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Abstract 

This study investigates the spatial and temporal patterns of citizen science contributions to 

biodiversity monitoring in Carinthia, Austria, using research grade observation data from the 

iNaturalist platform. We employed a Negative Binomial regression model with Eigenvector 

Spatial Filtering to examine the relationships between environmental and other factors and 

observation counts across 5 x 5 km2 grid cells. Additionally, we explored both seasonal and hourly 

contribution patterns for observations gathered between 2015 and 2022, also under consideration 

of different land cover types. Results showed that built environments, water bodies, proximity to 

cities and primary roads were associated with increased observation counts, while forest and 

agricultural areas displayed negative associations and that the proportion of taxa contributed varies 

by hour of day and season and between land cover categories, with the major species observed in 

different landmarks across four seasons revealing shifts in user observation interests influenced by 

time and environment. Hourly contribution patterns further demonstrated varying degrees of user 

activity at different times. The study's outcomes have important implications for interpreting 

iNaturalist data in biodiversity research and for developing strategies to enhance participation 

across diverse habitats and temporal scales in Carinthia. 

. 
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1.Introduction and research goals 

In recent years, citizen science has emerged as a powerful vehicle for biodiversity monitoring and 

conservation efforts worldwide. Platforms like iNaturalist have revolutionized the way researchers 

collect and analyze species occurrence data, allowing for unprecedented spatial and temporal 

coverage (Seltzer, 2019). The engagement of citizens in scientific research not only contributes to 

data collection but also fosters environmental awareness and scientific literacy among participants 

(Bonney et al., 2015). However, the distribution of citizen science contributions is often uneven, 

influenced by various environmental and socio-economic factors. Understanding these patterns is 

crucial for optimizing data collection strategies, addressing potential biases in citizen science 

datasets, and gaining insights into user behavior and environmental engagement. 

This study aims to model the spatial distribution of iNaturalist research grade contributions in 

Carinthia, Austria, using a combination of Negative Binomial regression and Eigenvector spatial 

filtering regression. By analyzing the relationship between contribution counts and factors such as 

land cover type, road length, distance to nearest city, and proximity to nature protected parks, we 

seek to identify key drivers of citizen science participation in the region. This research contributes 

to the growing body of literature on citizen science engagement and provides valuable insights for 

conservation planning and biodiversity monitoring in Alpine environments. 

By examining the patterns of iNaturalist contributions, we can gain a deeper understanding of how 

people interact with their environment and what motivates them to engage in scientific activities. 

This knowledge is essential for several reasons: 

1. Enhancing user engagement: Understanding the factors that drive participation in citizen 

science projects can help platform developers and project managers design more effective 

strategies to engage and retain volunteers. This could include targeted outreach programs, 

gamification elements, or educational initiatives tailored to specific user groups or 

geographic areas (Nov et al., 2014). 

2. Improving data quality: Identifying spatial biases in data collection can help researchers 

develop corrective measures or weighting schemes to ensure more representative sampling. 

This is crucial for maintaining the scientific integrity of biodiversity studies that rely on 

citizen science data (Bird et al., 2014). 

3. Urban planning and green space management: By analyzing the relationship between land 

cover types and citizen science activity, this research can provide insights into how urban 

and suburban environments can be designed to encourage greater interaction with nature 

and biodiversity (Larson et al., 2020). 

4. Bridging the gap between science and society: Citizen science projects like iNaturalist play 

a crucial role in democratizing science and fostering a sense of environmental stewardship 

among the public. Understanding participation patterns can help in developing strategies 
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to broaden engagement and ensure more inclusive citizen science practices (Dickinson et 

al., 2012). 

The choice of Carinthia, Austria as the study area adds another layer of significance to this 

research. As an Alpine region, Carinthia presents unique challenges and opportunities for citizen 

science engagement. Alpine environments are known for their rich biodiversity and sensitive 

ecosystems, making them important areas for conservation efforts (Christian, 2004; Mutton, 1953). 

However, these regions also face significant threats from climate change and human activities. By 

focusing on this area, our study can provide valuable insights into how citizen science can 

contribute to monitoring and conserving Alpine biodiversity. 

Moreover, the application of advanced statistical methods, combining Negative Binomial 

regression with Eigenvector spatial filtering, represents a methodological contribution to the field. 

This approach allows for a more nuanced analysis of spatially autocorrelated count data, which is 

common in ecological studies but often challenging to model accurately (Griffith & Peres-Neto, 

2006). 

In summary, this research aims to: 

1. Identify the key environmental and socio-economic factors influencing the spatial 

distribution of iNaturalist research grade contributions in Carinthia, Austria using a spatial 

regression model. 

2. Provide insights into user behavior and environmental engagement patterns in an Alpine 

region across different temporal scales and land cover types. 

3. Contribute to the broader understanding of citizen science dynamics and their implications 

for biodiversity monitoring and conservation. 

2. Literature review 

Citizen science has gained significant traction in ecological research over the past decade, with 

platforms like iNaturalist playing a pivotal role in this area. Launched in 2008, iNaturalist has 

become one of the world's largest biodiversity observation networks, amassing records from 2008 

March to January 21st 2022 of observations globally (Campbell et al., 2023). The platform's 

success lies in its user-friendly interface, robust data validation processes, and integration with 

global biodiversity databases (Nugent, 2018). Research grade observations on iNaturalist are 

particularly valuable for scientific research, as they provide reliable species occurrence data at a 

scale previously unattainable through traditional scientific methods (Heberling & Isaac, 2018). 

These observations meet specific criteria, including having a clear photo, date, and location, and 

receiving community verification. The growth of iNaturalist and similar platforms has led to a 

surge in studies exploring the potential of citizen science data for biodiversity monitoring, species 

distribution modeling, and phenological research (Prudic et al., 2017). 
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Researchers began to investigate the spatial and temporal contribution patterns in opportunistically 

collected community science datasets, uncovering variations in observation density based on 

location and time. Studies show that citizen science data are biased towards areas with higher 

population density and easier accessibility (Geldmann et al., 2016; Tiago et al., 2017). Specifically, 

road networks have been linked to higher contribution rates of eBird data (Mair & Ruete, 2016) 

since the presence of road infrastructure may also influence the likelihood of chance encounters 

with wildlife, particularly for mobile citizen scientists (e.g., cyclists, motorists) (Troudet et al., 

2017). Various studies also looked specifically into temporal, spatial, and taxonomic biases of 

iNaturalist contributions. For example, a comparison of collections-based bee biodiversity 

monitoring with photo-based data collections methods showed that a small number of well-trained 

participants systematically collecting bees more effectively documented biodiversity than 

thousands of people contributing data through iNaturalist (Turley et al., 2024). The study also 

revealed strong biases toward large-bodied and non-native species. Analysis of bird observations 

shared on iNaturalist found evidence that large-bodied birds, common species, as well as species 

in large flocks are over-represented (Callaghan et al., 2021). iNaturalist users also tend to 

specialize on a particular group, such as plants or insects, and rarely submit repeat observations of 

species they had previously recorded (Di Cecco et al., 2021). 

To address sampling bias in species distribution models using citizen science data, some 

researchers have proposed corrective methods, including spatial filtering and the use of 

background sampling techniques (Phillips et al., 2009). 

The presence of protected areas has been associated with increased citizen science activity. 

National parks and other protected areas often attract more observers, potentially due to their 

perceived biodiversity value and recreational opportunities (Tulloch et al., 2013). However, the 

relationship between protected areas and citizen science contributions can vary depending on the 

region and taxa studied (Tiago et al., 2017). In some cases, remote or less accessible protected 

areas may receive fewer observations despite their ecological importance. Socio-economic factors 

also play a role in shaping citizen science participation patterns. Education level, income, and 

leisure time have been shown to correlate with engagement in citizen science activities (Hecker et 

al., 2018). Additionally, cultural factors and local environmental attitudes can influence the 

propensity for nature observation and reporting (Lewandowski & Specht, 2015).  

To model the spatial distribution of citizen science data, researchers have employed various 

statistical techniques. Negative Binomial regression has been widely used to account for 

overdispersion in count data, which is common in ecological datasets (Ver Hoef & Boveng, 2007). 

This approach has been successfully applied to model species richness and abundance in citizen 

science data (Kelling et al., 2015). Eigenvector spatial filtering (ESF) has emerged as a powerful 

technique to address spatial autocorrelation this issue, allowing for the incorporation of spatial 

dependencies into regression models (Griffith & Peres-Neto, 2006; Murakami & Griffith, 2015). 

The ESF method is particularly useful in ecological studies where spatial autocorrelation is 

common due to underlying geographic processes. The combination of Negative Binomial 
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regression with ESF has shown promise in modeling spatially autocorrelated count data in 

ecological studies (Bachl et al., 2019). Other approaches to modeling spatial patterns in citizen 

science data include generalized additive models (GAMs), which can capture non-linear 

relationships between variables (Fink et al., 2010), and machine learning techniques such as 

random forests or boosted regression trees, which can handle complex interactions among 

predictor variables (Elith et al., 2008). 

While citizen science has been widely studied in various ecosystems, research on its application 

in Alpine environments is relatively limited. The use of citizen science data for modeling plant 

species distributions in the European Alps has been explored, highlighting both the potential and 

limitations of such data in mountainous regions (Capinha et al., 2013). Alpine ecosystems are 

characterized by high biodiversity, complex topography, and often limited accessibility. These 

factors can influence both the distribution of species and the patterns of human observation. Citizen 

science in Alpine regions may be affected by seasonal variations in accessibility, tourism patterns, 

and the distribution of charismatic or easily identifiable species (Erschbamer et al., 2009). 

Furthermore, Alpine environments are particularly vulnerable to climate change, with many 

species facing potential range shifts or extinctions (Pauli et al., 2012). Citizen science data can 

play a crucial role in monitoring these changes over time, providing valuable information for 

conservation planning and climate change adaptation strategies (Theobald et al., 2015). 

3.Methodology 

Figure 1 shows the overall workflow of this research. Landcover data, road network information, 

and sociodemographic information, are combined with iNaturalist data for the two main threads 

of analysis, which are spatial regression and temporal analysis. That is, all these datasets are used 

to run a  negative binomial regression with eigenvector spatial filtering to determine factors 

associated with increased or decreased iNaturalist observation counts in the study area. 

Additionally, landcover maps were utilized to examine iNaturalist contributions on hourly and 

seasonal scales. This analysis yielded various outputs, including histograms and species tables 

categorized by landcover types. Chi-square tests were subsequently conducted to assess significant 

changes across different times and landcover types.  
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Figure 1. Research workflow 

3.1 Data Acquisition and data preparation 

a) iNaturalist observations 

The research-grade iNaturalist dataset for this study was obtained through the Global Biodiversity 

Information Facility (GBIF) website (https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-

8c48425ef4a7) in csv format. GBIF's interface allows for data filtering based on geographical 

boundary, species, and date ranges. The downloaded dataset includes coordinates of geolocated 

observation points, timestamps, species identifications (both scientific and common names), 

anonymized observer IDs, detailed taxonomic information, observation quality grades, URLs to 

associated photographic evidence, and relevant environmental condition data. Upon download the 

data were stored in a PostgreSQL database for further analysis. Temporal coverage of the 

iNaturalist data extends from the platform's inception in the region in 2014 through September 

2023, where data between January 1st 2015 and January 1st 2023 were used for this study. 

iNaturalist enables users to contribute biodiversity observations through multiple platforms: a 

mobile app for direct field submissions, and a website supporting individual and bulk uploads. 

Users can submit various types of data, including photographs, audio recordings, and detailed 

textual information about species, location, date, and other relevant observations. Figure 2 shows 

the information associated with a research-grade observation on the iNaturalist Website.  

https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7
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Figure 2. Research grade contribution as shown on the iNaturalist Website 

Table 1 lists annual iNaturalist research grade contributions for the study area. It shows substantial 

growth in iNaturalist usage from 2015 to 2022, both in users contributing per year as well as the 

contributions per user, which grew about ten-fold since the project beginning. 

Table 1. Annual iNaturalist research grade contribution for Carinthia between 2015 and 2022 

Year User Count Contribution 
Mean contributions per 

user 

2015 3 7 2.33 

2017 7 62 8.86 

2018 16 277 17.31 

2019 105 1370 13.05 

2020 253 4286 16.94 

2021 390 7695 19.73 

2022 484 11570 23.90 

 

The distribution of iNaturalist research grade observations in Carinthia for the study period is 

visualized in Figure 3. Counting observations in a 5 x 5 km2 grid raster it became apparent that 

some “super users” had contributed disproportionately large numbers of observations (several 

thousand points) concentrated within very small areas, potentially skewing the analysis. To ensure 

a more balanced representation of citizen science contributions across Carinthia, we implemented 

a threshold approach for the regression as follows. Within each grid cell, we calculated the number 

of contributions per unique user. The number of records per user were then compiled across all 

grid cells and sorted. The 95th percentile of user contribution counts from all these users across all 

cells was determined and set as a threshold. This threshold was then applied to each grid cell, 

capping the maximum number of observations any single user could contribute to that cell. 
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Figure 3. Research grade iNaturalist observations in Carinthia 

b) Other geospatial data 

This section describes acquisition and preprocessing of other geospatial datasets that were included 

in spatial regression or temporal analysis.  

Administrative boundary of Carinthia: A vector shapefile was obtained from the “Mapog” GIS 

data repository (https://gisdata.mapog.com/austria/State%20level%201). This dataset, in ESRI 

shapefile format, provides the official administrative boundaries of Carinthia at a 1:250,000 scale.  

Road network: Vector data representing the transportation infrastructure of Carinthia was obtained 

from Carinthia University of Applied Sciences, based on original road network data was from the 

Carinthia Transportation Department. This dataset consists of polyline features and distinguishes 

between 12 road classes. For our analysis, roads were divided into those with and without car 

access (Figure 4). For further analysis the total length of vehicular and pedestrian-accessible roads 

within each 5 x 5 km2 grid cell was calculated. Computation of the distance of a grid cell to the 

nearest primary road was based on the Open Street Map (OSM) road network, which was 

downloaded from https://download.geofabrik.de/europe/austria.html. 
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Figure 4. Road network in Carinthia 

Land cover: A vector dataset showing land cover data was extracted from the CORINE Land Cover 

(CLC) 2018 version was obtained from the Copernicus Land Monitoring Service 

(https://land.copernicus.eu/en/products/corine-land-cover). It provides a standardized 

classification of land use and land cover types across Europe, with a minimum mapping unit of 25 

hectares, minimum width of linear elements of 100 meters, and a scale of 1:100,000. The dataset 

offers temporal coverage for 2018, with earlier versions available for change analysis. The CLC 

nomenclature includes 44 land cover classes, organized hierarchically in three levels. For this 

study, the first-level classification was utilized, which comprised five main categories: 

Agriculture, artificial surfaces, forest and semi-natural areas, water bodies, and wetlands (Figure 

5). For subsequent analysis, we determined the proportion of different land cover classes in each 

5 x 5 km2 grid cell.  
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Figure 5. First-level classification of CORINE land cover in Carinthia 

Protected areas: Shapefiles delineating protected areas in Carinthia were obtained from multiple 

sources, primarily the Austrian Federal Ministry for Climate Action, Environment, Energy, 

Mobility, Innovation and Technology (such as: 

https://www.noe.gv.at/noe/Naturschutz/Niederoesterreich_ATLAS.html). The dataset 

encompasses various categories of protected areas across Austria, including national parks, nature 

reserves, and landscape protection areas. This national-scale dataset served as the foundation for 

extracting protected areas specific to Carinthia, the study area. To ensure comprehensive coverage, 

additional data were manually sourced from regional environmental authorities in Carinthia. It is 

important to note that the term "Protected Area" functions as an umbrella category, subsuming 

different types of protected areas. In this study, no further distinction was made regarding the 

number of observations per specific type of protected area 12. This compilation provides a thorough 

representation of protected natural areas within the study region. Among 7748 protected areas, 687 

intersect with Carinthia, covering around 1,488 km2. 

Urban centers: A point vector layer representing the ten most populous cities in Carinthia (Figure 

3) as of 2020 was created based on information from the Austrian Bureau of Statistics (Statistik 

Austria). This dataset consists of single point geometries for each city center, including Klagenfurt, 

Villach, Wolfsberg, Spittal an der Drau, Feldkirchen, Sankt Veit an der Glan, Völkermarkt, Sankt 

 
1 https://www.burgenland.at/natur-umwelt-agrar/natur/naturschutz/kontakt-zu-uns 
2 http://www.noe.gv.at/noe/Naturschutz/Naturschutz.html 
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Andrä, Finkenstein am Faaker See, and Velden am Wörthersee. For the regression analysis, the 

distance between each grid cell centroid to the nearest city was computed.  

3.2 Negative Binomial Regression  

A Negative Binomial regression model was developed to predict the number of observations per 

nominal 5 x 5 km2 grid cell. Negative Binomial regression was chosen over Poisson regression 

due to its ability to handle overdispersion, which is common in ecological count data like species 

observations. Candidate predictors, computed for each grid cell, included elevation, population 

total length of pedestrian-only and car-accessible road network, distance to nearest city, distance 

to nearest protected area, as well as the proportion of land cover for five land cover types, where 

proportion of wetland was excluded to avoid multicollinearity between these five land cover 

predictors. The land cover independent variables underwent a logarithmic transformation to 

address non-normality. A small constant (0.001) was added before applying the natural logarithm 

to handle zero values. Non-log-transformed variables were then standardized through z-scores. In 

addition, the model included an offset term (log of cell size in km2) to account for varying size of 

grid cells in which iNaturalist observations were taken. To address spatial autocorrelation among 

regression residuals, ESF  was employed, following the approach in (Fang et al., 2019), using the 

R spdep and sf packages. 

The Negative Binomial regression model, incorporating environmental and other predictor 

variables as well as spatial eigenvectors, can be expressed as equation (1): 

log(λ) = β₀ + β₁X₁ + β₂X₂ + ... + βₙXₙ + offset(log(area)) + γ1EV1  + … + γmEVm + ε (1) 

where λ is the expected count of observations, X₁...Xₙ are the predictor variables, EV₁... EVm are 

eigenvectors, indexed β and γ symbols represent coefficients for predictor variables and 

eigenvectors, respectively, which are to be estimated, and ε is the error term. 

To construct the final Negative Binomial regression with selected eigenvectors, a forward stepwise 

selection procedure was implemented based on the Akaike Information Criterion (AIC), which 

balances model fit and complexity. This process allows for the identification of the most 

parsimonious model that accounts for both environmental factors and spatial autocorrelation.  

Several diagnostic procedures were performed to assess model quality and validity. Variables with 

a Variance Inflation Factor (VIF) > 5 were flagged for potential removal due to multicollinearity 

among predictors. Spatial autocorrelation in model residuals was evaluated using Moran's I, and 

McFadden's R-squared was calculated to assess overall model fit.  

3.3 Seasonal and daily variations in observation patterns 

The study analyzed iNaturalist research-grade contributions in Carinthia, Austria, from 2015 to 

2022 (Figure 6). These observations can be considered a representative sample of all iNaturalist 

observations, given that the data quality of taxonomic information of research grade and NeedsID 

observations is comparable (Hochmair et al., 2020). The temporal analysis focused generally on 
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change in contribution patterns (e.g. abundance, number of taxa or users, proportion of taxonomic 

groups, most frequently observed species) (1) across four seasons and (2) throughout a day. Some 

of these analyses are conducted separately for different land cover types. For both seasonal and 

hourly analyses, abundance and taxonomic composition was aggregated from multi-year data 

covering the study period.  

 

Figure 6. Monthly contributions of iNaturalist research grade data in Carinthia from 2015 to 2022 

More specifically, the distribution of hourly contributions to different kingdoms was compared 

between four seasons. These were spring (time stamp of contribution between March and May), 

summer (June-August), fall (September-November), and winter (December-February). Standard 

deviations of hourly observations distributions were then computed to provide insight into 

differences in daily observation windows across different seasons. Chi-square tests were 

performed on hourly contribution data to different kingdoms for the four seasons to identify the 

statistical significance of hourly changes in the share of different kingdoms across the day. In 

addition, a chi-square test was used to assess the statistical significance in the share of contributions 

to different kingdoms between the four seasons.  

The role of land cover type in contribution patterns was analyzed in multiple ways. That is, we 

used a chi-squared test to analyze the statistical significance in the change of proportion of 

observations to different land cover areas throughout a day (conducted for four seasons), as well 

as that of the change in the proportion of contributions to different land cover types across four 

seasons. We also compared the observed and expected (based on land cover area) number of 

observations for different land cover types for the four seasons, followed by chi-square tests. 

Additional descriptive statistics, such as the number of hours a day that comprise 90% of 

observations for each land cover type and season, as well as the number of unique family and 
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genus taxa for different land cover types in different seasons provide more details about temporal 

changes in activity patterns for different land cover types. Finally, comparison of the three most 

frequently observed species for each land cover type and season demonstrates the seasonal change 

in primary mapped species across a year for different land over types. 

4. Results 

4.1. Regression analysis 

The final model (Table 2) only includes significant predictors, where some of the coefficients 

associated with spatial eigenvectors (EVs) are not displayed for conciseness. Most EVs included 

in the model displayed VIF values close to 1, suggesting their effectiveness in capturing spatial 

autocorrelation without introducing significant multicollinearity. The distance to the nearest 

protected area had to be removed due to multicollinearity. 

The residuals from the model without integration of spatial eigenvectors showed significant spatial 

autocorrelation (Moran's I = 0.198, p < .0001) which disappeared after incorporating the spatial 

eigenvectors (Moran's I = 0.005, p = 0.377). 
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Table 2. Significant predictors of iNaturalist observations in Carinthia 

Variable Estimate p-value 

(Intercept) 1.52 < 0.001 

LC proportion: Artificial surfaces 0.22 < 0.001 

LC proportion: Forest and semi-natural areas -0.79 < 0.001 

LC proportion: Water bodies 0.14 < 0.001 

LC proportion: Agriculture -0.21 < 0.001 

Nearest distance to city -0.18 < 0.001 

Nearest distance to primary road -0.13 < 0.05 

EV2 -3 < 0.001 

EV4 5.48 < 0.001 

EV208 3.37 < 0.001 

EV163 -2.78 <0.001 

EV9 -4.20 < 0.001 

EV11 -6.64 < 0.001 

EV131 -3.33 < 0.001 

EV16 4.46 < 0.001 

EV154 -3.52 < 0.001 

EV10 -2.9 <0.05 

EV30 -4.19 <0.001 

Other 53 selected Eigenvectors 

Number of observations 456  

Moran’ I of residuals 0.005 0.377 

McFadden's R-squared 0.12  

McFadden's adjusted R-squared 0.10  

 

The model results indicate that proportion of artificial surfaces and water bodies are positively 

associated with iNaturalist observations, while proportion of forested areas and agricultural lands 

show negative associations. Proximity to cities and primary roads is linked to increased 

observation counts.  
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4.2. Temporal contribution pattern 

Figure 7 presents the hourly distribution of numbers of contributions and unique users across the 

four seasons. Summer exhibits the highest overall activity, peaking at around 12 p.m. with a 

maximum of about 250 unique users contributing about 2000 observations per hour. Winter 

displays the lowest activity with a maximum of about 40 unique users contributing about 120 

observations per hour. 

 

Figure 7. Hourly distribution contributions and unique users by season 

The proportion of contributions to different kingdoms varies by hour and season (Figure 8). For 

instance, at the 12 pm peak in summer, Animalia comprises 45.4%, Plantae 51.8%, and Fungi 

2.7%, whereas fall observations at 12 pm reveal Animalia at 63.1%, Plantae at 20.6%, and Fungi 

at 16.3%. Regarding variation across the day, it can be noted that Animalia dominates early 

morning and late evening hours across seasons, often reaching 90-100% of observations, likely 

due to nocturnal animal activity and reduced plant visibility. Fungi observations are more 

prominent in fall, reaching up to 16.4% at 12 pm. Protozoa and Bacteria appear sporadically, with 

minimal percentages, indicating occasional observations of these less visible kingdoms.  
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Figure 8. Hourly distribution of kingdoms by season in Carinthia 

Results of chi-square tests based on number of observations in Figure 8 show that the change in 

proportion of observations across kingdoms across a day are statistically significant for spring (X² 

= 2081.04, df = 23, p < 0.001), summer (X² = 6896.16, df = 23, p < 0.001), fall (X² = 1942.68, df 

= 23, p < 0.001), and winter (X² = 584.04, df = 23, p < 0.001), and this change is also significant 

between seasons (X2 = 1415.67, df = 12, p < 0.001).  

The mean peak hour and standard deviation (in hours) of the distribution of observation counts in 

Figure 8 are shown for different seasons in Table 3, revealing longest observation hours for 

summer and shortest observation hours for winter. At a more detailed level, the hour ranges 

covering 90% of observations (Table 4), varied across land cover types and seasons. Agricultural 

areas show the widest range (17 hours) in summer, while wetlands had the narrowest range (5 

hours) in winter. Overall, these numbers confirm earlier standard deviation results in that summer 

offers the longest observation windows for iNaturalist data collection. During winter the 

observation window is longest for artificial surfaces (due to artificial lights allowing data collection 

at evening and night) whereas they are longest in agricultural areas during summer (possibly due 

to little canopy and thus long natural daylight in summer).  
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Table 3. Mean hour and standard deviation of hourly contributions by season 

Season Total Observations Mean Contribution Hour Standard Deviation (hours) 

Spring 4,005 13.29 3.73 

Summer 16,553 13.18 3.91 

Fall 3,406 13.21 3.21 

Winter 871 13.02 2.90 

 

Table 4.  90% observation hour ranges across seasons and land cover types 

Season 
Artificial 

surfaces 

Forest and 

semi natural 

areas 

Agricultural 

areas 
Water bodies Wetlands 

Spring 11.00 10.00 13.55 12.05 11.00 

Summer 15.00 16.00 17.00 11.00 12.00 

Fall 14.00 8.00 11.00 11.80 8.00 

Winter 11.00 8.00 8.35 9.00 5.00 

 

The species most often observed in Carinthia at a given hour, together with their number of 

observations in parentheses, are listed in 



                                

Table 5. Different seasons are dominated by different species, as explained in more detail in the 

discussion section. 



                                

Table 5. Most frequently observed species per hour of day in four seasons 

Hour Spring Summer Fall Winter 

0      Goat's Beard (2)        Red-black Longhorn Beetle (8)        Roman Snail (3)          Common Buzzard (2) 

1        Larder Beetle (1)        Marbled Minor Moth (2) 🦫Northern White-breasted Hedgehog (1) ⸺ 

2 🦫Stone Marten (1)        Dotted Clay Moth (3) ⸺ ⸺ 

3 ⸺        Ingrailed Clay Moth (3) ⸺      Common Reed (1) 

4         Great Cormorant (1)      Fragrant Orchid (3)         European Goldfinch (1) ⸺ 

5         Song Thrush (1)      Mountain Pine (3)         Issus Bug (2)        Daddy Long-legs Spider (1) 

6         Song Thrush (2)      Alpine Thrift (3)        Bow-winged Grasshopper (2)         Spotted Flycatcher (1) 

7         Barn Swallow (3)      Yellow Oxeye (7)        Drone Fly (2)         Common Blackbird (1) 

8      Greater Celandine (4)      European Elder (4)         Migrant Hawker (2) 🦫 Red Squirrel (3) 

9        Great Grey Slug (5)      Common Spotted Orchid (8)        Western Conifer Seed Bug (3)          Common Blackbird (3) 

10      Western Marsh Orchid (5)      Common Spotted Orchid (14)        Western Conifer Seed Bug (6)         Common Blackbird (5) 

11       Fly Honeysuckle (5)      Silver-washed Fritillary (30)        Western Conifer Seed Bug (10)         Eurasian Siskin (5) 

12      Bird's-eye Speedwell (5)         Wels Catfish (32)        Western Conifer Seed Bug (8)      Common Hazel (6) 

13      Map Butterfly (7)         Wels Catfish (39)        Western Conifer Seed Bug (10)         Eurasian Coot (5) 

14      Bugle (7)         Wels Catfish (31)        Western Conifer Seed Bug (14)         Common Blackbird (6) 

15       Common Wall Lizard (14)      Silver-washed Fritillary (24)        Harlequin Ladybird (8)         Mute Swan (5) 

16      Coltsfoot (6)      Silver-washed Fritillary (14)        Western Conifer Seed Bug (9)          Eurasian Coot (6) 

17       Fire Salamander (5)         Wels Catfish (99)        Western Conifer Seed Bug (10)      Common Hazel (4) 

18         Common Blackbird (8)         Wels Catfish (21)        Western Conifer Seed Bug (5)        Western Conifer Seed Bug (2) 

19        Blue Featherleg (3)      Small Balsam (6)        European Hornet (3)        Daddy Long-legs Spider (2) 

20        Blue Featherleg (3)        Lesser Stag Beetle (9)        Western Conifer Seed Bug (2)        Buzzing Spider (2) 

21        Hebrew Character Moth (2)        Field Cricket (4)        Walnut Orb-weaver Spider (5)        Buzzing Spider (1) 

22        Latticed Heath Moth (3)        Green Arches Moth (5)        Old World Bollworm (2)        Daddy Long-legs Spider (1) 

23        Brimstone Moth (2)       Common Toad (4)        House Fly (1)        Harlequin Ladybird (1) 

Legend:          Bird       Butterfly         Other insect       Flowering Plant       Tree          Fish        Amphibian        Reptile       Fungus         Arachnid 🦫 Mammal         Mollusk 



                                

The number of observations falling into the five land cover classes at different hours of the day 

are plotted in Figure 9 and summarized by season in Table 6. Contributions to forest and semi-

natural areas dominate spring (44.3%), summer (57.5%), and fall (36.7%), whereas the proportion 

of observations during winter is highest for agricultural surfaces (29.8%). The share of artificial 

surfaces among all seasons is smallest during summer, suggesting that observers can find time to 

move into nature away from built structures to add observations during that season. A chi-square 

test of independence (X² = 1349.86, df = 12, p < 0.0001) reveals a statistically significant 

association between season and land cover type, indicating that the distribution of observations 

across different land cover types varies between seasons. Also, the proportion of contributions to 

different land cover classes  varies significantly by hour of day for all seasons, i.e. for spring (X² 

= 898.46, df = 4, p < 0.001), summer (X² = 1886.91, df = 4, p < 0.001), fall (X² = 1263.45, df = 4, 

p < 0.001), and winter (X² = 494.37, df = 4, p < 0.001).  

Table 6. Number of observations falling into different land cover types across four seasons 

Land cover types Spring Summer Fall Winter 

Agricultural surfaces 1270 3772 939 314 

Artificial surfaces 848 2308 1081 264 

Forest and semi natural areas 1798 9830 1272 216 

Water bodies 94 874 123 81 

Wetlands 45 325 47 11 
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Figure 9. Hourly contribution numbers for different land cover types across four seasons 

Figure 10 provides a more detailed insight into biodiversity mapping across seasons and land cover 

types by plotting the corresponding number of unique family (a) and genus (b) taxa. Forest and 

semi-natural areas showed the highest taxonomic diversity across for spring, summer, and fall, 

which matches findings of highest observation counts in forest and semi-natural areas for these 

three seasons (Table 6). In winter, agricultural areas revealed highest biodiversity, also matching 

highest contribution numbers in Table 6 for that land cover type. All land cover types exhibited 

peak diversity in summer and lowest diversity mapping in winter.  
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Figure 10. Number of different family (a) and genus (b) taxa observed across for seasons and five 

land cover types 

Figure 11 provides a complementary view of contributions to different taxa and land cover types 

across seasons. For this chart, species were divided into five categories according to their class 

level. The five categories were Birds (consisting only of the class Aves), Animals (including 

classes such as Mammalia, Amphibia, Squamata, and various invertebrate classes), Plants 

(encompassing classes like Magnoliopsida, Liliopsida, and various plant divisions), Insects 

(specifically the class Insecta), and Fungi (including various fungal classes such as 
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Agaricomycetes and Lecanoromycetes). Any class not explicitly listed in these categories was 

classified as "Others". The bar chart reveals a high proportion of insects during summer and fall 

for all land cover types except for water related ones, whereas plants show a higher proportion 

during spring. A chi-square test was conducted for each land cover type to examine the change in 

proportion of observations to different taxonomic categories across seasons. The results revealed 

significant differences in the seasonal distribution for all land cover types, i.e., forest  and semi-

natural areas (X² = 1161.65, df = 15, p < 0.001), agricultural areas (X² = 1233.99, df = 15, p < 

0.001), artificial surfaces (X² = 1283.98, df = 15, p < 0.001), water bodies (X² = 274.82, df = 15, 

p < 0.001), and wetlands (X² = 141.02, df = 15, p < 0.001).  

 

Figure 11. Seasonal species category observation number of land cover types 

Using the proportion of area for each land cover type within the study area and the total number 

of observations per seasons allow for a comparison of expected and observed number of 

observations for each land cover category (Table 7). Results chi-square tests conducted for each 

season show significant differences between observed and expected counts for examined land 

cover types (p < .0001) for each season. Notably, forest and semi-natural areas were consistently 

underrepresented across all seasons, while artificial surfaces were most overrepresented, as 

indicated by standardized residuals. This suggests a bias in observation efforts towards more 

accessible or human-populated areas. 
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Table 7. Seasonal patterns in land cover type observations relative to area 

Season Land Cover Type 
Observed 

Count 

Expected 

Count 

Standardized 

Residual 
Representation 

Spring 

Agricultural areas 1270 818.05 15.8 Over 

Artificial surfaces 848 168.6 52.32 Over 

Forest and semi natural areas 1798 3013.64 -22.14 Under 

Water bodies 94 44.31 7.47 Over 

Wetlands 45 10.4 10.73 Over 

Summer 

Agricultural areas 3772 3451.76 5.45 Over 

Artificial surfaces 2308 711.39 59.86 Over 

Forest and semi natural areas 9830 12715.99 -25.59 Under 

Water bodies 874 186.96 50.25 Over 

Wetlands 325 43.9 42.43 Over 

Fall 

Agricultural areas 939 698.42 9.1 Over 

Artificial surfaces 1081 143.94 78.1 Over 

Forest and semi natural areas 1272 2572.93 -25.65 Under 

Water bodies 123 37.83 13.85 Over 

Wetlands 47 8.88 12.79 Over 

Winter 

Agricultural areas 314 178.74 10.12 Over 

Artificial surfaces 264 36.84 37.43 Over 

Forest and semi natural areas 216 658.47 -17.24 Under 

Water bodies 81 9.68 22.92 Over 

Wetlands 11 2.27 5.79 Over 

 

The most frequently observed three species in four land cover types across four seasons are shown 

in Table 8. Numbers in parentheses indicate the number of observations counted across the study 

period. Species for wetlands are not reported due to the small number of observations. The legend 

symbols categorize observations into birds, butterflies (separated from insects for better 

visualization), other insects, flowering plants, trees, fish, amphibians, reptiles, fungi, arachnids, 

and mammals. Some apparent patterns emerge, such as the predominance of butterfly and insect 

observations during summer and fall for agricultural areas, followed by a shift towards more 

observations of birds during winter.  
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Table 8. Top 3 observed species in four land cover types across four seasons 

Season Agricultural areas Forest and semi natural areas Artificial surfaces Water bodies 

Spring 

      Common bugle (12) 

      Meadow clary (12) 

      Fumewort (11) 

      White butterbur (24) 

       Common wall lizard (21) 

      Coltsfoot (20) 

         Common blackbird (15) 

      Common bugle (14) 

      Greater celandine (14) 

         Eurasian coot (4) 

         Great crested grebe (4) 

         Sedge warbler (3) 

Summer 

      Silver-washed fritillary (35) 

      Meadow brown (33) 

      European peacock (29) 

      Silver-washed fritillary (102) 

      Heath spotted orchid (86) 

       Common frog (55) 

      Japanese oak silk moth (22) 

      Himalayan balsam (18) 

      Silver-washed fritillary (16) 

         Wels catfish (245) 

         European perch (35) 

         Pumpkinseed (25) 

Fall 

        Western conifer seed bug (31) 

      European peacock (16) 

        Asian lady beetle (16) 

      Fly agaric (23) 

       Fire salamander (22) 

         Alpine chough (16) 

        Western conifer seed bug (48) 

        Asian lady beetle (31) 

         Common blackbird (16) 

         Mute swan (13) 

         Mallard (8) 

        Common darter (7) 

Winter 

         Eurasian blue tit (10) 

         Common blackbird (10) 

         Common chaffinch (8) 

      European beech (12) 

      Norway spruce (8) 

      Common hazel (7) 

         Common blackbird (15) 

         Great tit (11) 

        Daddy long-legs spider (10) 

         Mallard (9) 

         Eurasian coot (9) 

🦫 Eurasian beaver (6) 

Legend:          Bird       Butterfly         Other insect       Flowering Plant       Tree          Fish        Amphibian        Reptile       Fungus         Arachnid 🦫 Mammal  
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5. Discussion 

The analysis of iNaturalist contributions in Carinthia reveals complex patterns of citizen science 

participation across spatial and temporal dimensions. These patterns provide valuable insights into 

the dynamics of biodiversity observation and the factors influencing citizen science engagement. 

The following discussion examines the implications of our findings, addressing the spatial 

distribution of observations, seasonal and hourly contribution patterns, and their relevance to 

biodiversity monitoring and citizen science initiatives. By exploring these aspects, we aim to 

contribute to a better understanding of the strengths and limitations of citizen science data in 

biodiversity research and conservation efforts. 

5.1. Regression 

The positive association of iNaturalist contribution counts with proportion of artificial surfaces 

suggests that urban and developed areas attract citizen science activity, possibly due to higher 

population density and easier access to communication technology, such as Wi-Fi and cell phone 

towers. The positive association with water bodies could be attributed to the attractiveness of these 

ecosystems to both wildlife and nature enthusiasts. Conversely, the negative relationship with 

forest and semi-natural areas indicates challenges in accessing remote locations, due to lack of 

roads that allow motorized traffic, and time needed to travel from urban areas to remote locations. 

The negative association with agricultural areas might reflect lower biodiversity in intensive 

farming landscapes, limited public access to these private lands and remote location relative to 

urban areas. As can be expected, proximity to cities and proximity to primary roads is associated 

with increased contributions. This suggests that citizen scientists are active near urban centers 

where they likely reside. Primary roads provide easy and fast access to areas surrounding them, 

which explains higher observation in these areas.  

While our model explains some of the variation in iNaturalist observations, there may be other 

influential factors not captured in this analysis. These could include temporal variations (e.g., 

seasonal effects), specific habitat characteristics, or socio-economic variables.  

These findings have several implications for enhancing citizen science initiatives and biodiversity 

conservation in Carinthia. For education and outreach, targeted efforts to promote iNaturalist usage 

in agricultural and forested areas could help balance the spatial distribution of observations and 

provide a more comprehensive picture of Carinthian biodiversity. Regarding data interpretation 

and biodiversity monitoring, analysists should be aware of the spatial biases in iNaturalist data 

when interpreting biodiversity patterns and species distributions. 

5.2. Seasonal and hourly contribution patterns 

The temporal patterns observed in iNaturalist contributions reveal significant variations across 

seasons and hours. Reduced observation activity during winter and nighttime activity can be 

expected due to shorter daylight hours in winter and challenges in spotting and photographing 

plants and wildlife during darker conditions. The underrepresentation of Protozoa and Bacteria 
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points to limitations in citizen science data capture for microscopic life forms, which is consistent 

with earlier studies (Chandler et al., 2017). The autumn peak in Fungi observations partially aligns 

with typical mushroom fruiting seasons of edible mushrooms in Austria which is late summer and 

fall because of more rain and warm daytime temperatures (Maguire, 2022). This demonstrates how 

natural phenological patterns can influence data collection. 

These results are consistent with studies on other citizen science platforms. For instance, 

significant seasonal and diurnal patterns in bird observations from eBird have identified peak 

activity during spring and early morning hours (Boakes et al., 2016). Similarly, strong seasonal 

trends in marine citizen science data have been reported, comparable to our findings of increased 

summer activity (Welvaert & Caley, 2016).  

The hourly distribution of user activity across seasons in Figure 7 reveals a pattern of daytime-

focused observations, with peak hours around 12 pm in summer, gradually shifting to 2 pm in 

winter. This pattern is similar to that found in the analysis of eBird data (Wiggins & He, 2016), 

which showed that observation times closely followed daylight hours across seasons. 

The consistently low activity during early morning hours across all seasons, coupled with a small 

peak at midnight (Figure 7), raises questions about the accuracy of nighttime observations. This 

pattern may indicate a data artifact similar to that identified in an analysis of eBird data, where 

default timestamps led to overrepresentation of midnight observations (Courter et al., 2013). A 

similar type of bias, however in the spatial domain, is commonly found the location of spatial data 

points where latitude and longitude entries are missing, leading to Null Island, a fictional place 

located at 0° latitude and 0° longitude in the WGS 84 geographic coordinate system (Juhász & 

Mooney, 2022). 

Summer months reveal the highest activity and diversity (Figure 10, 
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Table 5). For several hours per day, species observations of Silver-washed Fritillary (up to 30 

counts at 11 am) and Wels Catfish (up to 99 counts at 5 pm), dominate hourly observation counts, 

indicating favorable conditions for both terrestrial and aquatic species. Spring displays a more 

even distribution of observation numbers across different species with the Common Wall Lizard 

having most hourly observations (14 counts at 3 pm), suggesting a period of balanced biodiversity 

as nature awakens. Fall is dominated by the Western Conifer Seed Bug for 10 hour-periods, 

possibly due to its seasonal migration or increased visibility. Winter shows the lowest overall 

activity, with observations primarily of common bird species like the Common Blackbird, 

reflecting the challenges of the cold season for many organisms. Nocturnal observations (8 pm 

through 5 am) are present across all seasons, albeit in lower numbers, highlighting the importance 

of round-the-clock biodiversity monitoring. The data also reveals temporal niche partitioning, with 

different species being most active at different times of the day across seasons, underscoring the 

complex dynamics of ecosystem activity patterns. This information is valuable for understanding 

local biodiversity, seasonal phenology, and could inform conservation efforts and wildlife 

management strategies in the region. 

Figure 9 shows notable changes in contribution patterns across seasons and land cover types. 

Forest and semi-natural areas dominate observations, particularly in spring and summer, often 

exceeding 50% of hourly data points collected. The proportion of hourly contributions to 

agricultural areas typically ranges from 20-40% across seasons. Artificial surfaces exhibit lowest 

proportions during summer, possibly due to favorable weather and daylight conditions that 

encourage exploration of natural areas, such as forests, lakes and rivers during that season. Water 

bodies and wetlands generally constitute small proportions of contribution throughout the year. 

Diurnal patterns are evident, with most activity concentrated between 8 am and 6 pm. Agricultural 

areas show the largest 90% observation range (17 hours) in summer, whereas shortest observation 

hours are generally observed during winter. Winter also displays the lowest overall activity and 

highest variability in proportions, likely due to reduced biodiversity and observer activity. These 

fluctuations highlight the complex interplay between land cover, seasonal changes, and 

observation patterns in citizen science data collection. 

The list of primary mapped species for different land cover types across four seasons (Table 8) 

shows some noticeable trends in seasonal transitions. For example, spring observations in 

agricultural areas focus on flowering plants, transitioning to butterflies in summer, then to 

butterflies and other insects in fall, and finally to birds in winter. This pattern aligns with natural 

phenological changes and shifts in species visibility. Artificial surfaces display flowering plants 

and insects primarily during spring and summer, whereas fall is dominated by insects and winter 

by birds. Forest and semi-natural areas are the only land cover with fungi being the most mapped 

taxon (Fly agaric in fall), whereas winter is dominated by trees. For water bodies, birds dominate 

fall through spring, whereas an increase in fish observations can be observed in summer (possibly 

due to increased fishing activity or better water visibility). Wetlands are the only land cover with 
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mammals (beavers) being among the top three mapped species, which was observed during in 

winter.  

These temporal patterns have important implications for biodiversity monitoring. The seasonal and 

diurnal variations in data collection suggest potential biases in species representation, particularly 

for nocturnal or winter-active species. This aligns with concerns about the need to account for 

temporal biases in citizen science data when used for biodiversity assessments (Dickinson et al., 

2010). 

6. Conclusions and Future Work 

The presented analysis of iNaturalist data in Carinthia reveals numerous spatial and temporal data 

contribution patterns. Some of these variations across space and time may be based on actual 

differences in presence of organism and seasonal phenology, such as fungi being the most observed 

species during summer in forest areas or insects and butterflies dominating observations in 

agricultural areas during summer and fall. However, others, especially abundance related 

measures, may be artefacts caused by imbalanced collection efforts. For example, the positive 

association with urban areas suggest potential spatial biases in data collection which can be caused 

by a larger population in urban areas and thus an over proportional number of potential iNaturalist 

contributors in these areas compared to more remote areas, such as forests. Future initiatives 

should focus on addressing spatial and temporal gaps in data collection to ensure a more 

comprehensive representation of Carinthian biodiversity. To further explore the complex 

influences between different environments and observation patterns, future research should 

employ more advanced analytical methods. These could include intersection and interaction 

analyses to better understand how various environmental factors combine to affect observation 

patterns. Additionally, machine learning techniques such as random forests or gradient boosting 

could be applied to capture non-linear relationships and interactions between variables. Time series 

analysis methods could also be implemented to more deeply investigate temporal trends and 

seasonality effects. Moreover, integrating data from multiple citizen science platforms and 

comparing results with professional biodiversity surveys could provide a more holistic view of 

Carinthia's biodiversity and help identify areas where citizen science efforts could be better aligned 

with scientific needs. 

As citizen science continues to grow and evolve, several challenges and opportunities emerge for 

future research. The importance of integrating citizen science data with professional scientific 

datasets to create more comprehensive and robust biodiversity monitoring systems has been 

emphasized (Chandler et al., 2017). This integration will require the development of advanced 

statistical methods to address biases and uncertainties in citizen science data, particularly for use 

in policy-making and conservation (Isaac et al., 2014). Our future studies will also explore 

motivational factors and barriers to participation in citizen science. Additionally, investigating the 

long-term impacts of citizen science participation on environmental attitudes, behaviors, and 

scientific literacy will be crucial for understanding the broader societal benefits of these initiatives 
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(Bonney et al., 2015). Ethical considerations surrounding data privacy, intellectual property rights, 

and the use of citizen-generated data in scientific research and decision-making processes also 

warrant further attention (Resnik et al., 2015). Addressing these challenges and exploring these 

new directions will be essential for maximizing the potential of citizen science in biodiversity 

research and conservation. 
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