1139

1144

1149

1154

1159

1164

1169

APPENDIX A. CODE

f.owrite(’,”)

f.write ("\n_T4_IMU1AccX:\n")

for line in T4_IMU1AccX:
f.write(str(line))
f.owrite(’,’)

f.write ("\n_T4_IMU1AccY:\n")

for line in T4_IMU1AccY:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T4_IMU1AccZ:\n")

for line in T4_IMU1AccZ:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T4_IMU1Time:

for line in T4_IMU1Time:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T4_IMU2AngleX:\n")

for line in T4_IMU2AngleX:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T4_IMU2AngleY :\n")

for line in T4_IMU2AngleY:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T4_IMU2AngleZ:\n")

for line in T4_IMU2AngleZ:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T4_IMU2AccX:\n")

for line in T4_IMU2AccX:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T4_IMU2AccY :\n")

for line in T4_IMU2AccY:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T4_IMU2AccZ:\n")

for line in T4_IMU2AccZ:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T4_IMU2Time :

for line in T4_IMU2Time:
f.write(str(line))
f.owrite(’,”)

=

n’)

=

n’)

.write ("\n_Total_Time:_" + str(_T4_TIME['ENDTIME']))
.write ("\n_Max_Angle_X:_" + str(_T4_TILT['X"]))
(.

(

.write ("\n_Balance:_" + str(Balance))
.write ("\n_Score:_" + str(_T4 SCORE['SCORE’]))

print(f"Subtask _T5:_Picking _up_object_while_sitting")
_T2 LEFT_CALIB['CALIB’] = False

_SUBTASK['TASK’] = {'T5"}

_NEW['NEW’] = {True}

def T4Chest(msg) : #Subtask4 chest module

if _T2 LEFT_CALIB[’'CALIB’] ==True:
if _T4_TIME['STARTTIME’] == 0.0:
_T4_TIME[*STARTTIME’] = time .time ()
print(f" "

temp = list (map(float, msg.payload.decode().split(",")))
if len(temp)==7:
temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3],
temp[0]=temp[0]-_T4 CHEST_CALIB['X’]
temp[1]=temp[1]-_T4_CHEST_CALIB['Y’]
temp[2]=temp[2] -_T4_CHEST_CALIB['Z’]

if _T4 CHEST_CALIB['X’'] == 0.0:
_T4 CHEST_CALIB['X’] = temp[O0];
_T4 CHEST_CALIB['Y'] = temp[1];
_T4 CHEST_CALIB['Z’] = temp[2];
print(f"CalibZ: _{temp[2]}")
_TIME['STARTTIME ']=time . time ()

else:

T4_IMU2AngleX . append(temp[0])
T4_IMU2AnNgleY . append (temp[1])

XXXI

1)

1174

1179

1184

1189

1194

1199

1204

1209

1214

1219

1224

1229

1234

1239

1244

1249

APPENDIX A. CODE

T4_IMU2AngleZ . append (temp[2])

T4_IMU2AccX . append
T4_IMU2AccY . append
T4_IMU2AccZ . append
T4_IMU2Time . append

temp[4])
temp[5])
temp[6])
time.time ()-_TIME['STARTTIME])

#print(f"Winkel: {temp[0]}")

if (abs(temp[0]) > _T4_TILT['X’]): #detect max x angle chest
#print (f" 1")
_T4_TILT[X’]=abs(temp[0])

def T50bject(msg) : #Subtask5 smart object
if _T2 LEFT_CALIB['CALIB’] ==True:

temp = list(map(float, msg.payload.decode().split(",")))

if len(temp)==7:
temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3], 2)
temp[0]=temp[0]-_T5_OBJECT_CALIB['X"]
temp[1]=temp[1]-_T5_OBJECT_CALIB['Y’]
temp[2]=temp[2]-_T5_OBJECT_CALIB['Z’]

if _T5_OBJECT_CALIB['X’] == 0.0:
_T5_OBJECT_CALIB['X’] = temp[0];
_T5_OBJECT_CALIB['Y'] = temp[1];
_T5_OBJECT_CALIB['Z'] = temp[2];
_TIME[*STARTTIME’]=time . time ()

else:
T5_IMU1AngleX.append(temp[0])
T5_IMU1AngleY .append(temp[1])
T5_IMU1AngleZ . append(temp[2])

T5_IMU1AccX . append (temp[4])
T5_IMU1AccY . append (temp[5])
T5_IMU1AccZ. append (temp[6])
T5_IMU1Time . append (time . time () —_TIME['STARTTIME’])

print (f"ACC: _{temp[4]}, _{temp[5]}, {temp[6]}")

if (abs(temp[4])>0.5 or abs(temp[5])>0.5 or abs(temp[6]) >0.5) and _T5 OBJECT_STEP['INSTEP’] == False:
#detect movement start object
print("Start")
_T5_TIME['STARTTIME] =time.time ()
_T5_OBJECT_STEP['INSTEP'] = True

if _T5 OBJECT_STEP[’INSTEP’] == True: #calc mean acceleration while move
_T5_ACC['MEANACC'] = _T5 ACC['MEANACC'’]+abs(temp[4])+abs(temp[5])
_T5_ACC['COUNT’] = _T5_ACC['COUNT’'] + 2

if abs(temp([4])<0.15 and abs(temp[5]) <0.15 and abs(temp[6]) <0.20 and _T5 OBJECT_STEP['INSTEP’] == True:
#detect test ends, object stops
print ("Stop")
T5 OBJECT_STEP [’INSTEP'’] = False
_T5_TIME['ENDTIME’] = time.time () - _T5_TIME['STARTTIME']

print ()
print(f"TotalTime:_{_T5_TIME[ENDTIME ']} ")
print (f"Mean_Acceleration:_{_T5 ACC['MEANACC ']/_T5_ACC['COUNT ']} ")

if _TS_TIME['ENDTIME'] <= 2.0:
_T5_SCORE["SCORE’] = 100

elif _T5_TIME['ENDTIME’] > 2.0 and _T5_TIME[’ENDTIME'] <= 4.0:
_T5 SCORE['SCORE’] = 75

elif _T5_TIME['ENDTIME'] > 4.0 and _T5_TIME[’ENDTIME'] <= 6.0:
_T5_SCORE["SCORE’] = 50

elif _T5 TIME['ENDTIVE’'] > 6.0:
_T5 SCORE['SCORE’] = 25

if _T5 ACC['MEANACC']/_T5_ACC[’'COUNT’'] <= 2.0:
Balance = 100

XXXI

1254

1259

1264

1269

1274

1279

1284

1289

1294

1299

1304

1309

1314

1319

1324

1329

APPENDIX A. CODE

elif _T5_ACC['MEANACC']/_T5_ACC['COUNT']
Balance = 75

elif _T5_ACC['MEANACC']/_T5_ACC['COUNT’]
Balance = 50

elif _T5_ACC['MEANACC']/_T5_ACC['COUNT']
Balance = 25

_T5_SCORE['BALANCE’] = Balance
_T5 SCORE['SCORE’] = (_T5 _SCORE['SCORE’]

print (f"Balance: _{Balance}")
print (f"Score: _{_T5 SCORE['SCORE’]}")

with open(’MPPTResults. txt’, ’'a’) as f:

f.write(’\n_Test5:")

f.write ('\n_T5_IMU1AngleX:\n")

for line in T5_IMU1AngleX:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T5_IMU1AngleY :\n")

for line in T5_IMU1AngleY:
f.write(str(line))
f.owrite(’,”)

f.write ('\n_T5_IMU1AngleZ:\n")

for line in T5_IMU1AngleZ:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T5_IMU1AccX:\n")

for line in T5_IMU1AccX:
f.write(str(line))
f.owrite(’,")

f.write ("\n_T5_IMU1AccY:\n")

for line in T5_IMU1AccY:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T5_IMU1AccZ:\n")

for line in T5_IMU1AccZ:
f.write(str(line))
f.owrite(’,”)

f.write ("\n_T5_IMU1Time:

for line in T5_IMU1Time:
f.write(str(line))
f.owrite(’,”)

=

n’)

.write
.write

"\n_Balance:_"

> 2.0 and _T5_ACC['MEANACC']/_T5_ACC['COUNT’'] <= 2.5:
> 2.5 and _T5_ACC['MEANACC’]/_T5_ACC['COUNT’] <= 3.0:

> 3.0:

» 0.75) + (Balance » 0.25)

.write ("\n_Total _Time:_" + str(_T5_TIME['ENDTIME']))

.write ("\n_Mean_Acc: " + str(_T5_ACC['MEANACC']/_T5_ACC['COUNT']))
(+ str(Balance))

("\n_Score:_" + str(_T5 SCORE['SCORE’]))

print(f"Subtask_T6:_Picking _up_object_while_standing")

_T2_LEFT_CALIB['CALIB’] = False
_SUBTASK['TASK'] = {'T6’}
_NEW['NEW’] = {True}

def T6Object(msg) :
if _T2_LEFT_CALIB['CALIB’] ==True:

#Subtask6, same calculations as subtask5

temp = list(map(float, msg.payload.decode().split(",")))

if len(temp)==7:

temp[0], temp[1], temp[2] = rotatequa(temp[0], temp[1], temp[2], temp[3],

temp[0]=temp[0] -_T6_OBJECT_CALIB[X"]
temp[1]=temp[1]-_T6_OBJECT_CALIB['Y’]
temp[2]=temp[2] -_T6_OBJECT_CALIB['Z’]

if _T6_OBJECT CALIB['X’] == 0.0:
_T6_OBJECT_CALIB['X’] = temp[0];
_T6_OBJECT_CALIB['Y’] = temp[1];
_T6_OBJECT_CALIB['Z'] = temp[2]:
_TIME['STARTTIME ']=time . time ()

else:
T6_IMU1AngleX.append(temp[0])
T6_IMU1AngleY . append (temp[1])
T6_IMU1AngleZ . append (temp[2])

T6_IMU1AccX . append (temp[4])
T6_IMU1AccY . append (temp[5])

2)

XXX

1334

1339

1344

1349

1354

1359

1364

1369

1374

1379

1384

1389

1394

1399

1404

1409

1414

APPENDIX A. CODE

T6_IMU1AccZ . append (temp[6])
T6_IMU1Time . append(time . time ()-_TIME['STARTTIME])

print (f"ACC: _{temp[4]},_{temp[5]}, {temp[6]}")

print("Start")
_T6_TIME['STARTTIME] =time.time ()
_T6_OBJECT_STEP['INSTEP'] = True

if _T6_OBJECT_STEP[’INSTEP'] == True:

_T6_ACC['MEANACC'] = _T6 ACC['MEANACC']+abs (temp[4])+abs(temp[5])
_T6_ACC['OOUNT’] = _T6_ACC['COUNT’] + 2

print ("Stop")
T6 OBJECT STEP [’INSTEP'’] = False
_T6_TIME['ENDTIME’] = time.time () - _T6_TIME['STARTTIME']

print ()
print(f"TotalTime:_{_T6_TIME[ENDTIME ']} ")
print (f"Mean_Acceleration:_{_T6_ACC['MEANACC ']/_T6_ACC[COUNT ']} ")

if _T6_TIME['ENDTIME’] <= 2.0:
_T6_SCORE['SCORE’] = 100

elif _T6_TIME[’ENDTIME'] > 2.0 and _T6_TIME['ENDTIME’] <= 4.0:
_T6_SCORE['SCORE’] = 75

elif _T6_TIME[ENDTIME'] > 4.0 and _T6_TIME['ENDTIME’] <= 6.0:
_T6_SCORE['SCORE’] = 50

elif _T6_TIME[ENDTIME'] > 6.0:
_T6_SCORE['SCORE’] = 25

if _T6_ACC['MEANACC’]/_T6_ACC[’'COUNT’'] <= 2.0:
Balance = 100

if (abs(temp[4])>0.5 or abs(temp[5])>0.5 or abs(temp[6]) >0.5) and _T6_OBJECT_STEP[’INSTEP’] == False:

if abs(temp[4])<0.15 and abs(temp[5]) <0.15 and abs(temp[6]) <0.20 and _T6_OBJECT_STEP['INSTEP’] == True:

elif _T6_ACC['MEANACC']/_T6_ACC['COUNT'] > 2.0 and _T6_ACC['MEANACC']/_T6_ACC['COUNT’'] <= 2.5:

Balance = 75

elif _T6_ACC['MEANACC’]/_T6_ACC[’'COUNT’] > 2.5 and _T6_ACC['MEANACC’]/_T6_ACC[’COUNT’] <= 3.0:

Balance = 50
elif _T6_ACC['MEANACC']/_T6_ACC['COUNT'] > 3.0:
Balance = 25

_T6_SCORE['BALANCE’] = Balance
_T6_SCORE['SCORE’] = (_T6_SCORE['SCORE’] + 0.75) + (Balance + 0.25)

print (f"Balance: _{Balance}")
print (f"Score: _{_T6 SCORE['SCORE’]}")

with open(’MPPTResults. txt’, 'a’) as f:
f.write(’\n_Test6:’)

f.write (’\n_T6_IMU1AngleX:\n")

for line in T6_IMU1AngleX:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T6_IMU1AngleY :\n")

for line in T6_IMU1AngleY:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T6_IMU1AngleZ:\n")

for line in T6_IMU1AngleZ:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T6_IMU1AccX:\n")

for line in T6_IMU1AccX:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T6_IMU1AccY:\n")

for line in T6_IMU1AccY:
f.write(str(line))
f.owrite(’,”)

f.write (’\n_T6_IMU1AccZ:\n")

for line in T6_IMU1AccZ:
f.write(str(line))
fowrite(’,")

f.write (’\n_T6_IMU1Time:\n")

for line in T6_IMU1Time:
f.write(str(line))
fowrite(’,")

XXXIV

1419

1424

1429

1434

1439

1444

1449

1454

1459

1464

1469

1474

1479

1484

1489

1494

APPENDIX A. CODE

.write (

.write ("\n_Mean_Acc:

.write ("\n_Balance: "
(

“\n_Total_Time: " + str(_T6_TIME['ENDTIME’]))

+ str(_T6_ACC[MEANACC’]/_T6_ACC[*COUNT’]))

+ str(Balance))
.write ("\n_Score:_" + str(_T6_SCORE['SCORE’]))

print (f"Subtask_T7:_Balance, _feet_together_next to_each_other")

_T2_LEFT_CALIB['CALIB’] = False

_SUBTASK['TASK’] = {’T7'}
_NEW['NEW’] = {True}

def T7Balance(msg) :

#Subtask7 Balance Board

if _T2 LEFT_CALIB['CALIB’] ==True:
if _T7_TIME['STARTTIME’] == 0.0:
_T7_TIME['STARTTIME’] =time.time ()
temp = list (map(float, msg.payload.decode().split(","
if len(temp)==4:

T7_Sensor1.append (temp[0]
T7_Sensor2.append (temp[1]
T7_Sensor3.append (temp[2]
T7_Sensor4 . append (temp[3]

T7_Time.append(time

_T7_TIME['ENDTIME "]

_T7_BALANCE['LR’] = (temp[O]+temp[1])/(temp[2]+temp[3])
_T7 BALANCE['FB’] = (temp[O0]+temp[2])/(temp[1]+temp[3])

.time ()—_T7_TIME['STARTTIME '])

)))

= time.time () — _T7_TIME['STARTTIME’]

#Balance ratios calc

_T7 MEAN['LR’] = _T7_ MEAN['LR’]+((temp[0]+temp[1]) /(temp[2]+temp[3])) #mean value balance calc

_T7_MEAN['FB’]

_T7_MEAN[*COUNT’] = _T7_MEAN['COUNT’] + 1

if _T7_TIME[ENDTIME’]>10.0:
print ()
print (f"Mean_L/R_Balance:_{_T7 MEAN['LR ']/_T7_MEAN['COUNT ']} ")
print(f"Mean_F/B_Balance:_{_T7 MEAN[’'FB ']/_T7_MEAN['COUNT ']} ")

#stop after 10 seconds

= _T7_MEAN['FB’]+((temp[0]+temp[2]) /(temp[1]+temp[3]))

Balance = ((_T7_MEAN[’LR’]/_T7_MEAN['COUNT’]) + (_T7_MEAN['FB’]/_T7_MEAN[COUNT’]))/2

_T7_SCORE['SCORE’] = 100 - abs ((Balance -1)+100)
if _T7 SCORE[’SCORE’] < 25:

_T7_SCORE['SCORE’] = 25

print(f"Balance: _{Balance}")

print(f"Score:_{_T7_SCORE[’SCORE ']} ")

with open(’MPPTResults. txt’,

f.write(’\n_Test7:’)

f.write (’\n_T7_Sensor1:\
for line in T7_Sensori:
f.write(str(line))
fowrite(’,")
f.write (’\n_T7_Sensor2:\
for line in T7_Sensor2:
f.write(str(line))
fowrite(’,")
f.write (’\n_T7_Sensor3:\
for line in T7_Sensor3:
f.write(str(line))
fowrite(’,”)
f.write (’\n_T7_Sensor4 :\
for line in T7_Sensor4:
f.write(str(line))
fowrite(’,”)
f.write ('\n_T7_Time:\n’)
for line in T7_Time:
f.write(str(line))
f.owrite(’,")

a’) as f:

f.write ("\n_Mean_L/R_Balance:_" + str(_T7_MEAN['LR’]/_T7_MEAN[‘COUNT’]))

XXXV

1499

1504

1509

1514

1519

1524

1529

1534

1539

1544

1549

1554

1559

1564

1569

1574

APPENDIX A. CODE

f.write ("\n_Mean_F/B_Balance:_" + str(_T7_MEAN['FB’]/_T7_MEAN[‘COUNT’]))

f.write ("\n_Balance:_" + str(Balance))
f.write ("\n_Score: " + str(_T7_SCORE['SCORE’]))
print(f"Subtask_T8: _Balance,_tandem")
_T2 LEFT_CALIB['CALIB’] = False
_SUBTASK['TASK'] = {’'T8"}
_NEW['NEW’] = {True}
def T8Balance(msg) : #Subtask8 Balance Board, similar to subtask7
if _T2_LEFT_CALIB['CALIB’] ==True:
if _T8_TIME[STARTTIME’'] == 0.0:
_T8_TIME['STARTTIME’] =time.time ()
temp = list(map(float, msg.payload.decode().split(",")))
if len(temp)==4:
T8_Sensorl .append(temp[0])
T8_Sensor2.append(temp[1])
T8_Sensor3.append(temp[2])
T8_Sensor4 . append (temp[3])
T8_Time.append(time.time ()-_T8_TIME['STARTTIME’])
_T8 _TIME['ENDTIME’] = time.time () - _T8_TIME['STARTTIME']
_T8 BALANCE['LR’] = (temp[O]+temp[1])/(temp[2]+temp[3])
_T8 MEAN['LR’] = _T8 MEAN['LR’]+((temp[0]+temp[1]) /(temp[2]+temp[3]))
_T8 MEAN['COUNT’] = _T8 MEAN['COUNT’] + 1
if _T8_TIME['ENDTIME’]>10.0:
print ()
print (f"Mean_L/R_Balance:_{_T8 MEAN[LR ']/_T8 MEAN['COUNT ']} ")
Balance = _T8 MEAN['LR’]/_T8_MEAN['COUNT’]
_T8 SCORE['SCORE’] = 100 - abs((Balance-1)+100)
if _T8 SCORE['SCORE’] < 25:
_T8_SCORE['SCORE’] = 25
_SCORE['SCORE’] = _T1_SCORE['SCORE’] + _T2 SCORE['SCORE'] + _T3_SCORE['SCORE’] + _T5 SCORE['SCORE’]
+ _T5 SCORE["'SCORE’] + _T6_SCORE['SCORE’] + ((_T7_SCORE['SCORE’] + _T8 SCORE['SCORE’])/2)
_SCORE['SCORE’] = _SCORE['SCORE’]/7
print (f"Balance: _{Balance}")
print(f"Score:_{_T8 SCORE['SCORE’]}")
print(f"TotalScore: _{ SCORE['SCORE’]}")
with open(’MPPTResults.txt’, ’a’) as f:
f.write(’\n_Test8:")
f.write(’\n_T8_Sensor1:\n")
for line in T8_Sensori:
f.write (str(line))
f.owrite(’,")
f.write(’\n_T8_Sensor2:\n")
for line in T8_Sensor2:
f.write (str(line))
f.write(’,")
f.write(’\n_T8_Sensor3:\n’)
for line in T8_Sensor3:
f.write (str(line))
fowrite(’,")
f.write(’\n_T8_Sensor4:\n")
for line in T8_Sensor4:
f.write (str(line))
fowrite(’,")
f.write(’\n_T8_Time:\n’)
for line in T8 Time:
f.write (str(line))
f.write(’,")

.write ("\n_Mean_L/R_Balance: " + str(_T8_ MEAN['LR’]/_T8 MEAN['COUNT']))
.write ("\n_Balance: " + str(Balance))

.write ("\n_Score: " + str(_T8 SCORE['SCORE’]))

.write ("\n\n_Total _MPPT_Score:_" + str(_SCORE['SCORE’]))

XXXVI

1579

1584

1589

1594

1599

1604

1609

1614

1619

1624

1629

1634

1639

1644

1649

1654

APPENDIX A. CODE

def run():

_SUBTASK['TASK'] = {’'T1"}

input("End_of _Physical_Performance_Test")

#main programm
client = connect_maqtt()

calibration ()
subscribe(client)

client.loop_start()

window = tk.Tk() #create GUI

window . attributes ('-fullscreen’, True)

window. title ("Digital _MPPT")

window . rowconfigure ([0,
labels
window . columnconfigure ([0,

label1 = tk.Label(master=window,
label1.grid (row=0, column=0)

btn_decrease = tk.Button(master=window,

1,2, 3],

#connect to maqtt
print (f"Subtask_T1:_Walking _Test")
#start with calibration

1, 2,83, 4,5,6,7,8, 9],

text="test",

minsize=50, weight=1)

bg="yellow")

#open in fullscreen

minsize=50, weight=1)

text="Calibration", command=calibration)

btn_decrease. grid (row=0, column=1, sticky="nsew")
frame1 = tk.Frame(master=window, width=100, height=100, bg="blue")

frame1.grid (row=0, column=2)
label2 = tk.Label(master=window,
label2.grid (row=0, column=3)

Ibl_t1_name = tk.Label(master=window,

0
Ibl_t1_name.grid(row=1, column=0)

Ibl_t2_name = tk.Label(master=window,

Ibl_t2_name.grid (row=2, column=0)

Ibl_t3_name = tk.Label(master=window,

Ibl_t3_name.grid (row=3, column=0)

Ibl_t4_name = tk.Label(master=window,

Ibl_t4_name.grid (row=4, column=0)

Ibl_t5_name = tk.Label(master=window,

Ibl_t5_name.grid (row=5, column=0)

Ibl_t6_name = tk.Label(master=window,

Ibl_t6_name.grid (row=6, column=0)

Ibl_t7_name = tk.Label(master=window,

Ibl_t7_name.grid (row=7, column=0)

Ibl_t8_name = tk.Label(master=window,

Ibl_t8_name.grid (row=8, column=0)

Ibl_t_name = tk.Label(master=window,

Ibl_t_name.grid (row=9, column=0)

Ibl_T1_1 = tk.Label(master=window,
each subtask in GUI
Ibl_T1_1.grid(row=1, column=1)
Ibl_T1_2 = tk.Label(master=window,
Ibl_T1_2.grid(row=1, column=2)
Ibl_T1_3 = tk.Label(master=window,
Ibl_T1_3.grid(row=1, column=3)

Ibl_T2_1 = tk.Label(master=window,
Ibl_T2_1.grid(row=2, column=1)
Ibl_T2_2 = tk.Label(master=window,
Ibl_T2_2.grid (row=2, column=2)
Ibl_T2_3 = tk.Label(master=window,
Ibl_T2_3.grid (row=2, column=3)

Ibl_T3_1 = tk.Label(master=window,
Ibl_T3_1.grid(row=3, column=1)
Ibl_T3_2 = tk.Label(master=window,
Ibl_T3_2.grid(row=3, column=2)
Ibl_T3_3 = tk.Label(master=window,
Ibl_T3_3.grid(row=3, column=3)

Ibl_T4_1 = tk.Label(master=window,
Ibl_T4_1.grid(row=4, column=1)
Ibl_T4_2 = tk.Label(master=window,
Ibl_T4_2.grid(row=4, column=2)
Ibl_T4_3 = tk.Label(master=window,
Ibl_T4_3.grid(row=4, column=3)

text="test",

text="T1

text="T7

text="T2:
text="T3:_Turn_360 _degree", bg="white")
text="T4:
text="T5:_Pick_up_object_while_sitting", bg="white")

text="T6:

text="T8:

bg="lightgrey")

_Walk_4_stair_steps", bg="white")

_Sit_to_Stand_5 _times", bg="white")

#1walk, 2stair, 3turn, 4sit, 5pick1, 6pick2, 7balancetl, 8balance2

#define grid for textboxes and

#define grid element size

#create elements in grid

:_Walk_10_steps", bg="white") #define text for subtasks in column

_Pick_up_object _while_standing", bg="white")

_Balance _10_seconds_tandem",

text="Total_Test", bg="grey")

text="\n_Time:_" + str(_T1_TIME[ENDTIME’]))

text="\n_Balance: " + str(_T1_SCORE['BALANCE’]))

text="\n_Score:_" + str(_T1_SCORE['SCORE’]))

text="\n_Time:_" + str(_T2_TIME[ENDTIME’]))

text="\n_Balance: " + str(_T2 SCORE['BALANCE’]))

text="\n_Score: " + str(_T2 SCORE['SCORE’]))

text="\n_Time:_" + str(_T3_TIME['ENDTIME’]))

text="\n_Balance: "

text="\n_Score: " + str(_T3_SCORE['SCORE’]))

text="\n_Time: " + str(_T4_TIME['ENDTIME’]))

text="\n_Balance: " + str(_T4 SCORE['BALANCE’]))

text="\n_Score: " + str(_T4 SCORE['SCORE’]))

XXXVII

+ str(_T3_SCORE['BALANCE']))

:_Balance_10_seconds_feet_together", bg="white")

bg="white")

#define time and score for

1659

1664

1669

1674

1679

1684

1689

1694

1699

1704

1709

1714

1719

1724

1729

1734

1739

APPENDIX A. CODE

Ibl_T5_1 = tk.Label(master=window, text="\n_Time:_" + str(_T5_TIME[ENDTIME’]))
Ibl_T5_1.grid (row=5, column=1)

Ibl_T5_2 = tk.Label(master=window, text="\n_Balance: " + str(_T5 SCORE['BALANCE’]))
Ibl_T5_2.grid (row=5, column=2)

Ibl_T5_3 = tk.Label(master=window, text="\n_Score: " + str(_T5 SCORE['SCORE’]))
Ibl_T5_3.grid(row=5, column=3)

Ibl_T6_1 = tk.Label(master=window, text="\n_Time: " + str(_T6_TIME[ENDTIME’]))
Ibl_T6_1.grid(row=6, column=1)

Ibl_T6_2 = tk.Label(master=window, text="\n_Balance:_ " + str(_T6_SCORE['BALANCE’]))
Ibl_T6_2.grid (row=6, column=2)

Ibl_T6_3 = tk.Label(master=window, text="\n_Score: " + str(_T6_SCORE['SCORE’]))
Ibl_T6_3.grid (row=6, column=3)

Ibl_T7_1 = tk.Label(master=window, text="\n_L/R_Balance:_" + str(_T7_BALANCE['LR’]))
Ibl_T7_1.grid(row=7, column=1)

Ibl_T7_2 = tk.Label(master=window, text="\n_F/B_Balance:_" + str(_T7_BALANCE['FB’]))
Ibl_T7_2.grid (row=7, column=2)

Ibl_T7_3 = tk.Label(master=window, text="\n_Score: " + str(_T7_SCORE['SCORE’]))
Ibl_T7_3.grid (row=7, column=3)

Ibl_T8_1 = tk.Label(master=window, text="\n_L/R_Balance:_" + str(_T8 BALANCE['LR’]))
Ibl_T8_1.grid(row=8, column=1)

Ibl_T8_2 = tk.Label(master=window, text="\n_Score: " + str(_T8 SCORE['SCORE’]))
Ibl_T8_2.grid (row=8, column=2)

Ibl_T_1 = tk.Label(master=window, text="\n_Score:_" + str(_SCORE['SCORE’]))
Ibl_T_1.grid(row=9, column=1)

while True: #refresh while test running

if _T2_LEFT_CALIB['CALIB’] == False: #define color of calib element and current subtask label
frame1.config (background="orange’)
label2.config (text="Not_Calibrated")
f _T2 LEFT_CALIB['CALIB’] == True:
frame1.config (background="green’)
label2.config(text="Calibrated")
f _SUBTASK['TASK'] == {'T1'}:
label1["text"] = "Current_Task: T1"
f _SUBTASK['TASK'] == {'T2’}:
label1["text"] = "Current_Task:_T2"
f _SUBTASK['TASK'] == {'T3'}:
label1["text"] = "Current_Task:_T3"
f _SUBTASK['TASK'] == {'T4’}:
label1["text"] = "Current_Task:_T4"
f _SUBTASK['TASK'] == {'T5'}:
label1["text"] = "Current_Task:_T5"
f _SUBTASK['TASK'] == {'T6’}:
label1["text"] = "Current_Task:_T6"
f _SUBTASK['TASK'] == {'T7'}:
label1["text"] = "Current_Task:_T7"
f _SUBTASK['TASK'] == {'T8’}:
label1["text"] = "Current_Task:_T8"

IbI_T1_1["text"] = "Time:." + str(_T1_TIME[ENDTIVE’])
IbI_T1_2["text"] = "Balance: " + str(_T1_SCORE['BALANCE’])
Ibl_T1_3["text"] = "Score: " + str(_T1_SCORE[SCORE’])

#refresh the time and scores for each test

Ibl_T2_1["text"] = "Time:_ " + str(_T2_TIME[ENDTIME’])
Ibl_T2_2["text"] = "Balance:_" + str(_T2_SCORE['BALANCE’])
Ibl_T2_3["text"] = "Score:_." + str(_T2_SCORE['SCORE’])

Ibl_T3_1["text"] = "Time: " + str(_T3_TIME[ENDTIVE'])
Ibl_T3_2["text"] = "Balance:_ " + str(_T3 SCORE['BALANCE’])
Ibl_T3_3["text"] = "Score:_." + str(_T3_SCORE['SCORE’])

Ibl_T4_1["text"] = "Time:." + str(_T4_TIME[ENDTIME’])
Ibl_T4_2["text"] = "Balance: " + str(_T4 SCORE['BALANCE’])
Ibl_T4_3["text"] = "Score:_" + str(_T4 SCORE['SCORE’])

Ibl_T5_1["text"] = "Time:_ " + str(_T5_TIME[ENDTIME’])
Ibl_T5_2["text"] = "Balance: " + str(_T5_SCORE['BALANCE’])
Ibl_T5_3["text"] = "Score:_." + str(_T5_SCORE['SCORE’])

Ibl_T6_1["text"] = "Time:_" + str(_T6_TIME['ENDTIME’])

Ibl_T6_2["text"] =
Ibl_T6_3["text"] =

Ibl_T7_1["text"] =
Ibl_T7_2["text"] =
Ibl_T7_3["text"] =

"Balance: " + str(_T6_SCORE['BALANCE’])
"Score: " + str(_T6_SCORE['SCORE’])

"L/R_Balance:_ " + str(_T7_BALANCE['LR’'])

"F/B_Balance: " + str(_T7_BALANCE['FB’])
"Score: " + str(_T7_SCORE['SCORE’])

XXXVII

1744

1749

1754

24

APPENDIX A. CODE

Ibl_T8_1["text"] = "L/R_Balance: " + str(_T8_BALANCE['LR’])

Ibl_T8_2["text"] = "Score: " + str(_T8 SCORE['SCORE’])
Ibl_T_1["text"] = "Score: " + str(_SCORE['SCORE’])
window . update ()

if _NEW['NEW'] == {True}:
client.loop_stop ()
client.reinitialise ()
client = connect_maqtt()
subscribe(client)
client.loop_start()
_NEW['NEW'] = {False}

if _name__ == '__main__’:
run ()

A.4. Game FollowCar

using System. Collections;
using System. Collections.Generic;
using UnityEngine;

public class FollowCar : MonoBehaviour

{
public GameObject player;
// Start is called before the first frame update
void Start()
{
}
// Update is called once per frame
void LateUpdate ()
{
transform.position = player.transform.position + new Vector3(0, 5, -7);
}
}

A.5. Game GameOverScreen

using UnityEngine;

using System. Collections;

using UnityEngine.Ul;

using UnityEngine.SceneManagement;

public class GameOverScreen : MonoBehaviour

{
public Text pointsText;
public void Setup(int score)
{
gameObject. SetActive (true);
//pointsText.text = score. ToString() + "POINTS";
}
public void RestartButton ()
{
SceneManager . LoadScene ("Game") ;
}
public void ExitButton ()
{
SceneManager . LoadScene ("MainMenu") ;
}
}

XXXIX

#do between each subtask, used to not get values in buffer for next subtask

22

27

32

37

42

APPENDIX A. CODE

A.6. Game MainMenu

using System. Collections;
using System. Collections.Generic;
using UnityEngine;
using UnityEngine .SceneManagement;
public class MainMenu : MonoBehaviour
{
public void ExitButton ()
{
Application. Quit () ;
Debug.Log("Game_closed") ;
}

public void StartGame ()
{

SceneManager . LoadScene ("Game") ;

A.7. Game mqttController

using System;

using System. Collections;

using System. Collections.Generic;
using System. Globalization;

using UnityEngine;

using static UnityEngine.GridBrushBase;

public class mgqttController
them to the player controller
{
[SerializeField]
GameObject logicController; //used to link receiver to controller
public string nameController = "Controller_1";
public string tagOfTheMQTTReceiver = "";
public mqttReceiver _eventSender; //used to access variables in mqttReceiver

public float xe 4095; //define sensor values
public float ye = 4095;

public float ze = 4095;

public float zee = 4095;

public float[] convertedltems;

// Start is called before the first frame update
void Start ()

{

MonoBehaviour //Used for getting the IMU values from the MQTT receiver and forwarding

_eventSender = GameObject. FindGameObjectsWithTag (tagOfTheMQTTReceiver) [0]. gameObject. GetComponent<

maqttReceiver >() ; //1link to MQTTReceiver
_eventSender.OnMessageArrived += OnMessageArrivedHandler;

//Link to event in mqttRceiver

script

private void OnMessageArrivedHandler(string newMsg)
{
string [] tokens = _eventSender.messagenew. Split(’,’);
Split message into three sub values for force value
convertedltems = Array.ConvertAll<string, float>(tokens, float.Parse);
parse into a float

if (_eventSender.topicname == "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/5")
if topic == "AAL_MCI_esp_Publish_Poti/WolfgangGrosek/1"

use values for balance board
xe = convertedltems[0]
ye = convertedltems[1];
ze = convertedltems[2];
zee = convertedltems[3];

XL

//

//

//

//

22

27

32

37

42

47

52

57

62

67

72

APPENDIX A. CODE

A.8. Game PlayController

using System. Collections;

using System. Collections.Generic;
using System.Threading;

using System.Threading.Tasks;
using Unity. VisualScripting;
using UnityEngine;

using UnityEngine.Ul;

using System. Collections;

public class PlayController : MonoBehaviour
{

private float speed = 5.0f;

private float turnSpeed = 1.0f;

public Text scoreText;

public Text highscoreText;

private GameObject image;

public GameOverScreen GameOverScreen;

int score = 0;
int highscore = 0;
int maxPlatform = 0;

[SerializeField] //Set field in graphical editor

GameObject logicController; //Define field

mqttController func; //needed to link this script to logicController script

public mqttController Joint2; //Used to be able to have acces to degree variables from logicController
script

// Start is called before the first frame update
void Start ()

{
func = logicController.GetComponent<mqttController >(); //Used to be able to have acces to degree
variables from logicController script
scoreText.text = score.ToString() + "_POINTS";
highscoreText.text = "HIGHSCORE: " + highscore.ToString();
image = (GameObject) Resources.Load ("Rawlmage") ;
AddIimage () ;
}
private void OnCollisionEnter(Collision collision)
{
if (collision.gameObject.name == "Obstacle_1" || collision.gameObject.name == "Obstacle_2" || collision.
gameObject.name == "Obstacle_3" || collision.gameObject.name == "Obstacle_4" || collision.gameObject.
name == "Obstacle_5" || collision.gameObject.name == "Obstacle_6" || collision.gameObject.name ==
Obstacle_7" || collision.gameObject.name == "Obstacle_8")
{
Debug . Log ("POCOOW") ;
ScoreManager . instance . RemovePoint() ;
}
}
public void Addimage ()
{
Vector3 spawnPosition = new Vector3(0, 2, 0);
Quaternion spawnAngle = Quaternion.Euler(0, 0, 0);
Instantiate (image, spawnPosition, spawnAngle);
}

// Update is called once per frame
void Update ()
{
//Move Vehicle
turnSpeed = (Joint2.xe+ Joint2.ye)/(Joint2.ze + Joint2.zee);
transform. Translate (Vector3.forward = Time.deltaTime =+ speed);
if (turnSpeed != 0)
{
transform . Rotate (Vector3.up, (turnSpeed - 1) » 40 = Time.deltaTime);
}
else
{
transform . Rotate (Vector3.up, turnSpeed « 2+40 « Time.deltaTime);

}
Debug.Log(turnSpeed-1);

if (this.gameObject.transform.position.y > -3)

{

ScoreManager . instance . AddPoint () ;

XLI

77

82

24

29

34

39

44

49

54

APPENDIX A. CODE

if (this.gameObject.transform.position.y < -3)
{

Debug.Log (" Falling");

GameOverScreen. Setup (maxPlatform) ;

A.9. Game ScoreManager

using System. Collections;

using System. Collections.Generic;
using UnityEngine;

using UnityEngine.Ul;

public class ScoreManager : MonoBehaviour

{

public static ScoreManager instance;

public Text scoreText;
public Text highscoreText;

int score = 0;
int highscore = 0;

private void Awake ()

{

instance = this;

}

// Start is called before the first frame update
void Start ()

{
highscore = PlayerPrefs.GetInt("highscore", 0);
scoreText.text = score.ToString() + "_POINTS";
highscoreText.text = "HIGHSCORE: " + highscore.ToString();
}

// Update is called once per frame
void Update ()

{
//score = score + 1;
scoreText.text = score.ToString() + "_POINTS";
}
public void RemovePoint()
{
score -= 50;
scoreText.text = score.ToString() + "_POINTS";
}
public void AddPoint()
{
score += 1;
scoreText.text = score.ToString() + "_POINTS";
if (highscore<score)
{
PlayerPrefs.SetInt ("highscore", score);
}
}

XLH

B. SPSS

Tests of Normality

Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Traditional .137 10 .200" .956 10 742
Digital .108 10 .200° .974 10 .928

*. This is a lower bound of the true significance.
a. Lilliefors Significance Correction

Figure B.1.: The normality analysis of the test scores in SPSS.

Correlations
Traditional Digital

%%k

Traditional Pearson Correlation 1 .990
Sig. (2-tailed) <.001
N 10 10
Digital Pearson Correlation 990" 1
Sig. (2-tailed) <.001
N 10 10
**_ Correlation is significant at the 0.01 level (2-
tailed).

Figure B.2.: The Pearson Correlation analysis of the test scores in SPSS.

XLIN

	Introduction
	Problem Statement and Motivation
	Aim of the Project
	Objective
	Method and Planned Strategy
	Thesis Structure

	Literature, Basics
	Assessment in Rehabilitation
	Berg Balance Test
	Knee Injury and Osteoarthritis Outcome Score
	MPPT

	Digital Assessment in Rehabilitation

	System
	Hardware
	Digital MPPT Adaptation
	MPPT Sub-Task Definitions
	10 Step Walk
	4 Step Stair Walk
	Turn 360 Degree
	Chair Rise (5x) Without Arms
	Pick Up Object While Sitting/Standing
	Balance With Feet Together/While in Tandem Position

	Wearable Software
	Balance Game
	Wearable Design
	Balance Board Design

	Evaluation
	System Evaluation
	Setup
	Results

	Clinical Evaluation
	Institutional Review Board
	Study Setup
	Result of Clinical Study

	Discussion
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Symbols
	Abbreviations
	Code
	Wearable IMU ESP32
	Force Sensor ESP32
	MPPT Software
	Game FollowCar
	Game GameOverScreen
	Game MainMenu
	Game mqttController
	Game PlayController
	Game ScoreManager

	SPSS

