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Abstract 

This study focuses on mapping vegetation structure within an arboreal wildlife habitat enclosure, 

Affenberg- Landskron in Villach, Austria, using drone imagery and Structure from Motion (SfM) 

photogrammetry, spectral vegetation indices (SVI), and GIS techniques. This project aims to 

enhance understanding of the spatial distribution of vegetation and its impact on habitat 

suitability for a population of Japanese macaque monkeys (Macaca fuscata). Through multiple 

drone flights capturing leaf – on and leaf – off conditions, high – resolution visible (RGB) 

imagery was collected and processed to create canopy height models (CHM), a Normalized 

Difference Vegetation Index (NDVI) images, and applicable thematic maps. The study used an 

image segmentation technique, Inverse Watershed Segmentation (IWS), to automate the 

delineation of individual tree crowns and diameters. CHM was used to generate the baseline 

datasets to classify vegetation structure and perform gap analysis, enabling a detailed assessment 

of canopy structure and openness. Health and species classification of either evergreen or 

deciduous trees was performed utilizing spectral indexing and thresholding. Seasonal differences 

in gaps and canopy cover revealed significant changes between temporal conditions which can 

influence macaque behavior and habitat use.  The analysis highlights specific areas with vertical 

and horizontal vegetation complexity in providing suitable habitats for macaques, offering 

insights into optimal foraging and resting site availability. The findings underscore the value of 

remote sensing tools in ecological monitoring, providing repeatable and less labor-intensive 

methods to assess and monitor habitats in semi – natural enclosures. This study demonstrates the 

potential for integrating SfM photogrammetry, automated tree mapping, and SVI datasets to 

improve habitat monitoring for wildlife management applications.  
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Introduction 

Affenberg Landskron, being a research center for primatologists, simultaneously serves as 

a visitor and educational facility providing guided tours. It is home to approximately 170 Japanese 

macaque monkeys whose population, and dynamics have been under observation for the last 25 

years [16]. This facility inherited the only population of Japanese macaques (Macaca fuscata) to 

be translocated to Austria with the intention of conducting scientific research into population 

dynamics, demographic data, and social behaviors. The Austrian Research Promotion Agency 

FFG’s BRIDGE program has begun an interdisciplinary research project that investigates novel 

toolsets to enhance and compliment the traditional behavioral research methodology for monkey 

studies. The SIENA research group (Spatial Informatics for ENvironmental Applications) at the 

Carinthia University of Applied Sciences (CUAS) pioneers this technological advancement by 

implementing digital data collection, ranging from thermal- infrared object detection to “monkey 

facial recognition” machine learning modeling.  

The significance of this specific Marshall Plan research project lies in habitat-level 

spatiotemporal pattern analysis of translocated Japanese macaque species. In these types of 

structured environments, park managers have prioritized the wildness of wildlife species, by not 

marking, tattooing, or chipping the monkeys to identify individuals. This leaves a knowledge gap 

into the social dynamics and behaviors of the monkeys, especially in the sense of habitat 

preferences, where observations are only capable in the daylight hours and sleeping arrangements 

remain a mystery. The ultimate goal for bridging this gap is to decrease the investment of time and 

resources population survey work requires, specifically to arboreal wildlife in protected 

enclosures. The objective of this project is to observe, automate and map vegetation structure and 

habitat characteristics utilizing UAS- SfM photogrammetry, GIS, and image segmentation 

techniques in a protected enclosure for macaque monkeys. It aims to answer these research 

questions: 

1. How does the spatial distribution of tree species, vegetation heights, and structure vary 

within the wildlife enclosure? 

2. What are the temporal differences in vegetation structure characteristics for leaf-on and 

leaf-off conditions? 

3. What areas in the enclosure can have the strongest influence on habitat suitability? 
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Literature Review 

Wildlife Monitoring & Habitat Suitability 

Japanese macaques (Macaca fuscata) inhabit a diverse range of forested and mountainous 

environments, often marked by dense canopies and fluctuating climates that demand adaptability. 

Within these habitats, they live alongside many of their own kind, forming intricate social networks 

built on dynamic connections. These networks continuously evolve, influenced by individual 

decisions as well as environmental pressures that shape the population. Social groups may split 

and share the same territory, adapting or redefining relationships based on changing conditions. 

Understanding these shifting dynamics is essential for accurately interpreting species behavior, 

improving management practices in captivity, and effectively protecting wild populations. Yet, 

studying macaque social structures is challenging, requiring meticulous tracking of individual 

animals and consistent, long-term documentation of behaviors. This work demands highly skilled 

researchers dedicated to detailed and persistent observations to truly capture the complexities of 

these social systems. Traditional methods of research based wildlife observations and experimental 

studies are time consuming, and labor intensive, especially in documenting species with the 

intention of preserving their natural states [1,2].  

Ecosystem structure variables and the occurrence of species are strongly linked, as 

emphasized in current ecology research. As so, the measurement and characterization of vegetation 

structure through remote sensing and image processing can serve as a covariate for predicting 

animal occupancy [3]. Vegetation structure can directly affect the number and distribution of 

animals by foliage height diversity, availability of food sources, and heterogeneity in structure 

[3,4]. Furthermore, the vertical and horizontal vegetation structure, density, and patchiness affect 

species diversity and occurrence [5]. Habitat selection is observed in behaviors like foraging, nest 

placement, migration, and breeding [4]. 

Leveraging New Technology: Remote Sensing & GIS 

Recent advances in remote sensing have propelled investigations into employing the proper 

tools to support forest ecology and mapping research [6]. Previous studies have evaluated the 

efficiency and value that satellite imagery, uncrewed aerial systems (UAS), geospatial analysis, 

and machine learning classifiers provide for mapping and monitoring forest composition and 

structure [7–11]. A few innovative studies combining UAS and Structure from Motion (SfM) 
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photogrammetry and multispectral data demonstrate their synergy for estimating and mapping 

vegetation structural attributes [12–14]. In such studies, UAS datasets that were validated using 

field datasets were shown to be reliable for estimating forestry metrics such as canopy cover, 

canopy height, tree density, canopy base height, canopy bulk density, tree stress, and wildfire burn 

severity [15,16].   

Methodological Insights & Best Practices 

Wildlife survey methods have evolved in recent years with the transition into automated 

and non- traditional techniques, incorporating artificial intelligence (AI), machine learning (ML), 

and convolutional neural network (CNN). For instance, Lyu et al. (2024) leveraged object- 

detection and remote sensing technologies to conduct a wild animal census and monitoring in in- 

situ heterogeneous habitats. By developing an ML model based on Faster R- CNN, they 

demonstrated that customized anchor boxes and a fusion of multi-feature maps significantly 

improved the model's capability to detect wild deer in low- resolution thermal UAS imagery.  

Similarly, innovative research collaborations have explored digital technology for monkey 

distribution detection, particularly within the Affenberg enclosure. Notable contributions include 

theses by Lukas et al. (2021) and Yang et. al. (2020), who trained a CNN model with YOLO v3 

for monkey facial recognition using video sequences [17]. This promising work continues under 

the Smart Monkey Lab, led by SIENA researchers, as they refine and expand the model’s 

capabilities.  

Building on this progress, a particularly relevant study to our project is the 2022 research 

by Mirka et al., which elucidated the necessary environmental parameters and UAS protocol for 

thermal infrared detection of macaques [18].  This pushed forward a new set of tools that helped 

inform and standardize how to monitor this species, taking into consideration limited accessibility 

and monkey camouflage within tree canopies. Altogether, a fusion of RGB and TIR orthomosaics 

proved valuable for estimating group populations, as clusters of monkeys were detected, 

potentially indicating sleeping site locations. Key findings indicate that an optimal above ground 

level (AGL) altitude for UAS operations is 120 m, with a minimum staging distance of 100 m for 

launch. These parameters established a reliable and repeatable method for conducting arboreal 

animal presence- absence surveys in ex- situ forested areas. This effectively minimizes monkey 
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responses to anthropogenic noise, a pertinent example of innovative science adhering to animal 

welfare protocols.  

Structure from Motion (SfM) Photogrammetry 

Remote sensing is increasingly capable of observing ecologically relevant factors, 

including dynamics of terrestrial habitats, patterns of forest structure, vegetation species 

composition, and inter-zonal landscape changes. Innovations in photogrammetric techniques have 

assisted natural resource management and agricultural operations in economically collecting and 

manipulating data on terrestrial ecosystems [19,20]. In particular, Structure from Motion (SfM) 

photogrammetry is an approach that employs image-matching algorithms using highly overlapping 

2D images to estimate and generate 3D models of a scene. It utilizes stereoscopic parallax to 

identify corresponding features or image match points, ultimately producing a cloud of points. 

These dense point clouds (x, y, z) can then produce useful elevation and topographical information, 

such as digital terrain models (DTM) and digital surface models (DSM). SfM photogrammetry has 

gained popularity for being an affordable alternative to airborne laser scanning, such as light 

detection and ranging (LiDAR)[8]. SfM has been utilized for mapping crop production [21], 

monitoring fine- scale forest habitat changes [22], and supporting forest inventories[23]. Canopy 

and gap cover, vegetation height, and plant density can be estimated with dense point cloud data 

generated from UAS imagery [24–26].  

Inverse Watershed Segmentation (IWS) 

While identifying individual trees is relatively straightforward for the human eye, it 

remains a complex process for image-processing algorithms [27]. Stand density, or identifying the 

number of trees, can be a challenging endeavor in thick and occluded forests. One innovative 

technique to enhance delineation in complex areas is Inverse Watershed Segmentation (IWS), a 

GIS method that employs image segmentation to delineate objects in dense or complex areas of 

interest [28]. This intuitive process is useful for individual tree crown delineation (ITCD) using 

inverted canopy height models (CHM). In this dataset, the highest features (assuming built features 

are omitted) such as tree tops become low points or “basins” and the lowest points such as gaps 

between trees become the high points or “ridges.” This simulates the flow of water which can be 

useful for watershed algorithms that segment lower areas. These treetops or “basins” resemble 

where water would accumulate in a topographic depression. The boundaries are delineated around 

the basins which resemble the tree crowns. The final product of this segmentation routine can 
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identify individual trees through recognizing seed points or marker-control region-growing 

segmentation. These seeds serve as “hints” to the small regions or predefined points in the image 

that guide the segmentation process. There are different criteria to delineate these regions such as 

color, texture or geographic data which, for using CHM rasters, is height. 

Spectral Vegetation Indices (SVI) 

The use of spectral vegetation indices (SVI) for quantifying and mapping structural 

properties of vegetation has gained widespread acceptance. Prošek & Šímová (2019) explored 

enhancements in detailed vegetation mapping by integrating spectral information with 3D point 

clouds, showcasing improved capability to measure vegetation structural complexity [29]. Ustin 

& Gamon (2010) demonstrated that canopy reflectance can be closely linked to the three 

dimensional structure of vegetation stands [30]. Building on this premise, Taddeo et al. (2019) 

found a strong correlation between SVI metrics and the physical attributes of wetland ecosystems, 

including leaf area, orientation, density, and the proportion of plant material [31]. SVIs derived 

from field reflectance spectroscopy [32], UAS- RGB orthomosaics [33], or multispectral imagery 

[34], have been utilized alongside SfM vegetation canopy data.  

Classification of vegetative species can be dependent on many image capture variables, 

such as understory reflectance, shadowing, and luminosity –even during the same flight 

acquisition. Fawcett et. al (2020) explored the utility of drones for precise monitoring of phenology 

across individual tree crowns, tracking the specific seasonal stages for floristic species [35]. 

Spectral variation is of prime interest for species discrimination especially in determining optimal 

single date time windows [36]. Lisein et. al (2015) found that spectral separability is of special 

concern when using orthophoto mosaics and that, specifically, an autumnal time window in 

temperate European forests can be optimal for deciduous species classification [36]. Furthermore, 

Adamczyk and Osberger (2014) conducted a separability analysis to identify effective SVIs for 

threshold-based classification of disturbances in Austrian forests, finding specific red- edge indices 

that demonstrated the most spectral separability to monitor forest health [37].  

Materials & Methods 

Overview 

This section provides an overview of the methods used in this research project. It begins 

with a description and map of the study site, accompanied by on- the- ground images, followed by 
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the details for image acquisition using UAS and the processing of imagery into SfM raster datasets. 

Subsequently, it delves into the methodology for deriving vegetation structure metrics and their 

application in analyzing the wildlife enclosure. This includes a detailed explanation of the GIS 

approach for identifying vegetation structure classes, both temporally and spatially, using IWS and 

SVIs. A comprehensive methodology workflow is also presented in Figure 1 to outline each step 

of the process and ensure clarity in the analysis.  

During this research project, three aerial flights and one ground-based survey were 

conducted to collect true color and multispectral imagery and ground reference points: One “leaf 

- off” or T1 dataset: 04/04/2024; Two “leaf - on” or T2 datasets: a.) 07/17/2024, b.) 09/17/2024; 

Ground reference points: 07/12/2024. Of those three flights, two were used for the temporal 

changes observed for leaf - off and leaf - on conditions (T1a and T2a), and the third captured 

multispectral imagery used for vegetation indices (T2b). Ground images seen in Figure 3 were 

taken during the GNSS collection.   

 
Figure 1: Methodological Workflow Diagram 
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Study Area 

Our study area, seen in Figure 2, focuses on a 42,000 m2 outdoor wildlife enclosure, 

Affenberg Landskron (translated to “Monkey Mountain”), which is located in Villach, Carinthia, 

in southwestern Austria. This part of Central Europe has a climate with four distinct seasons of hot 

and humid summers to snowing and below freezing winters [38]. Its habitat encompasses the 

natural mixed forest seen in Southern Austria which includes evergreen species such as Norway 

spruce (Picea abies), Scots pine or European red pine (Pinus sylvestris), deciduous species such 

as willow (Salix spp.), and various shrubs and herbs such as elderberry (Sambucus nigra), common 

hazel (Corylus avellana), raspberry (Rubus idaeus), nettle (Urtica spp), butterbur (Petasites spp), 

wood sorrel (Oxalis spp), and mixed grasses (Poaceae) [38].  

 

Figure 2: Study Area: Affenberg Landskron 

The macaques are free- roaming and mostly congregate in the center of the enclosure where 

the forest floor is sparse, food is provided, and most of the group interact. Staff are able to monitor 

the group during daylight hours such as feeding times twice a day and through walking field 
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surveys throughout the central and peripheral areas. The natural vegetation in the enclosure 

provides grazing and foraging opportunities for the macaques alongside water sources for drinking. 

Some of the main physical features are: a small streambed, wetland area, a wooden hut building, 

a cement pool, and two free-standing shipping containers that are on the farther reaches from the 

central area. Experimental cooperation devices (games) that administer food are located in the 

center, where biologists perform noninvasive studies on the macaque's cognitive capabilities. 

There are many paved 2 m wide walking paths throughout and a protective 3.3 m high electric 

fence to keep macaques inside and native predators out. This outer peripheral fencing has densely 

vegetated slopes and then a buffer zone of 6 m of grassland and gravel. Visual examples of free- 

roaming macaques and their environment are provided in Figure 3. 

 

Figure 3: Ground Photos of Enclosure: a.) central area of enclosure; b.) outer periphery; c.) swamp-wetland areas; d.) shrubs 

and herbaceous understory; e.) wood structures and natural features 

 



14 
 

 

Image Acquisition  

UAS imaging was conducted using automated flight missions with pre- set parameters of 

platform height, distance, and speed. The sensor and platform used for this project are equipped 

with dual visible (RGB) and an 11- band multispectral instrument: a Zenmuse P1 RGB and 

Micasense RedEdge- MX DUAL imaging system mounted on a Matrice 350 RTK UAS. The 

spatial resolution of the UAS image collection is very fine, with a ground sampling distance (GSD) 

of 2.48 cm for RGB and 6.38 cm for multispectral. All flights were conducted with camera 

orientation nadir pointing with a minimum 80% sequential image forward and sideward overlap, 

ideal for stereoscopic parallax. This high amount of overlap is essential for SfM processing, by 

enabling a high number of match points to be identified from a range of geometric perspectives. 

Match points are used in the stereo-correlation and bundle block adjustment processing that 

enables 3D point cloud and orthomosaic generation. A Leica survey grade GNSS receiver was 

used to collect ground control points (GCP) for georeferencing T1 and T2 rasters. Due to the 

receiver signal strength, collecting GCPs was limited to only the areas of the enclosure not 

obscured by heavy canopy cover. These measurements were distributed near or on top of fixed 

developed features with sharp edges, such as the swimming pool and field hospital in the western 

section of the enclosure. Band specifics for the Micasense system can be seen in Table 1: 

Micasense Dual band specifics.  

Table 1: Micasense Dual band specifics 

 

The geometric processing of the UAS image data involved orthorectification to rectify 

distortions arising from the Earth’s curvature and rotation effects. The projected coordinate system 

used for the entire project is Militar-Geographische Institut (MGI) Austria GK Central (EPSG 
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31255) and is based on the MGI geographic coordinate system (EPSG 4312) in Transverse 

Mercator (meters).   

Image Processing 

We used SfM photogrammetry in Agisoft Metashape (version 2.0) to produce dense 3D 

point clouds from the overlapping RGB images captured by the UAS. Four raster products per 

mission were generated from the 3D point clouds: a digital surface model (DSM), a digital terrain 

model (DTM), a normalized digital surface model (nDSM), and an orthoimage mosaic. The dense 

point cloud data represents the volumetric structure of the scene. The DSM depicts surface 

elevation in gaps between vegetation and the highest points of features, such as the tops of 

vegetation canopies. The DTM represents ground surface elevations. The nDSM depicts the 

difference between the DSM and the DTM, representing canopy heights.  

A comprehensive workflow was implemented to generate the primary datasets for the 

study. This includes applying a statistical outlier filter for refining 3D coordinates and employing 

three gradual selection models to optimize image match points [22]. The first is a reconstruction 

uncertainty model that selects points that have a low statistical value of being accurately placed in 

the dense point cloud and then deleted. The second is a reprojection error model that gathers and 

deletes approximately 10% of the inaccurately matched points. The last model estimates projection 

accuracy, which finds more inaccurately projected points and deletes them. Manual inspection for 

outlier points was conducted, collectively contributing to the final optimization of camera 

alignment, orientation, and distortion reduction [39]. These steps are essential for the subsequent 

generation of dense point clouds for each mission.  

Utilizing Agisoft Metashape’s algorithm, points within dense point clouds were classified 

as either ground or nonground using an unsupervised classifier. After the classification step, a 

manual review of the ground points was performed through an iterative adjustment of classification 

results by visual assessment of respective orthomosaics. Noise, outliers, and mismatched low 

elevations were deleted and adjusted to optimize raster product generation during this supervised 

classification step. All developed features, such as buildings and structures, were omitted from the 

habitat analysis. 

To produce a DSM, all points within the dense point cloud, ground and non-ground, were 

used to render the above- surface features, such as trees and vegetation. Also, a subset of points 

that represent the ground were interpolated to produce a continuous surface. For shadowed, 
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densely vegetated areas, resultant DTMs may have sparse or missing ground samples, and detected 

ground points may be unable to model the underlying surface with high accuracy [40].  

nDSMs were derived by subtracting the DSM from the DTM. The local reference surface, 

or relative height, in the nDSM, is the surrounding ground surface represented by the 

corresponding DTM. In this study, only trees and low- statured vegetation are targeted; therefore, 

canopy height models (CHM) are synonymous with nDSM. The raw difference between the DSM 

and DTM was calculated, and no data values were masked. Areas external to the enclosure’s fence 

were included in the overall photogrammetric processing but excluded in the analysis.  

Evaluating the reliability of the nDSM generated from UAS imagery is challenging in the 

absence of reference data. Even more challenging is obtaining reference data on ground and 

canopy heights due to interference with signal strength from clustered and thick overhead 

canopies. To provide some insight and an assessment of quality, point cloud, DSM, and nDSM 

were visually inspected to detect any anomalies such as abrupt changes in elevation, 

inconsistencies in the elevation values, or artifacts caused by processing issues. In evaluating the 

discrepancies, we acknowledge the limitations of using only remotely sensed data for results and 

reporting. 

Deriving Vegetation Structure Metrics 

The following section of this research paper describes the methodology to: assign 

vegetation structure classes and gap analysis, identify individual trees and delineate canopy 

diameters using IWS, calculate vegetation indices for tree health diagnostics, and distinguish 

between tree species using spectral thresholding. The vegetation structure metrics derived and 

analyzed in this study are continuous value attribute image datasets representing vegetation canopy 

height and fractional canopy cover, referred to as “gaps.” Photogrammetrically derived data used 

for the following analysis provides the basis of information on the 3D vertical and horizontal 

structure of Affenberg’s vegetation, landscape heterogeneity, and fine- scale spatial representation 

of areas with varying degrees of cover.  

Structure Classes and Gap Analysis  

Canopy height data are summarized by mean height, top-of-canopy height, and height 

percentiles ranging from 5th to 95th percentiles in 5 m increments for grid units of analysis 

summarized below [16]. Structure classes were categorized based on height thresholds and growth 

patterns for species known to be present in the enclosure from literature review and visual 
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confirmation. Cells in the nDSM that reach approximately > 9 m were classified as tree canopy 

points, with ground cover (herbaceous plants and low vegetation) 0 – 0.5 m, low shrubs (small 

shrubs and dense herbaceous vegetation) 0.5 – 1 m, tall shrubs and young trees (small trees and 

mature shrubs) 1 – 3 m, mid-height trees (sub-canopy layer, typically deciduous or younger trees) 

3 – 10 m, and tall trees (canopy and emergent layer, likely dominated by mature conifers) > 10 m 

(reference Figure 6 for visual representation of classes).  

Percent canopy gap is the percentage of the ground that is not occluded by vegetation 

canopies per unit area [41]. A threshold of 9 m for the canopy heights is set to differentiate between 

the trees and non-tree vegetation and ground. Canopy gap is represented as a fraction from 0.00 

(complete canopy cover) to 1.00 (complete gaps) for the 40,000 m2 area as described below:  

Equation 1: Canopy Gaps 

𝐶𝐶 = 𝐴𝑣 /𝐴𝑢   

where:  

Av = projected canopy gap area determined by the number of nDSM pixels classified as 

vegetation canopy within the 40,000 m2 total area;  

Au = total number of pixels within the 40,000 m2 total area.  

Individual Tree Identification and Delineation 

Identifying individual trees can be challenging, depending on the size of a study site.  

As a baseline, we created a vector dataset of the trees in the enclosure, where we identified, and 

hand-digitized individuals above 9 m using visual interpretation of the T1 high- resolution 

orthomosaic. Due to the nature of this project, our study area was a small enough size making this 

process feasible and reasonably straightforward. This is the first dataset of trees for this enclosure 

and serves as a general inventory that did not exist prior to this project.  

Utilizing ArcGIS Pro, we used the IWS technique to identify individual trees and to 

measure canopy diameters utilizing the T1 CHM. ITCD performs well in coniferous forests, which 

suits this study, especially given the small spatial area being mapped. We first tested and 

implemented the IWS technique in the GIS mapping environment, and then after achieving results, 

the same geoprocessing workflow was designed in custom made visual code to automate and 

repeat image segmentation. This platform used, ModelBuilder is a visual programming language 
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for building workflows in ArcGIS; it is ideal for this project, where users are able to run the code 

with different temporal raster datasets to observe changes over time in the enclosure.  

To conduct the IWS we first resampled the CHM from 5 cm to 0.5 m ground sampling 

distance (GSD) to be coarser resolution and lessen the noise in the watershed. We then detected 

the local maxima using a focal statistics tool. This isolates the highest pixel value on the treetop 

and eliminates multiple local maxima within a single crown area. This prevented a severe “over-

segmentation” caused by multiple high peaks in a tree, such as multiple branches poking high in 

the sky [28]. When selecting cell units within a kernel range, it largely depends upon the resolution 

of the imagery. After some testing and resampling of the CHM, we chose a radius of 2 cells which 

is approximately 4 m GSD. We then created a Boolean raster to mark these treetops by matching 

them with the CHM values. We inverted the CHM so that the treetops became the lowest points, 

simulating water flow across a landscape. With the inverted CHM, we generated a flow direction 

raster to identify drainage basins, where treetops are “ponds,” and the branches and crowns became 

watershed areas. Based on the steepest downhill slope, we assigned the direction to be one of eight 

possible cardinal directions (N, NE, E, SE, S, SW, W, NW). We then applied a height threshold 

mask to refine the tree crown areas by selecting only regions above 9.3 m and then multiplied this 

Boolean mask with the watershed raster to isolate tree crown areas. This then created a final 

Boolean mask to retain only the tree crown values. Finally, we vectorized this last raster to generate 

points for each tree crown and added X and Y coordinates for spatial reference in further analysis. 

A detailed illustration of the step-by-step process in ArcGIS Pro is provided in Figure 4, and the 

final map of the IWS and hand-digitized individuals is seen in Figure 9. 
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Figure 4: IWS Workflow 
 

Similar to the iterative process of identifying individual treetops, we delineated the crown 

diameters using part of the IWS geoprocessing workflow. After inverting the CHM, we created a 

flow direction raster which we used to create basins. We then reclassified the original CHM into a 

binary raster based on a 9 m height threshold to differentiate between tree crowns and ground 

features. We multiplied the reclassified CHM with the basin raster, isolating areas within each 

basin that meet this height criteria. We then converted this tree crown raster into a polygon layer 

which turned each detected tree crown area into a vector object. From here, we generated centroids 

in each polygon, representing the approximate center of each tree crown. Then we extracted the 

vertices of each polygon to create points along the boundaries of each crown polygon. To 

determine the approximate diameter of each tree crown, we calculated the distance from each 

centroid to the nearest boundary point and amended this measurement to the attribute table.  One 

of the major issues with this technique, however, was that the level of detail for individual canopies 

was too high, causing there to be way too many points. In order to reduce the number of vertices, 
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we simplified polygons using the cartographic refinement method by Douglas-Peucker, “Retain 

Critical Points.” This algorithm is a coarse simplification method that works by removing 

redundancies. Unfortunately, this method did not follow the canopy outlines completely and 

couldn’t preserve their character as closely but provided a rough approximation of each tree. Figure 

5 displays canopy delineation examples using these GIS steps. 

(a) (b) (c)  

Figure 5: Canopy Measurement: a.) canopy polygons (teal) that are converted to lines (green); b.) simplified crown polygons 

(green lines) with centroids (teal dot); c.) CHM (rainbow) with polygon layer (black) and IWS tree points (black dots) 

 

Tree Species and Health Assessment 

A Normalized Difference Vegetation Index (NDVI) was calculated using the Micasense 

multispectral imagery to assess vegetation health and distinguish between evergreen and deciduous 

species. This SVI has historically been used to quantify and enhance vegetation health and stress, 

representing the spatial variations in the amount of photosynthetically illuminated plant material 

[42]. In calculating this index we used the band combinations as described in the formula below.  

 

Equation 2: Normalized Difference Vegetation Index (NDVI) 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅0.842− 𝑅0.650)

(𝑁𝐼𝑅0.842+𝑅0.650)
          

With: 

NIR = Near-infrared band surface reflectance with Micasense center wavelengths (µm) 

R = Red band surface reflectance with Micasense center wavelengths (µm). 

 

To focus on only the trees within the enclosure, we generated a mask to exclude herbaceous 

species that could cause NDVI values to become oversaturated or misrepresentative of tree canopy 

health. Totally dependent upon the biogeographic conditions and seasonal contexts of our study 

area, the herbaceous plants had higher NDVI values due to their dense chlorophyll content, which 
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skewed the data when mixed with tree measurements. We found that this was especially so with 

the evergreen species which had much lower NDVI values than the surrounding grasses. In 

masking these species, we isolated the values specific to tree canopies, reducing potential noise 

and improving the reliability of our classification.  

Using the IWS individual tree points layer, we created a 1- m radius circular buffer around 

each point. Zonal statistics were then calculated within these buffered areas, with the masked 

NDVI raster as the input value. This process produced a detailed map displaying individual NDVI 

values for each tree, as shown in Figure 13. The resulting visualization also highlighted the 

locations of dead or defoliated trees within the enclosure. 

NDVI spectral thresholding was used to separate between evergreen and deciduous tree 

species. This technique can be effective but has its limitations due to lighting conditions during 

image acquisition, seasonality, and the specific ecosystem or phenomena of interest. The 

multispectral imagery used for this classification was taken in late summer when the lighting 

conditions can greatly change the reflectance values from the sun angles at that time of year. To 

classify tree species, we developed a custom cutoff tailored to the specific NDVI values in the T2b 

dataset, allowing us to create categories that reflect the two different tree species. This process 

involved iterative testing and validation using the high resolution orthomosaic to ensure accuracy. 

The NDVI thresholding in this analysis applied two main conditional statements: NDVI values 

that were greater than or equal to 0.45 were assigned a class value of 2 which represented 

deciduous trees, while values between 0.13 and 0.45 were categorized with a class value of 1 for 

evergreen trees. Pixels with NDVI values below 0.13 were excluded from the classification as they 

indicated dead or dying trees. This classification was performed using the Raster Calculator 

geoprocessing tool in ArcGIS Pro.  

Results 

Height model results can be visualized in Figure 6 for the T1 (April 4, 2024) leaf- off 

conditions and T2a (July 17, 2024) leaf- on conditions at Affenberg. CHMs overlay respective 

orthomosaics collected for each time period. Color coding highlights the highest points in red and 

lowest points in purple. Major differences can be observed in the central and southern areas of the 

enclosure, with more canopy coverage in T2. Note in this provided figure the illumination 

conditions for the T1 orthomosaic have heavier shadowing due to image capture conditions only 
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causing differences in the visual coloration and interpretation between rasters (refer to Appendix 

for larger details). 

 

Figure 6: T1 & T2 Height Models (CHM) over respective orthomosaics (ortho); refer to Appendix for in larger detail maps 

Behavioral studies using different scan methods are performed on the ground level to 

determine the optimal locations for after- dark protection and resting. Derived from the 

observational data on- site biologists have documented, the macaques predominantly inhabit the 

tallest trees in the center of the enclosure, closest to the feeding areas. Across the enclosure, the 

height ranges of 9 - 45 m can be inferred as potential sleeping spots, with Figure 7 providing a 

detailed illustration of the geographic distribution of these vegetation classes. The map highlights 

various height thresholds, from 9 - 15 meters up to 40 - 45 m, each represented by distinct colors. 

The darkest colors, blues, are the highest areas and the brightest colors, oranges, are the lowest 

areas of trees. This area is particularly significant for habitat suitability studies, as taller trees 

provide critical resources such as shelter during sleeping hours.     
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Figure 7: Canopy Height Model (CHM) map of potential sleeping locations  

As seen in Figure 8, the vegetation structure in the enclosure shows a heterogeneous 

distribution of vegetation across the enclosure, highlighting varied structural complexity. The core 

section of the enclosure appears densely populated with tall shrubs and young, mid-height, and tall 

trees. This dense clustering indicates a high level of vertical habitat complexity, providing 

macaques with ample opportunities for foraging, movement, and shelter within a concentrated 

area. The spatial distribution of these trees, likely mature conifers, forms the top canopy and 

emergent layer. This promotes a higher likelihood of elevated pathways and secure vantage points, 

highlighting certain behavioral interactions. Towards the edges of the enclosure and central 

arteries, there are noticeable patches dominated by the gravel periphery boundary, ground cover, 

and low shrubs. These areas lack significant tree coverage, which limits their appeal for macaques’ 

primary habitat zones. This gap area and low shrub zones also likely allow more sunlight to reach 

the ground, potentially influencing understory growth patterns. Overall, there is connectivity 

between low and high vegetation densities, a mixture of tall shrubs, young trees, and mid-height 

trees. The transitional areas create corridors for the macaques to use to navigate between parts of 
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the enclosure. This may reduce stress by allowing natural exploration and escape routes within the 

enclosure.  

 

Figure 8: Vegetation Structure Classification 

Figure 9 displays a map of the individual trees identified with blue crosses being manually 

digitized from visual interpretation of the leaf - off orthomosaic (n = 463), and red crosses being 

those identified using IWS (n = 500). The combined mapping of these provides a comprehensive 

view of the spatial distribution and coordinates of treetop locations. In comparing the two, the 

automated approach to locating treetops yielded 37 more individuals. This higher amount can be 

a product of the IWS algorithm’s sensitivity to smaller or partially overlapping crowns, which may 

have been overlooked, clustered, or merged during manual digitization. This is especially the case 

with deciduous tree RGB shades and colors being closely related to those of shrubbery. There is 

also consistency and precision in using the IWS detection methods, ultimately avoiding any biases 

a manual approach might miss. 
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Figure 9: Individual Trees (Digitized vs IWS) 

 

Figure 10 shows the distribution of evergreen and deciduous species overlaying the 

structure classes, providing a simplified representation of vegetation composition of forested areas. 

In total, there were 246 evergreen individuals, represented by an orange rounded– crown tree icon, 

and 202 deciduous individuals, represented by a purple triangle icon. Note that four individuals 

(indicated in Figure 13) were excluded from the total inventory due to being a standing dead or 

defoliated tree and more than likely not used for nocturnal cover by the macaques. Overall, this 

map indicates a pretty balanced distribution of the two, with the evergreen being evenly throughout 

the enclosure which presents a continuous canopy cover layer year round. This is particularly 

valuable for habitat stability in a region with a large diurnal range and provides shelter and visual 

protection all year round. The deciduous trees are interspersed among the evergreens contributing 

seasonal diversity to the habitat. This provides more food sources and shade during hot summer 

months.  
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Figure 10: Tree species in structure classes: Evergreen & Deciduous 

Determining open areas in the enclosure is key to understanding where in the macaque 

habitat certain behaviors are triggered. One such is the openness or “gaps” being where macaques 

choose to rest in the sun in a warm, sunny spot. The distribution of such potential places during 

leaf-on and leaf-off seasons can provide important information as to where they are spatially 

habituated and shifting seasonally. Maps of T1 (April 4, 2024, leaf-off conditions), T2 (July 17, 

2024, leaf-on conditions), and year- round (January to December) canopy gaps are portrayed in 

Figure 11. Based on this analysis, there is almost a 20% change in canopy gap and openness in the 

enclosure between these time periods, offering more areas for macaques to be exposed to full sun 

or lie out for warmth. Most of this change is visible in the lower left quadrant, being mostly 

deciduous species, and the enclosure's upper right quadrant, a vegetative mixture. Year- round 

canopy gaps is, unsurprisingly, strongly symmetrical to the T2 periods, with only a 2% difference 

to leaf- off periods. 
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Figure 11: Canopy Gaps from T1 & T2 with the light green being the openness areas during leaf - off periods, the blue being leaf 

- on periods, and the darker green areas being year-round  

 

The major differences seen for the T1 (April 4, 2024, leaf-off conditions) and T2 (July 17, 

2024, leaf-on conditions) datasets can be visualized from Figure 12, highlighting seasonal changes 

in leaf density across the enclosure. In this map, red areas indicate the most significant increase in 

leaf coverage, likely reflecting deciduous trees that gained full foliage between spring and summer. 

This flush or increase in leaf density provides insights into the regions affected the most by 

seasonality. Areas without any color coding are regions where canopy coverage remained 

consistent across time frames, indicating no significant change. The very limited purple areas 

depict a decrease in leaf coverage which could result from natural shedding, dieback, stress from 

macaque overuse (or abuse), or other ecological factors. Another consideration for purple areas 

can be the results of interpolation artifacts introduced in the SfM reconstruction process. The SfM 

algorithm relies on overlapping photos to create the models, but where image overlap is limited, 

high shadowing, or missing data values are, interpolation is used to fill the gaps. This can create 

artificial reductions or inaccuracies in the CHM, which may influence the overall decrease in leaf 

coverage between datasets. These potential artifacts are seen in the core center of the enclosure 
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where the known tallest trees exist, confirming large shadowing and the suspected absence of data 

for raster products. 

 

Figure 12: CHM changes between T1 & T2 

 

Figure 13 enables an evaluation of individual tree health and assessment using NDVI. The 

SVI was calculated with leaf – on conditions with gap areas masked to only focus value ranges on 

trees. The chart below, Figure 14, depicts the frequency distribution of NDVI values, showing that 

most fall within the higher NDVI range. Additionally, specific trees identified as dead are 

symbolized with a red circle. However, areas of low and very low NDVI in red and yellow indicate 

areas of possible concern that may require targeted management efforts. When comparing Figure 

10 results with Figure 13, it is noticeable that the deciduous trees show higher NDVI values than 

evergreen species. Deciduous trees tend to have higher reflectance activity due to leaf area, shape, 

and denser green foliage during the growing season.  
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Figure 13: Tree Health Assessment using NDVI: Green areas represent high to moderate NDVI of 0.4 – 1.0, yellow areas with 

NDVI between 0.2 – 0.4, and red areas below 0.2.   

 
Figure 14: NDVI  frequency distribution 

Discussion 

Implications for Wildlife Management 

Ultimately, this study contributes to the knowledge base by leveraging advancements in 

technology, innovative methodologies, digital documentation, and newly available resources such 

as drones. These tools enable novel analyses and insights that were previously unavailable, 

particularly in the field of habitat monitoring for arboreal wildlife management. High-resolution 

digital images, videos, and sensor data collected through remote sensing tools like drones and GPS 

tracking devices provide detailed insights into animal behavior, movement patterns, and habitat 

usage with minimal disturbance to wildlife. Furthermore, this type of digital data collection can be 
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easily stored, shared, analyzed, and repeated. Facilitating collaboration across research teams and 

creating long-term datasets will support trends analysis and management decision making. 

Canopy height models offer valuable insights into the vertical structure and complexity of 

vegetation. Macaques, like many arboreal and semi-arboreal species, often select habitats based 

on availability and arrangement of trees which serve as sources of food, shelter, and movement 

pathways. The zones with tall and complex canopies can pinpoint likely areas where macaques 

may prefer to forage, rest, or navigate. Complex canopies provide the vertical and horizontal 

diversity that macaques often seek for cover during nighttime colder temperatures. Such canopy 

height information can be linked to allometric equations, which estimate biomass and the potential 

availability of resources. These measurable features inform an empirical relationship between the 

allometric sizes of trees with locations for macaque behavior or preference. The larger, mature 

trees in the 30 – 45 m ranges make them likely focal points in macaque resting areas. 

Challenges 

Under high canopy cover, GNSS signals can be significantly weakened or obstructed, 

leading to low signal quality for point collection. Dense tree canopies can block or scatter the 

satellite signals, preventing the receiver from establishing a clear line of sight to the constellation. 

This obstruction increases the likelihood of signal reflections such as multipath errors. This 

ultimately prevented us from collecting precise ground survey measurements of individual trees 

and using this dataset for validation. In this small-scale study, broad vegetation structure zones or 

general areas provided sufficient information to understand and cross-reference the geolocations 

of macaque individuals; future studies can further explore and support their specific habitat 

preferences.  

Some technical challenges that we encountered during this project were a geographic offset 

of T1 data and UAS image collection malfunction in T2 datasets. A geographic offset in the drone 

raster products refers to a spatial discrepancy between the actual geographic location of a feature 

on the ground and its represented location in the raster imagery. This can happen due to several 

factors from inaccuracies in the GPS data used during the drone flight, lack of ground control 

points (GCP), or slight misalignments introduced during the image stitching and processing. Our 

drone flights employed real-time kinematics (RTK) in the GPS of the platform, which helps refine 

the drone’s positional data and reduce geographic offsets.  
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Also, in rare cases, real- world political or logistical conflicts can interfere with research 

objectives and consequently necessitate adaptation. In aircraft operations, careful monitoring of 

Notice to Air Missions (NOTAM) is imperative, as notices made about abnormal statuses of the 

Flight Information Region (FIR) made by the International Civil Aviation Organization (ICAO) 

can impact all personnel involved whether or not they are piloting a flight. This type of notification 

system alerts users of interference for all aircraft operations not excluding those using UAS. 

During the months between February 2024 to May 2024, several notifications were made in 

relation to the military invasion of Ukraine by the Russian Federation. This unique geo-political 

situation could have affected the aircraft sensors that collect RTK, causing a purposeful offset in 

GPS coordinates to prohibit or impede accurate geolocations (refer to the Appendix to view 

NOTAM referenced). To amend this issue, we had to correct the raster datasets using the GCPs we 

were able to collect in July. We performed the alignment in ArcGIS Pro using the Georeferencing 

toolset and manually positioning to match GCPs. 

The second technical challenge we faced was during our July (T2a) image acquisition, 

wherein part of the multispectral images collected were missing part of the enclosure, inhibiting 

our ability to use that dataset for part of our study. The September (T2b) dataset used here was 

successful, however, this limited scope of multispectral analysis as processing and sharing 

resources was abbreviated to the conclusion of the Marshall Plan fellowship timeline. 

Future Work 

Building on the findings of this study, future work will aim to address the remaining gaps 

and explore the additional factors to enhance our understanding of Japanese macaque population 

dynamics and their habitat. Experimenting with different capturing positions and conditions with 

the UAS, such as viewing angles and monitoring wind conditions, could be worthwhile to obtain 

structure info. Oblique angles might highlight the understory vegetation obscured by dense canopy 

coverage undocumented using solely nadir- pointing perspectives [20]. Recent findings by Slade 

et al. (2024) have found wind speed to be a larger factor in SfM surveys and recommend an 

anemometer mounted at a standard height with a data logging function to record speed throughout 

the UAS survey [43].  

Further work could focus on implementing more advanced Geographic Object-Based 

Image Analysis (GeoOBIA) models to enhance the detection and classification of tree types, 
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building upon the foundational OBIA approach used in this project. The combination of 

multispectral orthomosaics (spectral), dense point clouds (structural), and the IWS canopy crown 

points (spatial) information can be instrumental in this type of ecological and forestry study [29]. 

This integrated approach can provide a more in-depth biodiversity assessment, significantly 

reducing the need for manual interpretation and increasing the scalability of extensive datasets. 
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