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1 Executive Summary

1

Executive Summary

In an era where climate change looms large, the transition towards renewable energy sources is more than just

a trend—it’s a necessity. Central to this is the electricity grid, a foundational pillar of modern society, that

must adapt and evolve to handle the dynamics of renewable integration, decentralization, and the increasing

demand. As the world shifts, there is an opportunity to harness technological advancements, particularly the

capabilities of artificial intelligence (AI), to navigate the complex terrains of the modern energy landscape.

The spotlight in recent advancements is energy forecasting, an arena where AI, and in particular, supervised

learning methods, have shown immense potential. The intricacy of predicting energy demand and supply

is accentuated with the integration of variable renewable sources, and this is where advanced AI techniques

have made groundbreaking progress. The projects undertaken during the research visit to the Berkeley Lab,

made possible by the support of the Marshall Plan Foundation, delved deeply into this domain, focusing on

multi-scale load forecasting and net load forecasting.

The multi-scale load forecasting project aimed to understand and predict energy demand at different scales—from

the expansive transmission grids spanning vast regions to the individual nuances of building-level consump-

tion. Recognizing that each scale presents unique challenges, the project’s approach integrated granular data

sources with advanced machine learning models. This holistic view ensures that forecasting remains consis-

tent and reliable across various levels, from high-voltage transmissions to localized distribution networks.

The net load forecasting project was initiated to address the complexities arising from the increasing integra-

tion of renewables. With solar and wind energy’s inherent variability, predicting the net load—the difference

between forecasted load and renewable generation—becomes pivotal. This endeavor sought to develop mod-

els that can cater to this nuanced requirement, ensuring that the grid remains balanced and resilient even with

the fluctuating nature of renewable energy sources.

However, while the potential of AI in energy forecasting is immense, the path is laden with challenges. Data

accessibility remains a pressing issue, with the need for high-fidelity, consistent datasets often clashing with

proprietary and security concerns. Additionally, ensuring true generalization across different energy time

series, given the myriad of local influencing factors, is a task that demands further innovation.

In summing up, the global energy landscape is at a crossroads, with AI set to redefine its trajectory. The

projects undertaken at the Berkeley Lab signify an important step in this direction, addressing key challenges

and harnessing technological advancements to pave the way for a more sustainable, efficient, and resilient

energy future. This report encapsulates these endeavors, offering insights into the progress made and setting

the stage for what lies ahead.
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Digitization and the Advent of AI in Grid Operation 2.4

2

Introduction

2.1 Electrification toMitigate Climate Change

In our epoch, termed the Anthropocene by many, humans have become a driving force in shaping the Earth’s

environment. The urgency to mitigate climate change, a colossal challenge resulting from human activities,

primarily the emission of greenhouse gases, has been widely recognized. Governments, industries, and so-

cieties worldwide are engaged in a multidimensional effort to mitigate these effects, with the transition to

sustainable energy at the center of these endeavors. At this nexus of humanity’s response to climate change

lies the evolution and restructuring of electricity grids to support an increasingly electrified world.

2.2 Electrification and the Evolution of Grids

The shift towards sustainable energy sources like wind and solar, in response to the climate crisis, mandates

a transformation of our electricity grids. These inherently variable and decentralized sources of energy intro-

duce unprecedented challenges in grid management. The traditional electricity grids, designed for centralized

and predictable energy generation, are now being re-envisioned to accommodate a new era of energy. The in-

tegration of renewable energy, storage technologies, and the looming prospect of electrified transport has

exponentially increased the complexity of grid operation. It’s within this evolving tapestry of energy systems

that the intricate dance of supply and demand unfolds. Electrification, while essential in our fight against

climate change, places an enormous responsibility on ensuring stability, reliability, and efficiency in our grids.

2.3 Multi-Scale Nature of Energy Systems

Furthermore, the energy system exhibits a multi-scale nature, ranging from the high-voltage transmission grid

to regional distribution networks, down to individual buildings and homes. Each level presents its unique

challenges and opportunities, and the pursuit of an optimized energy system necessitates understanding and

harmonizing these various scales. In this intricate setup, forecasting — especially energy forecasting — be-

comes a cornerstone of reliable grid operation. Recognizing patterns, anticipating demand and supply, and

making informed decisions are pivotal in an environment where renewable energy, with its inherent variabil-

ity, is playing an ever-increasing role.

2.4 Digitization and the Advent of AI in Grid Operation

The advent of digitization has brought with it a trove of data from smart meters, grid sensors, and a multi-

tude of IoT devices. This rich data landscape is both a challenge and an opportunity. The vast amount of data

can be overwhelming, but with the right tools, it offers a chance to revolutionize grid operations. Artificial
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3.1 Artificial Intelligence in Energy Systems

Intelligence (AI), and in particular, (semi-)supervised learning, have emerged as potent tools to harness this

data for actionable insights. Their ability to capture long-term dependencies and intricate patterns has par-

ticular relevance in energy forecasting. However, these algorithms have specific challenges, such as high data

requirements and accessibility concerns. Moreover, true generalization between time series for forecasting

and control remains a central problem.

In the ensuing pages of this report cover the scientific advancements achieved during my research visit at the

Berkeley Lab. This transformative endeavor, made possible by the generous sponsorship of the Marshall Plan

Foundation, has allowed me to deepen my knowledge of AI-driven methods for energy forecasting. These

methods, while heralding great potential, come replete with their unique set of challenges. It is by navigating

some of these complexities that we have contributed to lay the groundwork for shaping a more sustainable

and reliable energy future. Through these accomplishments, I hope to demonstrate the invaluable impact of

the Foundation’s support.

3

Research Background

The rapid integration of artificial intelligence (AI) into various sectors has revolutionized the way we perceive

and handle data, leading to substantial advancements in predictive accuracy and operational efficiency. One

of the sectors most impacted by these technological evolutions is energy systems, where the infusion of AI

techniques has the potential to reshape traditional paradigms.

3.1 Artificial Intelligence in Energy Systems

Machine learning, at its core, is akin to teaching computers to learn from experience. Imagine trying to teach

a child to recognize fruits by showing them pictures of apples, bananas, and cherries while naming each one.

The more pictures and names you show, the better the child becomes at identifying each fruit on their own.

Similarly, machine learning involves feeding the computer, or more precisely, a model, with a plethora of data

and letting it discern patterns within this data.

The past few years have witnessed the meteoric rise of large language models within the realm of machine

learning. These models, built on vast datasets of textual information, are not just about understanding lan-

guage but are exemplars of how intricate patterns can be recognized and utilized by machine algorithms.

Just as the human brain can grasp and generate complex language structures from exposure to linguistic in-

puts, these models leverage billions of sentences to generate, understand, and even transform human-like text.

This evolution towards more sophisticated and data-intensive models underpins the broader shift in machine

learning, where capacity, complexity, and capability are continually being expanded.
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TheMulti-scale Nature of Energy Systems 3.3

One primary method within machine learning is supervised learning. Much like our fruit-naming exercise,

supervised learning involves providing the model with both the input (e.g., historical weather data) and the

correct output (e.g., past electricity consumption). By repeatedly exposing the model to various inputs and

their corresponding outputs, it learns to associate patterns in the input data with the correct output. This

setup, where past data guides the prediction of future outcomes, is particularly suited for time series forecast-

ing, such as predicting future energy demand based on past consumption and conditions. It’s within this

context of supervised learning that the energy sector has witnessed transformative shifts.

Energy systems, being the backbone of modern society, have seen a shift with the incorporation of renew-

able energy sources, decentralization, and digitalization. These changes have made the system increasingly

complex, emphasizing the need for sophisticated techniques to manage and optimize its operations. AI offers

unparalleled precision in forecasting, real-time monitoring, anomaly detection, and thereby control of the

grid. Among the various algorithms introduced to the energy sector, transformers, originally designed for

natural language processing tasks, have demonstrated their utility in understanding temporal dependencies

in energy time series, making them particularly suitable for forecasting.

3.2 Challenges and the Nuances of Data

However, the journey to incorporate AI in energy systems encounters its share of roadblocks. Foremost

among these is the issue of data accessibility. Owing to the proprietary nature of energy data and under-

standable security reservations, procuring the requisite datasets for modeling is often an uphill battle. Fur-

thermore, the very nature of the energy domain, with its emphasis on precision and reliability, demands data

of impeccable quality and consistency.

Compounding these challenges is the quest for genuine generalization across time series. Achieving accu-

rate energy forecasting isn’t simply about predicting unseen future data points but also about ensuring that

these predictions hold water across diverse regions, grids, and scenarios. This becomes particularly daunting

when considering local variables like unique weather conditions, varying consumption behaviors, and the

specificities of regional infrastructures.

3.3 TheMulti-scale Nature of Energy Systems

Zooming out, our energy landscape reveals its multi-scale essence, cascading from vast transmission grids to

singular buildings:

• Transmission Grid: Here, the game is all about seamless electricity conveyance across large distances,

with an emphasis on anticipating demand and supply shifts, especially considering the unpredictable

nature of renewables.
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4 Projects Undertaken

• Distribution Grid: At this juncture, the lens sharpens to address local demand-supply equilibriums,

assimilate decentralized energy contributions, and maintain voltage stability.

• Building Level: On this micro-scale, the goal pivots to refining consumption behaviors, weaving in

smart technologies, and potentially feeding surplus energy back into the overarching grid.

Such a multi-tiered structure underlines the indispensability of an encompassing AI strategy. It underscores

the need for a symphony of operations, harmonizing decisions made on a macro scale with those on the micro.

3.4 The Significance of the Upcoming Projects

With a comprehensive understanding of the energy systems’ challenges and intricacies, the impending projects

encapsulated in this report gain heightened relevance. By delving into forecasting nuances, harnessing the

power of AI paradigms like transformers, and unraveling the multi-scale dynamics, these projects aim to con-

tribute to the path forward for the energy transition. Their overarching goal is not merely technological ele-

vation but translating these advancements into user-friendly code repositories, distributing tools to improve

the resilience and efficiency of our future energy systems.

In culmination, while the energy sector grapples with the monumental task of addressing climate change, AI

stands ready to offer its toolkit, promising innovations that could shape our energy future. In the following

project descriptions, we will delve deeper into the practical applications and innovations developed during

my research visit at the Berkeley Lab.

4

Projects Undertaken

The following projects were undertaken during the course of my study visit at the Berkeley Lab:

1. Multi-Scale Electricity Load Forecasting

• Description: This project aimed to deliver a comprehensive comparison of accessible machine

learning algorithms, systematically evaluated across a multitude of electricity load time series, and

spanning diverse levels of aggregation.

• Outcome: Journal Paper (expected submission October, 2023)

• Collaborators: Han Li, Miguel Heleno, Tianzhen Hong

2. Net Load Forecasting

• Description: Accurate net load forecasting relies on the availability of high-quality data from

various sources, including weather forecasts, historical and/or real-time data from smart meters,

and PV system specification data. The challenge of data collection can make it expensive or even

impossible, making it imperative for grid operators and energy retailers to utilize the data effi-
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ciently. This project presents a method for day-ahead net load forecasting that is robust to varying

data availability.

• Outcome: IEW Presentation and Conference Paper (presented June 16th, 2023)

• Collaborators: Lennard Visser, Wilfried van Sark

In the subsequent sections, we will dive into the motivation, methods, and results associated with each project,

offering a comprehensive understanding of the undertakings and their significance in the greater context of

the energy transition.

4.1 Multi-Scale Electricity Load Forecasting (Main Project)

In the early stages of this project, the intricacies of the load forecasting landscape really struck us. The elec-

tricity grid, dynamic and continually evolving, had grown not just in size but also in complexity. With the

constant integration of countless new assets into the grid, from large-scale power plants to small decentralized

generators, it became clear that predicting electricity usage wasn’t just a task—it was a grand challenge. This

myriad of interconnections and dependencies posed numerous questions and demanded intricate solutions.

Among them were:

1. How can we efficiently manage the peak load, especially when it varies across different temporal scales?

2. Are the existing forecasting methods myopic, focusing too much on specific spatial scales?

3. What is the ideal algorithmic approach for a sprawling metropolitan city compared to a more sporadic

rural landscape?

4. How does the temporal granularity of data (hourly vs. minute-wise) affect the choice of forecasting

models?

5. With the ever-growing integration of renewables, how can forecasting be tuned to adapt to this inter-

mittency, especially across different scales?

As we delved into existing studies, another realization came to the forefront: while there were numerous re-

search efforts centered around load forecasting, many were tunnel-visioned, concentrating either on macro or

micro-levels, but seldom bridging the two. The lack of a holistic view across different spatial scales, from large

grids covering entire regions to individual homes and buildings, became evident. There was an essential need

for a comprehensive approach—one that could seamlessly span from the vast to the granular while retaining

a high degree of forecasting accuracy. And thus, with these gaps and challenges as a backdrop, the project

was born out of a pursuit to offer solutions that were both encompassing and tailored to each scale’s unique

requirements.
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4.1 Multi-Scale Electricity Load Forecasting (Main Project)

4.1.1 Setting the Research Objective

The initial phase of any research endeavor is pivotal, setting the trajectory for what is to come. As we delved

into the preliminary research, the contours of the problem space became sharper. The path was clear: We

wanted to bridge the evident gap in the literature. It was not merely about plugging a hole but rather about

charting new territories in the field of load forecasting. The project’s mission was to comprehensively com-

pare available machine learning algorithms, assessing them across multiple electricity load time series and ag-

gregation levels. We also sought to understand how each algorithm performs under varying conditions and

challenges, from data scarcity to noise and from rapid demand fluctuations to seasonal patterns. Our aim was

not only to identify the top performers but to delve into the underlying reasons behind their success or lack

thereof.

4.1.2 Understanding the Literature

Diving deep into the existing literature is akin to exploring a vast forest; one encounters familiar territories,

but there are always uncharted lands waiting to be discovered. As we ventured into the existing body of

knowledge, two categories stood out: spatial (aggregation level) and temporal (forecast horizon) aspects of

electricity load forecasting. The richness and depth of existing studies were commendable. Yet, upon closer

examination, it was evident that many researches had focused on one of the two. While many studies offered

insights for specific aggregation levels, a holistic cross-scale evaluation was largely missing. Moreover, fewer

ventured into the economic implications of forecast accuracies. We realized the importance of an overarching

framework that could collate these disparate pieces of research into a coherent narrative, shedding light on

not just the "what" but also the "why" and "how" behind various forecasting successes and challenges.

4.1.3 Original Contributions

Through this research, we aimed to bring something novel to the table:

• A thorough analysis of popular machine learning forecasting techniques across 15 distinct electricity

load time series.

• A comparison that juxtaposed tree-based and neural network-based forecasting methods, taking into

consideration seasonal variations.

• The introduction of the neat load error metric, an innovative lens to discern the tangible effects of

forecast inaccuracies.

4.1.4 Methodological Insights

Throughout our work, we employed a range of algorithms that not only served our immediate forecasting

objectives but also epitomized significant milestones in the history of supervised learning for time series fore-
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Multi-Scale Electricity Load Forecasting (Main Project) 4.1

casting. As we journeyed through this domain, it became evident how the progression and sophistication of

these tools have reshaped the landscape of predictive analytics. Each algorithm we used offers a unique per-

spective, highlighting the importance of leveraging diverse techniques to stay at the forefront of this evolving

field.

• Linear Regression

• A linear approach to establish the relationship between dependent and independent variables.

• Random Forest [Bre01]

• An ensemble of decision trees, used for classification and regression.

• XGBoost [CG16]

• An optimized gradient boosting library.

• LightGBM [Ke+17]

• A gradient boosting framework that uses tree-based algorithms.

• Gated Recurrent Unit (GRU) [Chu+14]

• A type of recurrent neural network that is especially effective for sequences, such as time series

data.

• N-BEATS [oreshkin_n-beats_2019]

• A deep learning model that provides interpretable time series forecasts using neural basis expan-

sion.

• Temporal Fusion Transformer by [Lim+21]

• An attention-based deep learning model for time series forecasting.

Machine learning libraries, such as scikit-learn and pytorch, have democratized access to a plethora of so-

phisticated forecasting tools. From the user-friendly interfaces to their comprehensive documentation, these

libraries have become indispensable to both neophytes and experts in the field. The diversity of available algo-

rithms, ranging from traditional techniques like Linear Regression to the cutting-edge ones like the Temporal

Fusion Transformer, is indicative of the depth and breadth of methods at our disposal. However, this vastness

can be overwhelming, which is why it is paramount to understand the underlying mechanics and principles of

each method. By applying these methodologies, we aim to sift through the noise and highlight the distinctive

attributes and advantages of each, positioning them within the broader forecasting landscape.

4.1.5 Measuring Success: The Net Load Error (NLE) Metric

Forecasting success in the energy domain demands a blend of theoretical accuracy and practical applicability.

The traditional metrics such as RMSE, MAE, and MBE, offer a quantitative means to gauge forecast accuracy.
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4.1 Multi-Scale Electricity Load Forecasting (Main Project)

However, the real challenge is understanding how these forecast errors translate to tangible operational costs

in a realistic scenario.

TheNet Load Error (NLE) was conceived to address this challenge. At its core, NLE seeks to answer a pivotal

question: Given perfect market signal foresight, what additional costs will arise from the inaccuracies in a

load forecast? In simpler terms, how do the operational costs differ when utilizing forecasts versus the actual

ground truth for battery-operated electrical systems?

Calculating the Net Load Error (NLE):

The calculation of NLE is structured as follows:

Scaling the Time Series The real-time data, or ground truth, undergoes scaling using the MinMax for-

mulation. This scaling ensures compatibility with the BESS parameters, specifically its capacity and C-rate.

Price Signals Formulation Price signals are constructed by perturbing the lagging scaled ground truth

time series with a noise term drawn from a Gaussian distribution with mean = 0.0 and standard deviation =

0.1.

Operational Costs Computation Utilizing the Model Predictive Control (MPC) setup, the system cal-

culates optimal setpoints for the BESS’s state-of-charge at each timestep. This approach modulates the actual

load profile, leading to a residual load that is subsequently evaluated against the cost structure employed dur-

ing optimization.

Cost Function The crux of the setpoint calculation at each timestep hinges on a cost function. This func-

tion is divided into two components: The first, a two-segment time-dependent rate, assesses the system’s

ability to adapt to energy price fluctuations. The inherent tier structure captures the repercussions of fore-

cast errors, especially during peak load times. The second component introduces a monthly demand charge,

linked to the highest observed peak in that month. This evaluates the system’s prowess in forecasting and

subsequently curtailing peak load.

System Constraints Various system constraints ensure the model’s robustness and practicality. These in-

clude energy balance equations, battery state-of-charge bounds, and power charge/discharge limits. They

play a vital role in ensuring that the operational scenario simulated by the MPC mirrors real-world battery-

operated electrical systems.

Parameterization: A fair assessment mandates that the operational costs derived are consistent across vary-

ing load time series. To achieve this, a systematic parameterization of prices and BESS based on the load time
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series is crucial. Furthermore, all load time series (including forecasts and ground truth) are normalized within

a range of [0, 1].

In summary, the Net Load Error metric bridges the gap between abstract forecast errors and tangible opera-

tional consequences. The heart of NLE lies in this comparison: The difference in operational costs between

the sub-optimal residual load (stemming from forecast-based decisions) and the optimal one (informed by

the ground truth). By offering a holistic view of the repercussions of forecasting inaccuracies in a real-world

context, NLE emerges as a key metric, ensuring that our assessment remains grounded in both theory and

practice.

4.1.6 Preliminary Results

As we began collecting, exploring and cleaning our datasets, and subjecting them to various forecasting mod-

els, intriguing patterns emerged. A consistent observation was the stellar performance of tree-based methods,

namely Random Forest, XGBoost, and LightGBM. These methods, backed by robust statistical algorithms,

frequently overshadowed their neural network counterparts in terms of conventional statistical error metrics.

The unbiased nature of errors produced by these tree-based models renders them invaluable across myriad

forecasting horizons and scenarios.

Conversely, when we shifted our gaze towards neural networks, the picture became more nuanced. While

they occasionally lagged behind on some traditional metrics, they showcased commendable prowess when

assessed using the more innovative, application-driven error metric, NLE. This divergence underscores the

pivotal role of context. Tree-based models, with their robustness, are unparalleled for general forecasting.

However, when the spotlight is on application-centric scenarios, where nuanced intricacies matter, neural

networks ascend to the fore.

4.1.7 Conclusions

Forecasting, a domain that marries the age-old art of prediction with modern computation, has witnessed

substantial growth and diversification, as evidenced by our exploration of various methodologies and metrics.

As we navigate through the myriad of available algorithms, certain patterns emerge that offer valuable insights

into the application and efficacy of these techniques.

At the heart of our findings is the notable prominence of tree-based methods, which include Random Forest,

XGBoost, and LightGBM. Their inherent simplicity, combined with remarkable efficiency, sets them apart

as reliable workhorses in the forecasting arena. The nature of their construction, rooted in the division of data

into decision trees, allows for an intuitive understanding and interpretation of results. Their unbiased error

distribution further endears them to researchers and practitioners, making them an optimal choice for those

who prioritize accuracy using traditional statistical error metrics.
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However, the narrative takes a nuanced turn as we delve deeper into the intricacies of application-specific re-

quirements. This is where neural networks, specifically models like the Temporal Fusion Transformer, come

into play. While they demand greater computational resources and often involve more intricate setups, their

flexibility in capturing non-linear relationships and their adaptability to various data structures makes them

indispensable. When assessed using our innovativeNet Load Error (NLE) metric, which focuses on the prac-

tical implications of forecasting errors, neural networks often showcased superior performance. Their ability

to gauge and account for intricate patterns in data, which might elude more traditional methods, emphasizes

their value in scenarios where the context and nuanced application specifics are paramount.

In conclusion, the journey of forecasting is not a one-size-fits-all endeavor. The choice of methodology hinges

significantly on the end goals. For those prioritizing computational efficiency and accuracy based on tradi-

tional metrics, tree-based methods stand out as the stalwarts. Conversely, when the scenario demands a deeper

understanding of data intricacies and the consideration of application-specific metrics, neural networks rise

to the challenge, bridging the gap between raw computational forecasting and real-world application nuances.

As we continue to advance in this domain, it’s essential to remain adaptable, understanding that the optimal

forecasting method is often a dynamic choice, contingent upon the evolving requirements and constraints of

each unique situation.

4.1.8 Next Steps and Key Learnings

The analysis has provided valuable insights, but further work is needed. The next stages will focus on a detailed

evaluation using the Net Load Error metric, aiming to get a clearer picture of the intricacies of forecasting

performance. Following this, the final draft of the journal article will be composed, encapsulating all the

findings.

From this project, we learned:

• It is essential to choose the method that aligns best with the specific forecasting challenge.

• Comprehensive error analysis can reveal more than just raw performance metrics.

• Continuous research and re-evaluation are crucial to achieve the best forecasting results.

4.1.9 Limitations and Reflection on the Project

Embarking on this multiscale forecasting project presented both a series of challenges and rewarding moments

of clarity. Foremost, working across 15 distinct electricity load time series brought with it a challenge in data

harmonization. Each dataset, while individually consistent, posed its own unique intricacies and patterns.

Understanding and pre-processing this vast and varied dataset was the first hurdle we encountered.

The decision to juxtapose tree-based methods with neural networks was not without its trials. While both

methodologies have their merits, ensuring consistency in the evaluation framework for both presented techni-
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cal intricacies. To facilitate a fair comparison, particularly across seasonal variations, required meticulous data

handling and model tuning. Often, this involved returning to the drawing board to tweak our methodology.

However, one of the most challenging aspects was crafting a training and evaluation framework robust enough

to handle inhomogeneous datasets. We felt the weight of responsibility, given that our findings could influ-

ence future research directions. The triumph, though, was the integration of Weights & Biases, which al-

lowed us to develop an end-to-end solution. The process was demanding, but the results were clear: a robust

framework that didn’t just serve this project but became a beacon for subsequent projects. Today, the pride

is evident, as our solution (see Figure 1) has been adopted for diverse projects at the Berkeley Lab, testament

to the enduring value of our endeavor.

Figure 1: Wattcast Repository Structure: End-to-End Forecasting Pipeline for Model Comparison

Yet, no research journey is devoid of introspection. The introduction of the neat load error metric was a piv-

otal moment, one that shifted our perspective on forecast inaccuracies. It reminded us that while numerical

accuracy is vital, the real-world implications of our models, the tangible effects, are of utmost importance.

This metric has now set a precedent, pushing us and others in the field to consider the broader implications

of forecasting errors.

In hindsight, while the path was strewn with challenges, they were the catalysts for innovation. They pushed

us to think laterally, seek novel solutions, and in the process, contribute meaningful advancements to the

realm of multiscale forecasting. The journey underscored the importance of resilience, collaboration, and the

pursuit of real-world applicability in research.
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4.2 Net Load Forecasting in the Age of Decentralized Energy Resources

4.2.1 Setting the Research Objective

The surge in the adoption of roof-top solar photovoltaics (PV) signifies a monumental shift in our energy

paradigm. With their widespread acceptance, grid operators and energy retailers are posed with the challenge

of effectively integrating them. Historically, the electricity grid was designed with centralized generation in

mind, where large power plants produced electricity and transmitted it over long distances. However, the

growth of DERs introduces a two-way flow of electricity, challenging the conventional operation of power

networks.

Herein lies the prominence of net load, a metric representing the electrical load after accounting for generation

from distributed energy resources (DERs). This metric, often dubbed the "duck curve" due to its character-

istic shape in some regions, presents new operational challenges such as over-generation during solar peaks

and steep ramps in the evening when the sun sets and electricity demand rises. Addressing these challenges

necessitates accurate forecasting.

The aim of this research is to present a day-ahead net load forecasting technique that is not only accurate but

also efficient in using varying availability of data. We believe that by offering a robust solution to predict these

fluctuations, we can assist grid operators in maintaining system reliability while maximizing the benefits of

renewable integrations.

4.2.2 Understanding the Literature

While the world transitions towards decentralized energy sources, there remains ambiguity regarding the ideal

method for day-ahead net load forecasting. The dynamic nature of renewable generation, influenced by a

myriad of factors ranging from weather conditions to local shading, makes predicting the net load a complex

endeavor.

The current literature is deficient in discussions about timesteps below the 5-minute interval, which are cru-

cial in capturing the rapid fluctuations, especially with increasing penetration of renewables. These shorter

intervals are vital for efficient grid operations, ensuring that supply and demand are balanced in real-time. Fur-

thermore, there’s a noticeable gap in in-depth explorations on the effects of data availability scenarios. Many

regions, while witnessing an influx of DERs, may not have extensive historical datasets, making it crucial to

devise techniques that perform well under data constraints.

Additionally, the existing literature often gravitates towards particular methods, leaving a wide swath of al-

gorithms and techniques underexplored. This lack of comprehensive exploration curtails the potential for

discovery of novel or more efficient approaches tailored to specific challenges associated with decentralized

energy resource integration.
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4.2.3 Original Contributions

This research goes beyond traditional approaches to fill the gaps left by the existing body of work. Our con-

tributions include:

1. A groundbreaking multi-step ahead net load forecasting method, bridging a physical PV model and a

transformer neural network.

2. The novel introduction of time series patching for improved data efficiency with high-frequency smart

meter data.

3. A holistic comparison of additive methods against their direct and integrated counterparts.

4. A comprehensive study on the impact of data availability on forecasting, with special emphasis on

meter and PV system metadata.

5. Translating error analyses into pragmatic recommendations for energy retailers.

4.2.4 Methodological Insights

Central to this research is an indirect, additive net load forecasting technique. This method blends the strengths

of a physical PV model with the capabilities of a transformer neural network. The dual approach enables in-

direct forecasting by adding the outputs of a data-driven machine learning model to that of a physical model.

A cornerstone of this strategy is the physical model, which forecasts for individual PV systems using specific

metadata, encompassing factors like system tilt, azimuth angle, capacity, and more. This multi-faceted ap-

proach is further elucidated in Figure 2.
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Figure 2: Model Framework – Bottom (1): Weather forecasts (irradiance) and PV specification data are used as
inputs to the physical PV model to produce a PV generation forecast per system. Top (2): The PV generation
forecast is aggregated and subtracted from the net load meter data. Features for the past and future horizon
are extracted from the load data and a data-driven model is trained by back-propagating the loss through the
neural network. The loss is calculated as the mean squared error of the forecast and the ground truth of the
measurements. Once trained the load forecasts are added to the corresponding PV Generation Forecast to
retrieve the Net Load Forecast
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4.2.5 Measuring Success

The essence of our research lies not only in developing a robust forecasting methodology but also in rigor-

ously assessing its viability and effectiveness. The ultimate goal of our forecasting technique is its practical

application, ensuring a more balanced and cost-effective integration of distributed energy resources into the

grid. To this end, we established a multifaceted framework for evaluation that bridges theoretical accuracy

with tangible real-world impacts.

Central to our assessment strategy is the calculation of imbalance costs, particularly in the context of the

Dutch energy system. The imbalance costs give us an insight into the potential financial ramifications of

forecasting inaccuracies. In essence, when energy is either over-supplied or under-supplied relative to the

forecasted demand, imbalance costs are incurred. These discrepancies between the forecasted and actual net

loads can result in significant financial penalties for grid operators, reinforcing the importance of an accurate

forecasting mechanism.

In addition to the direct financial metrics, it was crucial to understand the statistical robustness of our model.

Traditional statistical error metrics, such as the Root Mean Square Error (RMSE) and Mean Square Error

(MSE), provide an analytical lens into the method’s accuracy. While these metrics are conventionally used to

gauge the deviation of predicted values from the actual measurements, their relevance in our study extends

further. By analyzing these metrics in conjunction with the imbalance costs, we aimed to establish a direct

link between theoretical accuracy and its financial implications. Furthermore, to ascertain the broader impli-

cations of our methodology, we compared these metrics against established benchmarks and state-of-the-art

methods in the realm of net load forecasting.

4.2.6 Results

Embarking on a rigorous assessment of our proposed methodology yielded interesting outcomes, increasing

our confidence in the research’s robustness and practicality. Our primary metric of success, the imbalance

costs within the Dutch energy system’s context, provided a real-world lens through which we could discern

the potential financial consequences of our forecasting mechanism.

Upon extensive evaluation, our model emerged as a frontrunner in minimizing these costs. Specifically, when

juxtaposed against other prevalent forecasting techniques, our methodology exhibited a substantial reduc-

tion in the associated financial implications. This directly translated to significant potential savings for grid

operators and energy retailers, showcasing the practical value of our research.

Further delving into the statistical robustness of our method, the RMSE and MSE values obtained offered a

promising picture. Notably, our technique’s RMSE value was consistently lower than other established fore-

casting methods by a margin that signifies not just statistical significance but also real-world applicability. The

MSE values further reinforced this, offering a testament to the method’s consistent accuracy across different
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scenarios and test cases.

But beyond the numbers and metrics, what truly set our methodology apart was its adaptability. The innova-

tive combination of a physical PV model with a transformer neural network allowed for a degree of flexibility

in catering to different data scenarios and grid conditions. This adaptability ensures that our model remains

relevant and effective even as the dynamics of decentralized energy integration evolve.

In conclusion, the results obtained through our rigorous evaluation framework underscore the efficacy of

our research. By bridging the gap between theoretical accuracy and practical financial implications, our study

offers a promising avenue for the future of net load forecasting in an increasingly decentralized energy land-

scape.

4.2.7 Conclusions

1. Our innovative approach to net load forecasting surpasses both "integrated" and "direct" methods con-

sistently for the day-ahead forecasting horizon.

2. Distinguishing our method from others, it remains viable and robust, even when faced with limited

training data sets.

3. By implementing patching, we’ve been able to successfully incorporate high-resolution data. This in-

clusion not only boosts performance but also enables the forecasting model to consider longer context

lengths.

4.2.8 Next Steps and Key Learnings

Our journey in net load forecasting, while successful, has shed light on potential areas for further exploration

and refinement.

1. There’s significant potential in aligning our forecasts with imbalance price expectations. Doing so

could make our forecasting results even more relevant from a financial perspective.

2. Broadening our horizons by inviting more community participants could enrich our data sets and

present newfound insights.

3. Employing real-time weather and irradiance forecasts will likely offer a genuine reflection of our model’s

applicability and accuracy in real-world scenarios. This pivot could further cement our method’s rep-

utation as a go-to solution in net load forecasting.

4.2.9 Limitations and Reflection on the Project

Embarking on this journey of advancing the frontiers of net load forecasting was no smooth sail. The initial

excitement of devising a novel method was soon met with the sobering reality of research complexities and

collaborative intricacies.
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Data Acquisition Hurdles One of the primary challenges was data acquisition. Suitable and relevant

data sets are the lifeblood of any forecasting model, and our project was no exception. Our initial surveys

of available datasets turned out to be either insufficient in granularity or not entirely relevant to the specific

Dutch energy context we were focusing on. Collaborating with our esteemed counterparts in Utrecht seemed

promising, given their repository of data that seemed ideal for our needs. However, this wasn’t without its

share of hurdles. Convincing them about the potential impact of our project, and ensuring that data sharing

adhered to privacy and other regulatory standards, took longer than anticipated. The process involved a maze

of NDAs, data-sharing agreements, and multiple rounds of negotiations.

Crafting the Novel Method The task of formulating a unique method brought its own set of challenges.

While the theoretical understanding was clear, translating it into a practical, workable model took countless

iterations, brainstorming sessions, and testing. It was a humbling experience, reminding us that innovation

often demands perseverance and a willingness to embrace failure. There were moments of doubt, where we

questioned the feasibility of our approach, especially when initial results were not as promising.

Silver Linings However, every challenge we faced turned into a learning experience. The difficulties in data

acquisition underscored the importance of collaboration and the value of open data sharing in the research

community. Crafting our method, despite its challenges, strengthened our resolve and honed our problem-

solving skills. It reiterated the age-old adage – ’Rome wasn’t built in a day.’ Research, especially one aiming

to push the boundaries, is a marathon, not a sprint.

In conclusion, the challenges we faced, while taxing, enriched our research journey, instilling in us lessons

that extend beyond just this project.

5

Personal and Professional Development

Throughout my academic trajectory, particularly during my time at TU Wien and my transformative journey

to Berkeley, my professional and personal boundaries expanded in ways we hadn’t previously envisioned.

The challenges faced, experiences gathered, and connections formed laid the foundation for this exponential

growth.

From a professional perspective, the two major projects—multiscale forecasting and net load forecasting—have

been monumental milestones. They underscored the importance of resilience in the face of challenges. The

multiscale forecasting project, for instance, reminded me of the intricacies of handling diverse datasets, jux-

taposing various machine learning methodologies, and thinking critically about real-world impacts. Delving

into the depths of neural networks, tree-based methods, and crafting metrics like theneat load error enhanced
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my skill set and fortified my expertise in energy informatics.

The subsequent net load forecasting project was equally, if not more, enlightening. Beyond the technical chal-

lenges, this project introduced me to the complexities of collaboration. Negotiating data access, understand-

ing contractual intricacies like NDAs, and coordinating with partners in Utrecht were lessons in patience,

persistence, and diplomacy. These experiences greatly expanded my ability to navigate real-world research

hurdles.

Yet, it wasn’t just the research complexities that facilitated growth. Being at the heart of academic excellence

in Berkeley and engaging with leading minds pushed me to consistently elevate my standards. Mentorship

from figures like Dr. Tianzhen Hong, collaborations with peers like Han Li and Miguel Heleno, and the

camaraderie of fellow scholars all played pivotal roles in shaping my professional journey.

On a personal level, the journey was equally transformative. Living in Berkeley, a melting pot of cultures and

ideas, reshaped my perspectives. Interacting with fellow scholars, exploring the city, and forging bonds with

visitors provided a depth to my personal development. These experiences broadened my horizons, teaching

me the importance of openness, adaptability, and embracing diversity. The invitation to Han Li’s barbe-

cue in Oakland, for instance, wasn’t just about food; it was a moment of cultural immersion and deepening

friendships.

Reflecting upon these experiences, it’s evident that my time in Berkeley was much more than just an aca-

demic endeavor. It was a journey of self-discovery, professional refinement, and building enduring relation-

ships. While the academic accolades and successful projects stand as testament to the professional growth,

the personal narratives, cultural experiences, and lasting connections are treasures that have enriched my life

in immeasurable ways.

6

Recommendations for Future Scholars

Pursuing research at an esteemed institution like Berkeley Lab, particularly within the realm of energy infor-

matics, presents a plethora of opportunities and challenges. Drawing from my experiences and the insights

from our discussed projects, we offer the following recommendations for aspiring scholars:

1. Embrace Collaboration Early On: The energy informatics domain is expansive and multidisciplinary.

Engaging with experts, as we did with Han Li and Miguel Heleno, can open doors to fresh perspectives

and methodologies. This interdisciplinary approach was pivotal in our multiscale forecasting project,

highlighting the importance of diverse knowledge bases.

2. Data Accessibility and Integrity: One of the critical hurdles we faced was securing suitable data,

especially from collaborators in different regions. Always be prepared to navigate administrative chal-

lenges, including understanding NDAs. Furthermore, ensure the integrity and quality of your data, as
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it forms the bedrock of machine learning applications in energy systems.

3. Adopt Flexible Frameworks: Our multiscale forecasting project underlined the importance of a flex-

ible training and evaluation framework, especially when dealing with inhomogeneous datasets. Plat-

forms like weights and biases can provide an end-to-end solution, streamlining the research process.

4. Stay Updated and Innovate: The field of machine learning is ever-evolving. During our net load

forecasting project, we realized the value of creating novel methods and metrics (like the neat load

error). Stay updated with the latest advancements and don’t hesitate to introduce innovations tailored

to energy system challenges.

5. Reflect on the Real-world Impact: Beyond technical accuracy, understand the tangible impacts of

forecast inaccuracies, especially in the energy sector. Tools like the neat load error metric can offer

insights into the real-world ramifications of your findings.

6. Plan for the Future: As highlighted in our net load forecasting project, always keep an eye on future

enhancements. Whether it’s optimizing forecasts for imbalance price expectations or integrating real

weather data, foreseeing future steps can guide the direction of your current work.

7. Immerse in the Cultural and Academic Fabric: Berkeley’s vibrant academic and cultural landscape

is a treasure trove for personal and professional growth. Engage in intellectual dialogues, attend confer-

ences like the International Energy Workshop, and explore the city’s rich tapestry. These experiences,

beyond enriching your research, will significantly enhance your overall journey.

8. Nurture Relationships Beyond the Lab: Building on personal experiences, such as the barbecue at

Han Li’s place, always remember that the relationships you forge extend beyond professional bound-

aries. These connections can often lead to future collaborations, provide emotional support during

challenging phases, and add depth to your overall experience.

In conclusion, the journey of research in energy informatics at Berkeley is a blend of technical challenges,

innovative thinking, and nurturing relationships. By embracing collaboration, staying updated, and inte-

grating with the vibrant Berkeley culture, future scholars can maximize their growth and contributions in

this ever-evolving domain.

7

Conclusion

As the curtain falls on our research visit to Berkeley Lab, one is reminded of the dynamism and transformative

potential of the global energy landscape. The urgency brought about by climate change, combined with the

technological strides in artificial intelligence (AI) and machine learning (ML), underscores the vitality of our

undertaking. The fusion of these disciplines, as evidenced by our endeavours in multi-scale load forecasting

and net load forecasting, presents a beacon of hope and innovation in these changing times.

Final Report 23

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


This work is licensed under a “CC BY-NC-ND 4.0” license. cbnd

7 Conclusion

The multi-scale load forecasting project, which sought to fathom the intricate layers of energy demand, has

yielded significant results. With an exhaustive analysis of diverse machine learning forecasting techniques

across 15 distinct electricity load time series, we’ve shone a light on the vast expanse of this domain. Our ef-

forts in contrasting tree-based and neural network-based forecasting methods against the backdrop of seasonal

variations have offered profound insights, shaping our understanding of the field. Moreover, the introduc-

tion of the neat load error metric serves as a testament to our commitment to both innovation and practical

relevance, providing a fresh perspective on quantifying and addressing forecast inaccuracies.

The net load forecasting project embarked on a journey to decipher the challenges entailed by the increasing

integration of renewables into our grids. Our multi-step ahead net load forecasting methodology bridges a

physical PV model and a transformer neural network, paving the way for more accurate and responsive predic-

tions. Coupled with the pioneering concept of time series patching, we’ve not only optimized data efficiency

but also set a benchmark for high-frequency smart meter data utilization. Furthermore, our holistic exam-

ination of additive methods, comprehensive studies on data availability, and actionable insights for energy

retailers present a well-rounded, impactful contribution to the domain.

However, as is the case with all pioneering endeavors, the path was not devoid of challenges. Issues like data

accessibility and the ever-looming quest for true generalization across different energy time series reiterate that

while we have made significant strides, there is yet much ground to cover.

In retrospect, our stay at the Berkeley Lab, facilitated by the gracious support of the Marshall Plan Founda-

tion, has been nothing short of transformative. It has not only expanded our horizons but also solidified our

commitment to driving change in the energy sector through the power of AI methods.

As we conclude our time at the Berkeley Lab, it is with a spirit of gratitude, determination, and anticipation.

The insights gleaned and the contributions made are but stepping stones towards a larger goal. There’s a

palpable sense of excitement for what lies ahead, especially as we channel our learnings into the formulation of

comprehensive journal papers. This mission, while rooted in our past endeavors, is very much about charting

the path forward – a future where our collective efforts contribute to a more sustainable, efficient, and resilient

energy world.

In the grand tapestry of the energy transition, our projects form crucial threads. They not only validate the

role of AI and ML in shaping the future but also emphasize the collaborative spirit required to navigate the

complexities of the modern energy landscape. With an unwavering commitment, we look forward to further-

ing this work, contributing to the global dialogue, and, most importantly, making a difference.
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