
Automated large scale fault
injection in ACT

FINAL REPORT

submitted in partial fulfillment of the requirements for

Marshall Plan Grant

by

Fabian Philipp Posch, BSc.
Registration Number 01456625

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Assistance: Rajit Manohar, B.S., M.S., Ph.D.

Univ.Ass. Dipl.-Ing. Dr.techn. Florian Ferdinand Huemer, BSc.

Vienna, January 1, 2001
Fabian Philipp Posch Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Automatisierte breit-gestreute
Fehlerinjektion in ACT

ENDBERICHT

verfasst als Teil des

Marshall Plan Stipendiums

eingereicht von

Fabian Philipp Posch, BSc.
Matrikelnummer 01456625

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger
Mitwirkung: Rajit Manohar, B.S., M.S., Ph.D.

Univ.Ass. Dipl.-Ing. Dr.techn. Florian Ferdinand Huemer, BSc.

Wien, 1. Jänner 2001
Fabian Philipp Posch Andreas Steininger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Contents

Contents v

1 Introduction 1
1.1 Synchronous Logic . 2
1.2 Asynchronous Logic . 2

2 Asynchronous circuit description 5
2.1 Abstract Serial Description / CHP . 6
2.2 Dataflow . 6
2.3 Production Rule Set . 7
2.4 Benefits and Drawbacks of Description Levels 8
2.5 Important Circuit Elements . 8

3 Related work / starting point 11
3.1 Capabilities . 11
3.2 Internal Tool Flow . 12
3.3 Output . 13
3.4 Shortcomings . 14
3.5 ACT tool flow integration . 16

4 Research questions 17

5 Cluster Build and Simulation System 19
5.1 Basic Setup . 19
5.2 Configuration . 20
5.3 Cluster Architecture . 23
5.4 Database Layout . 24
5.5 Worker Nodes . 26
5.6 Writing a prepare Stage . 26
5.7 Writing a deploy Stage . 26
5.8 Writing a Cluster Agent . 27

6 Fault-Injection Framework 29
6.1 Definitions . 29

v

6.2 Integration into action . 32

7 Simulation 35
7.1 Additions to the Simulator . 35
7.2 Simulation library . 37

8 Future Work 41
8.1 Refinement of Number of Insertions 41
8.2 Engine and Data Quality . 41
8.3 Tool Setup . 42

9 Conclusion 43

List of Figures 45

Listings 45

List of Abbreviations 47

Bibliography 49

CHAPTER 1
Introduction

When a new product is released, focus is often exclusively put on its performance
improvements over the previous generation. Unsurprisingly however, pure performance is
never enough for a product to be actually useful. All the performance in the world does
not help if the underlying system is unreliable. While most off the shelve electronics will
be stable enough for home use under lab conditions, venturing out into a more challenging
environments quickly opens up some major challenges. The obvious question to come to
mind here is what happens, when something goes wrong? A question which has a quick
answer so common, it has found its way into pop culture: Just turn it off and on again.
Digging deeper into the details however, a slew of unknowns starts to rear their ugly
head. What if the age old advice is not possible anymore, or worse, does not actually fix
the issue? One cannot simply walk up to a satellite and hit the power button.

The main goal of this research is to take what we have learned about finding these
answers and improving upon it - by building a set of tools which can be used by anyone.
Their capability is not necessarily to find answers but to at least point out the problems.

The logic families we talk about in this work are not limited to synchronous logic. In fact,
most of them are what is called asynchronous logic. While currently only very rarely
employed in industry, asynchronous logic does away with the complexity of a clock net
and replaces it with localized handshaking, enabling the logic to time itself. Even better,
it completely rids the designer of thinking about the question of when the clock should
actually hit and data be moved onwards. This introduction shall present a brief starting
point into how asynchronous logic works - with a special focus possible consequences of
unexpected environmental effects.

Following that we will go over the ACT toolchain, a fully open source set of tools for
asynchronous VLSI, headed by Rajit Manohar at the Yale AVLSI Group [Man19]. It is a
significant effort to enable an end-to-end tool flow, as VLSI tools for asynchronous logic
are few and far in between.

1

1. Introduction

1.1 Synchronous Logic

A look at any microprocessor datasheet will quickly draw attention to the clock frequency
with which the device is guaranteed to run. The signal net behind this specification,
often just referred to as clock tries to solve several problems of digital design, the biggest
of which is synchronization. In synchronous digital designs, data is moved through a
pipeline between stages whenever a positive clock edge appears. The combinational logic
inside these stages is designed to finish calculating the next result at least faster than
one clock period. When the clock hits, all stages have finished their calculations and
no incomplete data is moved to the next stage. This way, no per-stage control logic is
needed to detect completion of the current calculation.

This approach comes with a number of drawbacks. As the clock synchronizes all stages
within the current clock domain, it has to reach all of them at the same time, making
it a high-speed (thus low-slew), low-jitter, low-delay-variance, global signal, which is
about the worst set of requirements to be attached to a signal. For this reason, a lot
of engineering effort in a large synchronous design is dedicated to tuning the clock net.
Additionally, the requirement for a short rise time often results in driving the clock
net with relatively high power. This amounts to the clock net consuming an estimated
30 − 40% of a chip’s power budget [Moa17; SBS10] on its own.
To add insult to injury, clocked designs are by definition worst case designs. The clock
cannot run faster than the slowest stage within a given clock domain. Even if this critical
path is part of a fork in the pipeline and only used 50% of the time, the clock cannot
run faster as it is not necessarily known whether or not this path is currently in use.
Additionally, as chip characteristics change with voltage and temperature, a certain
design point has to be assumed and the clock frequency calculated accordingly. This
design point is often conservative and therefor further slows the chip.

1.2 Asynchronous Logic

In contrast to a synchronous approach, asynchronous logic does not employ a clock in
order to synchronize between stages. The pipeline and stage concepts still exist, but now
these stages are able to communicate with each other by adding handshaking logic to
each stage. This takes the shape of a ready/valid protocol, which communicates state
between two neighboring stages. Chained together, this creates back-pressure, halting
subsequent stages as the pipeline fills up. Not only does this do away with the high-power
clock net, but it also alleviates the issue of worst-case bound performance. If a given
pipeline branch is not taken, it never contributes to the speed at which a given data
token can move through the pipeline as a whole. This leads to average-bound rather
than worst-case bound performance which often has a big real-world impact. In addition,
if current environmental conditions allow for it (higher voltage, . . .), transistors switch
faster and the designs gains additional performance.

While rare, asynchronous designs have been explored in industry. In Davies et.al.

2

1.2. Asynchronous Logic

[Dav+14] the design of a 72 port 10G Ethernet switch is explored. Merolla et.al.
[Mer+14] presents a neuromorphic chip to process machine learning workloads using
spiking neurons.

3

CHAPTER 2
Asynchronous circuit description

This project aims to unify the workflows from TU Vienna and Yale University. Both sets
of tools use different ways of describing asynchronous circuits on different abstraction
levels. We will briefly describe these levels of abstraction and their usefulness towards
our goals, as well as contrast the two against each other.

act [Man19], the toolchain produced by the Yale University AVLSI lab under the
direction of Rajit Manohar is an attempt at and end-to-end solution. While it has the
ability to synthesize to Verilog for FPGA acceleration [DM22], this is actually emulation
rather than native execution. The system auto-generates a hardware-level simulator for
the circuit and runs it synchronously on FPGA.

pypr [Hue22], the equivalent by ECS TU Vienna is less an attempt to create a full
ASIC toolchain. Its main purpose is to quickly create and modify mostly quasi delay-
insensitive (QDI) circuits and examine their robustness. In contrast to act, pypr
possesses the capability to directly synthesize to VHDL and Verilog.

Both toolchains feature sub-languages for different levels of abstraction. pypr uses Python
as its environment. Circuits are represented by Python objects and rules are added by
calling functions on them. These objects can then be connected into a hierarchical design
[Hue22].
In contrast, act has its own custom meta-language, in which processes can be defined,
instantiated and connected. Rules and functionality are then added by sub-language
blocks within these processes.

For both languages, design units have inputs and outputs, which can be channels or rails.
A channel refers to a bundle of signals which jointly carry data as well as their respective
control signals. These control signals carry handshaking between two stages.

Since the abstraction levels are similar between both toolchains, we will discuss them in
their respective groupings and point out differences.

5

2. Asynchronous circuit description

2.1 Abstract Serial Description / CHP

This level of abstraction only features in act as the CHP sub-language. In addition, it is
currently of little use to this particular workflow, as there is of yet no way to synthesize
CHP into arbitrary logic families.

CHP can be used as a sub-language block in act, follows a serial execution paradigm,
and features directly accessible channel semantics. A simple adder can be seen in Listing
2.1.

de fproc chp_adder (chan ?(i n t) A, B; chan ! (i n t) RES)
{

i n t a_buf , b_buf ;

chp {
// r e c e i v e the input
A?a_buf , B?b_buf ;

// send the output
RES ! (a_buf + b_buf)

}
}

Listing 2.1: Simple Adder in CHP

? and ! represent the channel operations send and receive respectively. The process reads
from the input channels concurrently (as specified by their , separator), then sends the
addition result onto the RES channel, once both values have been received (using ; as
the serial execution separator).

2.2 Dataflow

The dataflow representation of a circuit can be viewed as a graph of building blocks with
a defined functionality. This graph represents a pipeline and thus the flow of data in
the design. The individual design blocks are treated as black boxes. When a dataflow
design is synthesized into a specific logic family, the design blocks are substituted by
a specific implementation for the target logic family. This makes dataflow as of yet
the most powerful abstraction level. As long as a library exists, any logic family can
theoretically be targeted. This includes synchronous families as well asynchronous ones.

pypr does have dataflow functionality, however it is mainly used to assemble user defined
blocks into pipelines [Hue22]. In contrast, act already has a powerful library for base
components.

6

2.3. Production Rule Set

A basic dataflow adder in act dataflow is shown in Listing 2.2. Note the absence of
channel control compared to Listing 2.1. Connections between instances are inherently
assumed to be channels handshaking is left completely up to the connected blocks.

de fproc dflow_adder (chan ?(i n t) A, B; chan ! (i n t) RES)
{

chan (int <DATA_WIDTH+1>) intermed iary ;

data f low {
B + A −> RES;

}
}

Listing 2.2: Simple Adder in Dataflow

2.3 Production Rule Set
Production Rule Sets (PRSs), as introduced by [Mar89; Mar91] describe conditions for
signal transitions using guards of the form G 7→ S. If G evaluates to true, transition S
fires. A subset of production rules is directly CMOS implementable, as guards represent
pull-up and pull-down stacks of logic gates.

Both frameworks support production rules using differing containers. An example of an
and-gate in pypr’s PRS language can be seen in Listing 2.3 and the equivalent in act
PRS in Listing 2.4.

Of note is the absence of channel semantics in the PRS language. As it is supposed to
be directly describing transistor stack behavior, PRS does not handle channel operations
implicitly anymore.

prs simple_and_gate i s
inputs a : Bit ; b : Bit ;
outputs out : Bit ;
begin out := r u l e (a and b) ;
end prs ;

Listing 2.3: Simple and-gate in pypr PRS

de fproc prs_and (bool a , b , out)
{

prs {
a & b => out+

7

2. Asynchronous circuit description

}
}

Listing 2.4: Simple and-gate in act PRS

act has the ability to handle direct transitions between the Communicating Hardware
Processes (CHP) and PRS abstraction level. This is achieved by an internal channel
library. Channel operations are split into certain operational phases, which trigger specific
signal transitions on the PRS side and vice versa. This transition point also allows us to
extract communication errors for failure analysis.

2.4 Benefits and Drawbacks of Description Levels

As the level of abstraction decreases, development and simulation effort increases. Focus-
ing on act as our target ecosystem, CHP is the easiest to write and simulate. Dataflow is
a middle ground for implementation, but depends highly on library support - completely
new functions have to either be assembled from base components or written from scratch
using PRS for every target logic family. PRS is the closest level to actual hardware and
thus presents itself as the only useful abstraction level for fault injection testing. This
level was also targeted by [Beh21].

In summary, the best workflow for the current state of the toolchain is for the testing
harness to be written and simulated in CHP, the design under test (DUT) written in
Dataflow, then mapped and simulated in PRS.

There are ongoing efforts to synthesize CHP designs to any arbitrary logic family, however
these tools are not finished as of writing of this report.

2.5 Important Circuit Elements

In asynchronous logic, data is often modeled as a token moving through the pipeline.
While this model is just as valid for the synchronous domain, here the tokens will keep
moving with every clock tick and interactions between the tokens are mostly irrelevant.
As asynchronous is event rather than time driven, data moves only when there is data to
be moved, and tokens can interact of block each other from proceeding.

It is helpful to define certain circuit building blocks, which often appear in asynchronous
circuits - especially in verification setups.

• Token source. A block of logic generating new tokens, which are fed into an
input.

• Token sink. A block of logic which continuously consumes tokens from an output.

8

2.5. Important Circuit Elements

Verification environments often consist of a design under test (DUT) as well as a verifica-
tion harness. This harness (even in the synchronous domain) usually contains a token
source (referred to as a sequences in UVM) as well as token sinks.
In addition, two more parts enable the evaluation of a DUT:

• Model. Usually a higher abstraction level implementation with the same behavior
as the DUT. It is assumed that the re-implementation leads to fewer or at least
different errors. The output of both the DUT and the model are compared by the

• Scoreboard. It takes the output from both the model and the DUT and compares
the outcome, flagging mismatches as failures.

9

CHAPTER 3
Related work / starting point

Over the past years, TU Wien has contributed a significant amount towards understanding
resilience of asynchronous circuits, specifically QDI pipelines. For this purpose, several
works before this one have contributed to the tool DiFit, which performs failure analysis
through large scale fault injection. In essence, this is the same approach as the one we
have chosen for our new tool. The main difference is the reliance of custom internal tools,
which we aim to reduce in our own implementation. The following is an overview of the
capabilities of DiFit, as presented by Behal [Beh21] and Schwendinger [Sch22].

3.1 Capabilities

DiFit provides a framework for distributed injection into asynchronous logic circuits.
It uses a the already described Python based circuit description library pypr under
the hood (see Chapter 2). This means the circuit can theoretically be synthesized into
synchronous and asynchronous logic families, depending on library support by pypr.
[Beh21] has used this capability to analyze the multiple families of asynchronous circuits
for their fault resilience.

To investigate fault resilience of a given circuit, DiFit generates a set of testcases, which
inject faults into wires of the design, varying their parameters for every testcase. These
testcase parameter variations are randomly chosen inside a given parameter space, which
tries to establish realistic conditions of circuit state as well as limit the amount of
simulation time required.

11

3. Related work / starting point

3.2 Internal Tool Flow

3.2.1 Circuit description framework

DiFit uses pypr to provide circuit operation capability. A DUT is written in pypr as
Python object and then mapped to a set of gate implementations. The current version as
presented by Schwendinger [Sch22], DiFit can target either VHDL or PRS representations
to enable gate level simulation. We will talk more about the latter in Section 3.5. To
validate the output of the DUT, the output is compared against a model written in
VHDL or CHP respectively. The testbench and scoreboard to perform these checks are
generated using the OSVVM library for VHDL, an open source toolkit to validate designs
written in VHDL, or using tbgen.py with a custom CHP testbench for PRS.

As already mentioned, the now fully assembled test harness is then either compiled into
VHDL or flattened PRS. For the Python based circuit description, this means a more or
less direct mapping through a circuit library, as already discussed in Chapter 2.

3.2.2 Testcase generation

After the harness for the DUT has been assembled, testcases are generated. DiFit
uses certain key metrics in its generation and reporting which it determines through
exploratory simulations. Testcase generation is separated into several steps:

1. Measure pipeline depth. The sink delay at the end of the pipeline is set to a
high value and the input fed until no further input can be accepted. The amount
of tokens fed to the system is assumed to be the pipeline depth.

2. Measure source / sink timing for a given load scenario. The target load
scenario of the DUT can be configured using the YAML configuration file. The
tool then tries to trim sink and source delays to hit this load point. This is only
really possible for pipeline layouts without feedback or forks. We will return to this
issue in Section 3.4.1.

3. Determine the wait time after injection. After an injection has occurred, a
potential fault needs time until it becomes visible at the output.

4. Perform a golden run. The system performs a golden run to determine timing
of all events in the circuit. This is used as a reference to generate timing failure
reports.

5. Maximum simulation time is determined. This time boundary is used to
determine if the circuit has potentially reached a deadlocked state.

6. Determine the number of necessary injections. DiFit automatically calculates
the amount of necessary injections. Given the size of the search space, this is not
an exhaustive search. The heuristic employed here is based on average injection
density.

12

3.3. Output

In order to gauge the parameter space and thus the number of needed injections, DiFit first
runs parameter randomization many times. It then examines often randomly generated
parameters collide with each other. Based on the inverse of the Birthday Problem [Von39],
an estimation of the total parameter space is made. From this, the number of needed
injections is calculated to reach a certain injection density.
Based on this metric, it is assumed that most possible failure scenarios will be triggered
by the setup.

The victim signal for a single injection is chosen randomly from the list of all signals of
the design as part of parameter randomization. There are no additional characteristics
used for selection or distribution. Polarity and duration of the transient are also random.
The original framework presented in [Beh21] can inject high or low polarity into the
circuit, [Sch22] expanded the framework to also include metastability injections when
using prsim.

3.2.3 Cluster

The setup application as well as the worker nodes connect to a MySQL database. When
the setup part is run, the generated testcases are uploaded into this database. Worker
nodes load these configurations and start processing the individual testcases, uploading
their results back into the database. To save space, only runs which deviate from the
golden run performed during setup are saved. The data includes the failure type, the
seed for the pseudo-random generator (PRG) generating the input data, the generated
logs, as well as the commands used to configure the simulation.

After completing simulating all testcases, this data can be processed for further investi-
gation.

3.2.4 Simulator

DiFit uses Modelsim as the primary simulator. In later efforts [Sch22], prsim was added
as an additional simulator (see Section 3.5).

3.3 Output

The generated data is manually extracted from the database and then further processed
using Jupyter Notebooks. The framework does pre-categorize outcomes into failure
modes, these are:

• Deadlock. The simulation took longer than the determined timeout limit.

• Glitch. A glitch was observed within the design.

• Value. The DUT output differed from the expected model output.

13

3. Related work / starting point

• Coding. A dual-rail encoded bit saw true and false rail in a high state simultane-
ously.

• Timing. The DUT timing varied from the golden run.

3.4 Shortcomings
The setup described here has a list of shortcomings, which we are important to point out.
This list was the jumping-off point for the tool we developed during the length of this
program.

In no particular order, the issues we found were:

3.4.1 Pipeline Load Factor

DiFit calculates the Pipeline Load Factor (PLF) by measuring the delay of acknowledge-
ment for the token source as well as the waiting time between tokens at the token sink
[Beh21]. It then defines PLF as

PLF = δacknowledgement
δtoken-token

Furthermore, it defines that a pipeline is bubble limited, if this factor is greater than 1
- we are waiting for acknowledgement longer than for new output tokens. If the factor
is smaller than 1, the pipeline is token limited - the pipeline is outputting tokens faster
than we are feeding it.

This definition deviates from the more common definition of the metric, with the advantage
of being well defined for not just linear pipelines. It adds potential for confusion however,
as classical definitions usually constrain it to 0 ≤ PLF ≤ 1, where 1 corresponds to a
pipeline with all buffers filled and 0 to all buffers empty.

Subsequently, DiFit attempts to steer the PLF towards its configured target by varying
source and sink delays. These are determined in a multi-step process:

1. Increase the sink delay until the required simulation runtime increases proportionally
with the number of injected tokens. Fix the delay as the corner value.

2. Repeat the process with the source delay. Now both ends are tuned to the circuit
speed.

3. If the measured PLF is too low, increase the sink delay until the configured PLF
value is reached. If the PLF is to high, increase the source delay until the configured
PLF value is reached.

4. Repeat this process 100 times and set the final source and sink delays as the mean
of these 100 runs. This aims to lower the influence of data dependent delay changes.

14

3.4. Shortcomings

While dialing in a certain PLF could be useful under certain circumstances, we argue
that a more realistic model of the logic feeding and consuming from the DUT would
yield a more realistic testing analysis, as actual designs rarely target a specific PLF over
targeted total throughput.

3.4.2 Number of Injections

Behal [Beh21] already talks about possible better solutions for determining the number
of needed injections. In addition, Behal does not consider the potential impact a specific
signal has on the rest of the circuit. A node with fanout of 1 will see as many injections
as a signal with fanout of 5. We postulate that injecting based on the number of affected
nodes would significantly cut down the number of simulations needed or potentially
improve failure mode awareness.

3.4.3 Steady State Expectation

All designs tested with DiFit are expected to reach a steady state after 2 tokens. As
argumentation for it, Behal only mentions empirical experiments without providing data.
We feel this should simply be a configuration option to add flexibility to the system.

3.4.4 Pipeline Depth

After injection, the simulation needs to wait until potential faulty tokens have a chance to
propagate to the output. To determine the number of tokens to wait for, DiFit performs
an exploratory simulation during setup. The sink delay is set to a very high value and
tokens are sent on the input until no more tokens can be consumed.

This leads to inaccuracy however, as the sink is only set to a high delay, not fully halted.
A very long pipeline could see its value tainted by a token being absorbed by the sink.
Even worse, a nonlinear pipeline might see one of several erroneous measurements.
Assuming two branches of differing length:

1. Only the short branch gets filled: Measured pipeline length too short

2. Both branches get partially filled: Measured pipeline length too long

Due to its complexity, we feel this problem can simply be solved by making the post-
injection wait time a configuration option instead of trying to measure it.

3.4.5 Class of possible circuits

DiFit expects circuits to have a singular input. Circuits with more than 1 input need
to be wrapped accordingly. This inherently requires a custom testbench setup for DiFit
and rules out code reusability from other verification tests. This potentially also negates
the benefit of automatic testbench generation.

15

3. Related work / starting point

3.4.6 Simulator

Using Modelsim as a simulator inherently requires licensing of the software. As each
installation - meaning each cluster node - needs a separate license, this solution is not
easily financially scalable.
In addition, Modelsim does not support metastable circuit states, prohibiting the analysis
of a potentially quite dangerous class of failures.

This issue was partially addressed with the extension to use prsim.

3.5 ACT tool flow integration
In a later efforts, initial work was performed by Schwendinger [Sch22] to integrate DiFit
with the act toolchain by the Yale University AVLSI Lab [Man19]. The main addition
is a translation layer from the Python based pypr description to PRS. This in turn
enables two new capabilities:

1. Designs written in act can also be tested using DiFit

2. act’s prsim can be used as a simulator instead of Modelsim

A prospective design is translated from higher level act or pypr description to low level
PRS, with the same circuit type restrictions still applying. The design hierarchy is then
flattened using aflat as a requirement for prsim, including a CHP testbench instead
of using OSVVM.

This does address the issues of effectively scaling a simulation cluster, but does not resolve
the other issues.
prsim does not internally support randomizing delay of signals during runtime. Since
DiFit requires this functionality, all input tokens are generated by their own source
with static delay. Thus, significantly more overhead is generated as more hardware is
introduced and simulated.

16

CHAPTER 4
Research questions

In light of creating a new tool flow for tackling this problem, we have set out to answer
the following research questions:

How can we make the tool more general purpose? Right now, the tool is very
limited in terms of which circuits can be simulated. DiFit only accepts setups with a
singular input. We would like to expand this, so circuits with more than one input can
also be evaluated.
We think that a new tool should not only be able to evaluate circuits with more than
one input, but to reuse a general verification harness without modification as well.

Can we reduce the amount of overhead? Both Modelsim and prsim have to
simulate the entire design on the same refinement level - meaning gate level. This creates
a tremendous amount of overhead. Even worse, for prsim every injected data token
uses its own source, to work around the lack of delay randomization support.
Switching to a simulator with support for simultaneous simulation of differing abstraction
levels should reduce the performance impact of the surrounding harness. In addition,
support for delay randomization is needed to reduce the amount of required dummy
hardware.

Can we create a more streamlined workflow? The current workflow uses a number
of workarounds.
As act is shaping up to become the new standard for asynchronous logic description, we
want to create a more well integrated tool flow to ease development of future designs.
In a perfect world, these tools are flexible enough to be used for more of the workflow
than just fault resilience testing. Distributed simulation as well as on demand remote
compute in general is a useful capability in any hardware development workflow.

Can we reduce the number of required injections? Currently, average injection
density is used to determine the overall number of injections needed. We feel this is
a poor representation of a signal’s potential to cause failure conditions. Either signals

17

4. Research questions

with high failure potential are underrepresented, or signals with low failure potential are
overrepresented.
We need to find a metric which determines a signal’s potential to cause harm. Based
on this, we can estimate the number of expected possible failure modes, allowing us to
calculate an estimation of required configurations to find all of them using the Coupon
Collector’s Problem. Then we need to distribute the total amount of injections over all
signals based on their potential to cause harm.

18

CHAPTER 5
Cluster Build and Simulation

System

The most development-heavy part of this project was implementing a new distributed
system to compute simulation results. We chose to start from scratch, as this allowed us
to widen the flexibility of the tool significantly. Nonetheless, the architecture of the first
version is still heavily inspired by DiFit.
Hardware development requires a lot of compute, not just for this specific application.
Verification in an industrial context is usually also achieved through subjecting a DUT
to a large number of test inputs, thus also benefiting heavily from distribution. Outside
of simulation, synthesis often requires more powerful compute and main memory than
most client workstations provide.
For these reasons, we believe a more general case cluster based build system to be of
use in a high performance toolchain like act. Since the end goal is a configurable
shoot-and-forget solution, we chose the name action. Due to the limited scope of this
project, only the initial distributed simulation capability has been implemented thus far,
and robustness of the net-code has been sacrificed in the name of simplicity. We designed
the underlying structure of the source to allow for simple modification, to extend the
width of functions supported by the framework, as well as rework the communication
between nodes for better robustness.

5.1 Basic Setup
action is configured through YAML files. These files are read by the engine internally
converted into a pipeline. This pipeline consists of data ingestion, as well as two major
processing phases. These phases are populated with modules, which are capabilities
implemented in action. As soon as a module is instantiated in a pipeline, it is referred
to as a pipeline stage (not to be confused with stages in the DUT).

19

5. Cluster Build and Simulation System

The prepare phase is performed locally and allows for any major elaboration or prepro-
cessing steps. Currently, these operations are performed serially, although this might
change in the future. At this point in time only testcase generation uses this part of the
pipeline, which was done to initially limit the scope of the project. This has the inherent
downside that a synthesis-verification pipeline could currently not be run in the cluster
alone, as synthesis results would have to be downloaded and re-uploaded (inherently
breaking the workflow into two distinct pipelines). We plan on addressing this shortfall
in the future (see Chapter 8). Results from every step are saved in variables, which are
from hereon out referred to as artifacts. These artifacts can have different types, such as
an act design object or a collection of testcases. The YAML itself does not contain type
information for artifacts other than the ones loaded at the beginning, but type checking
is automatically performed when the configuration is loaded.

The deploy phase happens after prepare. action determines which artifacts are needed
in the cluster and uploads them to the central database alongside information regarding
the tools which need to be run. Agents then perform these tasks and dump their results
back into the database, from which it can be retrieved after the computation has finished.
This has the added benefit of the client being able to disconnect while the simulation is
in progress.

5.2 Configuration
As already mentioned, action is configured using YAML files. A very basic configuration
can be seen in Listing 5.1. This configuration does three things:

1. Load the act design saved in test.act

2. Generate a testcase using the simple testcase generator

3. Simulate the simple testcase in the cluster

We shall first discuss common elements between these configuration elements and then
break them down individually.

i n p u t _ a r t i f a c t s :
- name: d e s i g n _ f i l e

type : a c t
source : f i l e
path : t e s t . a c t

prepare :
- module: t e s t c a s e _ g e n e r a t i o n

outputs :

20

5.2. Configuration

t e s t s : s i m p l e _ t e s t s
g e n e r a t o r : s i m p l e

deploy :
- module: a c t s i m

i n p u t s :
d e s i g n _ f i l e : d e s i g n _ f i l e
s im_conf igs : s i m p l e _ t e s t s

outputs :
sim_outputs : s i m _ r e s u l t s

top : t e s t

Listing 5.1: Basic action configuration

5.2.1 Ports

All of the stages described in the configuration in Listing 5.1 have one or more inputs and
or outputs, here generally referred to as ports. These are denoted per stage as inputs:
and outputs: in the prepare: and deploy: sections. As input_artifacts only
serve a single output, their artifact port is defined under the name property (see Section
5.2.3). Ports are typed and directional. action performs dependency checks when a
pipeline configuration is loaded. These checks include making sure an artifact exists and
is of the right type. Artifact names can be reused, the old data is overwritten.

Of note: Only artifacts which are needed during the deploy phase are actually uploaded
to the cluster. In fact, artifacts unload from memory as soon as execution has passed the
last point of use. As of writing of this report, there are known memory leaks within the
original act framework, which might cause performance issues when unloading an act
object. This is a known issue and will be mitigated in the future.

5.2.2 Modules

Modules are the building blocks from which a pipeline can be assembled. Internally,
everything is treated as a module, even if this structure is simplified away for loading
input artifacts for the sake of configuration readability. Given there are two main sections
of pipeline execution, there are also two different lists of modules. prepare-modules can
be accessed during the prepare stage of the pipeline and perform local computation.
Currently, only the testcase generator module is supported in the prepare stage.
deploy-modules can be accessed during the deploy stage of the pipeline and less reflect
tools available on the client machine as they do the capabilities of the cluster. Currently,
only simulation tasks are implemented for deployment. Using a local artifact on a
consuming port of a deploy stage will automatically cause action to upload it to the
cluster during pipeline execution.

21

5. Cluster Build and Simulation System

5.2.3 Input Artifacts

Input artifacts represent a single output port, generating a single output artifact. Since
input artifacts can load multiple types of data, this type information can not simply
be derived from the stage itself and has to be configured manually. An input artifact
configuration always covers the following keys:

• name: The artifact name the data shall be saved in

• type: The type of data loaded (currently only act is supported)

• source: The data source from which the data shall be loaded (currently only
file is supported)

• path: Required by file data source. The relative path on disk to the source file.

5.2.4 Pipeline Assembly

Both prepare and deploy section instantiate modules as stages through a YAML list. For
both, the set of keys is identical. A stage instantiation always covers the following keys:

• module: The name of the module

• inputs (if applicable): Input port names and the artifacts they are mapped to

• outputs (if applicable): Output port names and the artifacts they are mapped to

• Local settings (if applicable)

5.2.5 Testcase Generation

The testcase generation module is used to generate procedural simulation setups for
actsim. Instead of different modules for different types of test generation, only one
testcase generator module exists with interchangeable generation engines. These engines
can be selected using the generator key. Currently supported is the simple generator
which only emits the cycle command for actsim, and naive-set-injection,
which generates a very simple list of injection tests on a list of signals similar to Behal
[Beh21]. This mode at this point does not pay attention to a signal’s potential to cause
different failure modes, and thus does not yet address the shortcomings of the older
system as discussed in Section 3.4.2.

The testcase generation module has a variable set of ports, depending on which generation
engine is used. By default, the module only has the output port tests, which is the
collection of generated test cases.
simple has no additional ports, as its output is not dependant on any parameters.
naive-set-injection takes a list of victim signals as an additional input.

22

5.3. Cluster Architecture

Generators can have an additional set of parameters.
naive-set-injection has the following parameters:

• victim-iterations: Multiplier for iteration generation

• victim-mode: Victim signal distribution selection (only random supported for
now)

• injection-windows (list): Time windows in which to generate injections

• injection-duration: Maximum time an injection can last

• inject-undefined: Flag whether or not to inject metastability

• random-seed: Seed for the PRG to generate injections. Setting this makes results
reproducible

5.2.6 Simulation

The actsim simulation deploy-module has two inputs:

• design_file: The act design to simulate

• sim_configs: The testcases generated by the testcase generator

The actsim module only has the sim_outputs output port, which emits the simulation
results.

Finally, the module the local parameter top, which informs the simulator about which
process it should treat as the design’s top process.

5.3 Cluster Architecture

Once a pipeline configuration is executed and the deploy stage is reached, the client
starts interacting with the cluster architecture. For the sake of simplicity, the cluster
currently does only consist of a central PostgreSQL database as well as a set of worker
nodes. The client as well as the workers connect to the central database and modify it
to communicate activity. Workers then prefetch tasks, block them in the database, and
queue them for simulation. Results from actsim are then placed in an upload queue
and dumped back into the database. Communication is handled through a shared cluster
library, which expands upon the pqxx library.

23

5. Cluster Build and Simulation System

5.3.1 Shortcomings

The current setup does not handle worker crashes gracefully, in addition the database
layout leaves to be desired. Much of the state handling and assertion checking automation
is directly handled by the database, which speeds up execution but limits the scope of
possible functionality. Additionally, certain client or worker crash modes exhaust Post-
greSQL’s maximum concurrent client threshold. All in all, the net-code implementation
is not very robust. This is a clear consequence of the design decisions made for the layout
of this cluster. We do intend to rework this part, see Chapter 8 for a more detailed
discussion.

5.4 Database Layout

The database consists of several tables which hold the hierarchical data structure. The
following shows their initialization code and talks about what information these fields
hold.

CREATE TABLE j obs (
id char (8) PRIMARY KEY DEFAULT random_string (8) ,
job_status status_type NOT NULL DEFAULT ’ ha l t ed ’ ,
time_added timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
t o ta l_pas s e s b i g i n t NOT NULL CHECK (to ta l_pas s e s >= 0)

↪→ DEFAULT 0 ,
f i n i sh ed_pas s e s b i g i n t NOT NULL CHECK (f i n i sh ed_pas s e s >= 0

↪→ AND f i n i sh ed_pas s e s <= tota l_pas s e s) DEFAULT 0
) ;

Listing 5.2: Jobs table initialization code

When a pipeline is deployed, its specific invocation is referred to as a job. Every job
has an alphanumeric string ID for easier handling. A job has a current status as well
as some additional status information. One job consists of one or more passes, which
have interdependencies. A pass is the cluster equivalent to a stage in the local pipeline
configuration. The job table initialization code can be seen in Listing 5.2.

CREATE TABLE pas s e s (
id uuid PRIMARY KEY DEFAULT uuid_generate_v4 () ,
job char (8) NOT NULL REFERENCES jobs (id) ,
pass_type pass_type_type NOT NULL,
pass_status status_type NOT NULL DEFAULT ’ ha l t ed ’ ,
t o ta l_task s b i g i n t NOT NULL CHECK (to ta l_task s >= 0)

↪→ DEFAULT 0 ,

24

5.4. Database Layout

f i n i sh ed_ta sk s b i g i n t NOT NULL CHECK (f i n i sh ed_ta sk s >= 0
↪→ AND f i n i sh ed_ta sk s <= tota l_ta sk s) DEFAULT 0 ,

depends_on uuid []
) ;

Listing 5.3: Passes table initialization code

Passes hold the dependency information of the pipeline graph. They themselves consist
of one or more tasks. One simulation pass can contain one or more simulations. The
code shown in Listing 5.3 is only the setup code for the generic pass table. The database
makes heavy use of PostgreSQL’s inheritance feature, which is mostly meant for database
partitioning. We use it to avoid saving additional pass information fields for passes which
do not require it. As an example, the setup code for the actsim pass table can be seen
in Listing 5.4.

CREATE TABLE acts im_passes (
d e s i g n _ f i l e uuid NOT NULL,
s im_conf igs uuid NOT NULL,
top_proc text NOT NULL,
outputs uuid NOT NULL DEFAULT uuid_generate_v4 ()

) INHERITS (pas s e s) ;

Listing 5.4: actsim passes table initialization code

Finally, the smallest unit of work is a task. A task could be a single simulation or a
synthesis run. Tasks do not require their own table and are instead represented as the
artifacts they result in. Since the number of outputted artifacts is known before execution
starts, their database entries are created at initial deploy-time. This way, progress of all
stages can be tracked without a controller.
Artifacts once again use the inheritance feature. The setup code for the artifacts table as
well as the simulator configurations artifact sub-table can be see in Listing 5.5.

CREATE TABLE a r t i f a c t s (
id uuid PRIMARY KEY DEFAULT uuid_generate_v4 () ,
a r t i f a c t uuid NOT NULL,
source_pass uuid NOT NULL,
part_status status_type NOT NULL DEFAULT ’ in_progress ’

) ;

CREATE TABLE s im_conf igs (
id uuid PRIMARY KEY,
sim_commands text [] NOT NULL,
has_re fe rence uuid

25

5. Cluster Build and Simulation System

) INHERITS (a r t i f a c t s) ;

Listing 5.5: Artifacts table and simulator configurations sub-table initialization code

5.5 Worker Nodes
A worker node is a program which directly connects to the database. Its main job is to
execute the tasks contained in the database.

To save on networking delays, the worker node prefetches a set number of tasks locally
and schedules them. Since there is no controller, these prefetched tasks are then locked
in the database to prevent double execution. One worker node can spawn an arbitrary
number of worker threads, which can be optimized towards the exact number of cores
available on the machine.

Finally, the results from a simulation are placed into an upload queue, from which they
are dumped back into the database. Should the node receive the signal to terminate and
have the ability to shut down gracefully, all tasks remaining in the download queue are
reopened.

5.6 Writing a prepare Stage
Stages in action are realized as C++ classes. A prepare stage has to publicly inherit
from PipelineModule and has to implement the following functions:

• consumes: Returns a list of artifacts the stage consumes after being instantiated

• provides: Returns a list of artifacts this stage generates after being instantiated

• execute: Triggers the stage to perform the configured action

• to_string: Prints the configuration of the stage for debug purposes

An artifact list is simply list of artifact names as well as their types.

5.7 Writing a deploy Stage
Adding a deploy stage to action is similarly simple. It has to extend DeployModule
instead of PipelineModule, and implement a similar set of functions. consumes and
provides, and to_string behave like before.

• execute: Any functionality that can be performed before data is uploaded to the
database should be implemented here.

26

5.8. Writing a Cluster Agent

• commit: Actually upload the generated setup to the database

This distinction is made to enable dry-run capability without affecting the state of the
database. commit will only be called when the cluster is intended to be utilized. Data
must not be transferred otherwise (and internal database connection is not handed over
unless commit has been called).

5.8 Writing a Cluster Agent
Writing a new cluster agent for an additional tool requires slightly more effort than adding
a new pipeline stage. This section is only a brief overview, as engineering a complete
build tool for act is not the main focus of this work. Very roughly, the necessary steps
are:

1. Customize the downloader thread. It pulls new tasks from the database
and puts them into the execution queue. In the actsim agent, it pulls simulator
configurations and makes sure required designs are in a design store. The dataset
requested from the database must be changed and auxiliary artifact requirements
need to be added.

2. Change the task object. It holds the information required for performing the
task. This is what is created by the downloader thread and added to the queue.

3. Adjust the worker process. When a worker thread executes a task, it forks and
executes the desired act tool in a separate process. This is a workaround for the
current difficulty of calling act tools programmatically.

4. Adjust the upload thread. Similar to the download thread, the upload thread
must be adjusted to upload the correct data to the corresponding table.

27

CHAPTER 6
Fault-Injection Framework

This chapter talks about the changes made to actsim to support our simulations, as
well as the current state of our injection generation built into action.

6.1 Definitions
As definitions vary in this field, we want to clearly define some terms first.

6.1.1 Single Event Transient / Single Event Upset

Single event models categorize the illegal spontaneous change of bit values due to a
passing particle or ionizing radiation. We make a clear distinction between Single Event
Transient (SET) and Single Event Upset (SEU), depending on their location in the
circuit, though it is of note that SEU is in some literature used for both types of errors.
For this reason, we use the definitions made in [Alt13]:

We use Single Event Transient to refer to a temporary pulse or glitch in a logic circuit.
This transient pulse may propagate through the circuit, but it does not necessarily get
captured and stored in a memory element or register.

We use Single Event Upset to refer to a bitflip in memory, where one or more bits change
state regardless of legality or write access.

Both of these error types are soft; this means they only cause a state change, ho hardware
damage occurs, the fault is correctable. Note that these definitions differ slightly from
the official JEDEC definitions.
This investigation mainly focuses on SET. [Alt13] does not limit SET to a single bit; we
limit the scope of the model, as we will only look at cases where a single bit is affected.

Transferring this definition over to simulation gives us the following model:
A set of pull-up or pull-down transistors representing a logic gate is referred to as a node.

29

6. Fault-Injection Framework

A node can fan out to one or more other nodes. An SET is simulated by forcing the
output value of a node to a given state. If a real-world particle were to hit within the
bounds of a node abstraction, two cases can occur:

1. The output value is not affected: This is represented by the absence of an SET
injection.

2. The output value is affected: This is represented by the node output being
forced to a given value.

Additionally, we assume a particle hit can affect the perceived value of leaf nodes differently.
Figure 6.1 shows different leaf configurations. 2-forks can always be represented in our
limited SET model (Figure 6.1a). If a node has more than two leafs, there are different
cases:

1. Only one leaf receives a different value and thus evaluates to an incorrect
result (Figure 6.1b). This can be represented as an SET on the affected leaf node.

2. More than one leaf receives a different value and thus evaluates to an
incorrect result (Figure 6.1c). This can be represented as an SET on all affected
leaf nodes. This is outside our limitation to 1 SET and thus will not be investigated
here.

We thus argue that our simulation representation is complete within our limited SET
model.

6.1.2 Pipeline Load Factor

Pipeline Load Factor (PLF) is a measure of how busy the pipeline is. In contrast
to [Beh21], we define PLF as the percentage of populated buffers within a pipeline.
Consequently, we limit PLF to a value between 0 (all buffers empty) and 1 (all buffers
full).

We find PLF an only tangentially useful metric. To show why, let the pipeline in Figure
6.2 fill up the buffers on the upper branch and then bypasses all further tokens on input
A directly to its output. Only a certain magic number on input B triggers the saved
tokens to be released to the output. Since we can make hitting the magic number by
coincidence as unlikely as wel want, the pipeline has a PLF of 50% virtually most of the
time (assuming uniformly random input data). While this example is rather artificial, a
CPU’s reorder buffer might produce a similar behavior.

For this reason, we think PLF to be somewhat interesting, but ultimately not of great
use when trying to validate a broader set of circuits. We think it much more important

30

6.1. Definitions

A B

C

outputs 1 receives 1

receives 0
SET at C

(a) Node with 2-fork

A B

C

D

outputs 1 receives 1

receives 0

receives 1

SET at C

(b) Node with 3-fork, only one leaf re-
ceives the transient

A B

C

D

outputs 1 receives 1

receives 0

receives 0

SET at C

SET at D

(c) Node with 3-fork, two leafs receive
the transient

Figure 6.1: Fanout configurations of nodes and representation in model

A OUT

B

Figure 6.2: Pipeline without useful PLF

31

6. Fault-Injection Framework

to model the input and output latency of the token source and sink realistically for the
desired application.

6.1.3 Steady State

A similar argument can be made for steady state. We reuse the pipeline from Figure 6.2.
This time, let the control input be only 1 bit wide. Whether we define all buffers filled,
all buffers empty, or half the buffers full as the steady state is arbitrary. [Beh21] cites
quantitative experiments for a an input of two tokens as their assumed steady state. If
we define all buffers filled as the steady state of the pipeline in Figure 6.2, it is impossible
to reach this state within 2 tokens.

We propose exposing the number of warmup tokens to the testing engineer, as this value
is strongly dependent on the DUT.

6.2 Integration into action
Injection generation is loaded into action as a testcase generation engine during the
prepare stage. The setup allows for very simple replacement of this component for future
investigation as well as use of action for different purposes. As of now, the test injection
engine performs very similar operations to [Beh21]. A list of signals is handed to the
generation engine and injections are randomly generated both in value as well as in time.
We currently use a simple factor as insertion multiplier per signal instead of [Beh21]’s
average insertion density, as some oddities were encountered during the initial evaluation
phase. We plan to replace this with a more robust failure space estimation model based
on the coupon collector’s problem in the future.

The tool then emits these generated testcases as a test configuration artifact. A full
demo configuration for a run can be seen in Listing 6.1.

i n p u t _ a r t i f a c t s :
- name: d e s i g n _ f i l e

type : a c t
source : f i l e
path : t e s t . a c t

- name: v i c t i m _ l i s t
type : s i g l i s t
source : f i l e
path : v i c t i m s . t x t

prepare :
- module: t e s t c a s e _ g e n e r a t i o n

i n p u t s :
- v i c t i m s : v i c t i m _ l i s t

32

6.2. Integration into action

outputs :
t e s t s : i n j e c t i o n _ t e s t s

g e n e r a t o r : n a i v e −s e t − i n j e c t i o n
vict im −i t e r a t i o n s : 10
vict im −mode: random
vict im −coverage : 50
i n j e c t i o n −windows:

- begin : 1 0 0 0 0
end: 2 0 0 0 0

i n j e c t i o n −durat ion : 10
i n j e c t −undef ined : true
random−seed : 1 2 3 4 5 6 7

deploy :
- module: a c t s i m

i n p u t s :
d e s i g n _ f i l e : d e s i g n _ f i l e
s im_conf igs : i n j e c t i o n _ t e s t s

outputs :
sim_outputs : s i m _ r e s u l t s

top : t e s t

Listing 6.1: SET injection run configuration

33

CHAPTER 7
Simulation

We originally intended to write a more robust framework based on prsim. We however
instead shifted our development to actsim, which is a much newer simulator and also
part of the act toolchain. actsim can simulate both PRS as well as CHP designs and
can even handle mixed designs. This enables us to simulate only the DUT at gate level
and avoid simulation overhead for all other components. Additionally, actsim is able to
perform simulation of a hierarchical designs and does not require the logic to be flattened
first.

actsim however lacked support for the fault injection capability required for our project.
In addition, there was little support logic provided with the simulator to enable easy
assembly of a simulation harness.

7.1 Additions to the Simulator

7.1.1 Single Event Transient

We added the capability to trigger a Single Event Transient (SET) on a PRS node within
the loaded design. The command syntax is shown in Listing 7.1.

s ev t <name> 0 | 1 |X <sta r t −delay> <dur>

Listing 7.1: Command to schedule an SET event

It blocks further state changes of the given PRS node and sets the output to the forced
value. Changes to inputs are still evaluated in the background but not observed while
the transient event persists. When the SET ends, the currently hidden value of the node
is restored to its output. If the node has been marked by a watch command, these
changes are reported to the terminal accordingly.

35

7. Simulation

7.1.2 Single Event Delay

We also chose to implement an additional command which manually overrides the delay
for the next event on the targeted node. Single Event Delays (SEDs) are a subset of
SETs. Two cases present themselves:

1. The delay time injected by the SED is longer than the nominal delay.
In this case, an SED of length ∆ is equivalent to an SET of length ∆ + ε, where
the SET starts ε before the next signal transition and has the same logic value as
the current state of the rail. In both cases, the signal transition on the output is
delayed by ∆.

2. The delay time injected by the SED is shorter than the nominal delay.
In this case, an SED of length ν − ∆, where ν is the nominal delay of the node,
is equivalent to an SET of length ∆ + ε, where the SET starts at ν − ∆ after the
signal transition and has the value of the node after the transition.

In consequence, delaying a signal transition enough might hide the transition altogether,
as the evaluated value of the node changes back before the output can observe the
suppressed transitions.

We have as of yet not employed this feature in our fault injection engine, but feel it will
aid us in reducing the number of required injections. SEDs are a lot more targeted than
injecting random value faults at arbitrary times. The syntax for injecting an SED can be
seen in Listing 7.2.

sed <name> <sta r t −delay> <dur>

Listing 7.2: Command to schedule an SED event

7.1.3 Local Delay Randomization

Finally, we added a new delay mode to the PRS simulation engine within actsim.
Previously, actsim only supported the following modes:

1. Delay randomization off. The node delay is not randomized at all.

2. Global delay randomization. The node delay is randomized within the full
range of possible values.

3. Global delay range randomization. The node delay is randomized based on a
global upper and lower bound delays.

We expanded this list by an additional entry to support local delay randomization as
presented in DiFit [Beh21]:

36

7.2. Simulation library

4. Local delay range randomization. The node delay is randomized based on a
per node upper and lower bound delay.

While the simulator now supports this feature, the current PRS syntax in act does not
yet contain notation of these bounds. We plan on adding this syntax in the near future.

7.2 Simulation library
As we chose to move several automated steps back to manual setup, a strong simulation
library for easy testing harness development is required to justify these choices. We
rewrote the actsim simulation library from scratch to support the necessary features.
The goal is to write a harness once per design and reuse it for as many tasks and
evaluation tests as possible.

7.2.1 Simulation Components

All components are if not otherwise denoted available within the sim namespace and
can be used by calling import sim;.

Sources

The library provides multiple source processes for different data origins. Available are:

• source_static: Simple source which provides a static value as a token infinitely
many times.

• source_sequence: Provides a sequence of items as tokens. Can be set to repeat
the sequence.

• source_file: Reads a sequence of data values from a file. Can be set to repeat
the sequence.

Additionally, the namespace sim::random provides additional random data sources:

• source_simple: Outputs a sequence of random values over the entire available
integer range.

• source_range: Outputs a sequence of random values within an upper and lower
bound.

All sources are available with a single output as well as multiple outputs, replicating their
tokens over all of them. Additionally, each single- and multi-ended source is shipped with
an _en version, exposing an enable signal.

37

7. Simulation

Sinks

The library provides multiple sink processes for different data destinations. Available are:

• sink: Simple token sink which can print the received values to the terminal.

• sink_file: Saves the received values to an output file.

All sinks are available with an _en version, exposing an enable signal.

Scoreboards

Scoreboards can be found within the sim::scoreboard namespace. Available are:

• lockstep: Assumes number of tokens consumed per input channel as well as
generated per output channel to be identical and in the same order for DUT and
model.

• deterministic: Assumes number of tokens generated per output channel to be
identical and in the same oder for DUT and model.

• generic: Makes no assumptions, receives information about test success or fail
from external channel.

• input_logger: Used to log inputs in identical output format if not using lockstep.

Utility

Collection of miscellaneous processes used for validation. Available are:

• logger: Log passing tokens to terminal without introducing slack on the pipeline.

• logger_file: Log passing tokens to file without introducing slack on the pipeline.

• buffer: Infinite capacity buffer. Useful to decouple DUT from potential timing
influence of the simulation harness.

• splitter: Clone incoming tokens onto multiple output channels without intro-
ducing slack into the pipeline.

38

7.2. Simulation library

7.2.2 Example Testing Harness

A very simple sample simulation harness for a theoretical serial adder can be seen in
Listing 7.3. The basic approach is similar to Universal Verfication Methodology (UVM)
in SystemVerilog.

import module1 ;
import sim ;

de fproc t e s t ()
{

// c o n f i g u r a t i o n parameters
p int D_WIDTH = 8 ;
p int NUM_D = 4 ;
p int data [NUM_D] ;
data = {0 , 1 , 2 , 3} ;
p int r e s [4] ;
r e s = {0 , 2 , 4 , 6} ;

// i n s t a n t i a t i o n s
module1 : : adders : : s e r ia l_adder <D_WIDTH> add ;

// t h i s example only uses sour c e s and s i n k s with l o c a l l y
↪→ de f ined sequences

sim : : source_sequence_multi<D_WIDTH, 2 , NUM_D, data , f a l s e ,
↪→ 1 , f a l s e > src_i1 ;

sim : : source_sequence_multi<D_WIDTH, 2 , NUM_D, data , f a l s e ,
↪→ 2 , f a l s e > src_i2 ;

sim : : source_sequence<D_WIDTH, NUM_D, res , f a l s e , 0 , f a l s e >
↪→ o r a c l e ;

sim : : scoreboard : : l ocks tep <D_WIDTH, 2 , 1 , 0 , true> sb ;

// connect i ons

add . IN1 = src_i1 .O[0] ;
add . IN2 = src_i2 .O[0] ;

sb . IN [0] = src_i1 .O[1] ;
sb . IN [1] = src_i2 .O[1] ;
sb .OUT_D[0] = add .OUT;
sb .OUT_M[0] = o r a c l e .O;

39

7. Simulation

}

Listing 7.3: Simple testing harness for adder using the new simulation library

40

CHAPTER 8
Future Work

While a lot of the targets for this project were hit, a lot of work still has to be done.
action in its current form is a first sketch of its targeted functionality. As already
mention, this limit in scope was intentionally made in order to somehow fit its development
into the scope of this project. It also opens up opportunity for a lot of future work.

8.1 Refinement of Number of Insertions

We have as of yet not been able to refine estimating the number of insertions required to
find all possible failure states. While we have made first strides to enable fast iteration of
injection engines to create the tools to answer this question, we have as of yet not been
able to find an improved answer over previous attempts.

For future work, we have identified several possible leverage points:

When looking at a handshaking protocol, there is only a finite amount of time windows
in which a circuit is susceptible to soft error due to a propagated SET [SFS23]. In
addition, the number of possible failure modes is directly dependent on how many nodes
are influenced by the node experiencing the transient. For this reason, we believe a useful
heuristic of failure mode estimation to be dependent on fanout. Using this heuristic, we
believe it possible to create a more efficient injection plan.

8.2 Engine and Data Quality

Further improvements can be made to the simulator. Currently, only static value
injections are possible, where the clamped value might be identical to the steady state of
the signal - resulting in no signal level change happening in the circuit. An interesting
subset of faults might be glitch injection, where current value of the node is flipped

41

8. Future Work

instead. This subclass of faults can only inject transitions and not suppress them. This
might be of specific interest in conjunction with the new sed command of actsim.

We are also planning on adding Python bindings to simplify implementation of future
test-generators.

8.3 Tool Setup
action can still be massively improved. In our future implementation efforts we plan
to introduce a controller server and change the worker nodes from a pull to a push
architecture using a protocol like gRPC, where the controller deploys tasks to the nodes
instead of the workers fetching them from a database. This should significantly improve
the robustness of the setup against technical failure and thus make it ready for actual
production deployment.

In addition, we plan on moving the cluster over to a commercial clustering solution like
Kubernetes, to support dynamic up- and down-scaling, as well as ease the implementation
of new worker units.

More data sources are planned for artifact loading, such as directly pulling from a network
hosted file.

We want to enable snapshotting, where interim stages of the local and remote pipeline
progress can be exported into a coherent data structure.

There are also efforts to expand the simulation library to include constrained random
testing. We want to enable action to support this feature and have multiple nodes work
toward a shared coverage model.

Finally, we want to support better tool integration. action in its final form is intended
to be a comprehensive build system for the act toolchain. Thus integration of all relevant
tools as well as easy adaptation for external tools is vital for the usefulness of action.

42

CHAPTER 9
Conclusion

We have presented action and its corresponding fault injection framework. Their
concepts are loosely based on previous work by Behal [Beh21] and integrate into the act
toolchain [Man19]. While currently using a similar architecture as DiFit, action is the
first step at a local/remote build system, solving a broader issue than just distributed
fault injection. We have laid out our reasoning for moving certain previously automated
features into configuration to enable a broader spectrum of circuits to be tested and
shown how to extend the currently very limited action to enable more operations to be
performed. As of now, we don’t feel the project has reached its final form. The net-code
is in need of a more robust implementation and we intend to expand action to cover
most if not all of the act toolchain. Further investigation is needed to increase the
efficiency of our fault injection engine compared to the attempt made in DiFit. Finally,
we have presented our modifications to the actsim simulator, as well as the our new
simulation library.

43

List of Figures

6.1 Fanout configurations of nodes and representation in model 31
6.2 Pipeline without useful PLF . 31

Listings

2.1 Simple Adder in CHP . 6
2.2 Simple Adder in Dataflow . 7
2.3 Simple and-gate in pypr PRS . 7
2.4 Simple and-gate in act PRS . 7
5.1 Basic action configuration . 20
5.2 Jobs table initialization code . 24
5.3 Passes table initialization code . 24
5.4 actsim passes table initialization code 25
5.5 Artifacts table and simulator configurations sub-table initialization code 25
6.1 SET injection run configuration . 32
7.1 Command to schedule an SET event 35
7.2 Command to schedule an SED event 36
7.3 Simple testing harness for adder using the new simulation library . . . 39

45

List of Abbreviations

ASIC application specific integrated circuit

CHP Communicating Hardware Processes

CMOS Complementary MOS-FET

DUT design under test

FPGA field-programmable gate array

gRPC gRPC Remote Procedure Calls

OSVVM Open Source VHDL Verification Methodology

PLF Pipeline Load Factor

PRG pseudo-random generator

PRS Production Rule Set

QDI quasi delay-insensitive

SED Single Event Delay

SEU Single Event Upset

47

SET Single Event Transient

UVM Universal Verfication Methodology

VHDL VHSIC Hardware Definition Language

VLSI Very Large Scale Integration

48

Bibliography

[Alt13] Altera. „Introduction to Single-Event Upsets“. In: WP-01206-1.0 (Sept. 2013).
[Beh21] Patrick Behal. „Quantitative Comparison of the Sensitivity of Delay-Insensitive

Design Templates to Transient Faults“. Thesis. Technische Universität Wien,
2021. doi: 10.34726/hss.2021.81601. (Visited on 05/09/2024).

[Dav+14] Mike Davies et al. „A 72-Port 10G Ethernet Switch/Router Using Quasi-
Delay-Insensitive Asynchronous Design“. In: 2014 20th IEEE International
Symposium on Asynchronous Circuits and Systems. May 2014, pp. 103–104.
doi: 10.1109/ASYNC.2014.22.

[DM22] Ruslan Dashkin and Rajit Manohar. „General Approach to Asynchronous
Circuits Simulation Using Synchronous FPGAs“. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 41.10 (Oct. 2022),
pp. 3452–3465. issn: 1937-4151. doi: 10.1109/TCAD.2021.3131546.
(Visited on 05/11/2024).

[Hue22] Florian Ferdinand Huemer. „Contributions to Efficiency and Robustness of
Quasi Delay-Insensitive Circuits“. Thesis. Technische Universität Wien, 2022.
doi: 10.34726/hss.2022.107641. (Visited on 05/18/2023).

[Man19] Rajit Manohar. An Open Source Design Flow for Asynchronous Circuits.
Tech. rep. 2019. Chap. Technical Reports. (Visited on 03/22/2023).

[Mar89] Alain J. Martin. Programming in VLSI: From Communicating Processes to
Delay-Insensitive Circuits. DTIC, 1989. (Visited on 05/12/2024).

[Mar91] Alain J. Martin. Synthesis of Asynchronous VLSI Circuits. DTIC, 1991.
(Visited on 05/12/2024).

[Mer+14] Paul A. Merolla et al. „A Million Spiking-Neuron Integrated Circuit with
a Scalable Communication Network and Interface“. In: Science 345.6197
(Aug. 2014), pp. 668–673. doi: 10.1126/science.1254642. (Visited on
03/22/2023).

[Moa17] Sajjad Moazeni. „High-Frequency Clock Distribution Methods In“. In: (2017).

49

https://doi.org/10.34726/hss.2021.81601
https://doi.org/10.1109/ASYNC.2014.22
https://doi.org/10.1109/TCAD.2021.3131546
https://doi.org/10.34726/hss.2022.107641
https://doi.org/10.1126/science.1254642

[SBS10] Mingoo Seok, David Blaauw, and Dennis Sylvester. „Clock Network Design
for Ultra-Low Power Applications“. In: Proceedings of the 16th ACM/IEEE
International Symposium on Low Power Electronics and Design. Austin
Texas USA: ACM, Aug. 2010, pp. 271–276. isbn: 978-1-4503-0146-6. doi:
10.1145/1840845.1840901. (Visited on 05/12/2024).

[Sch22] Martin Schwendinger. „Evaluation of Different Tools for Design and Fault-
Injection of Asynchronous Circuits“. Thesis. Wien, 2022. doi: 10.34726/
hss.2022.98624. (Visited on 03/22/2023).

[SFS23] Raghda El Shehaby, Matthias Függer, and Andreas Steininger. „On the Sus-
ceptibility of QDI Circuits to Transient Faults“. In: Formal Modeling and
Analysis of Timed Systems. Ed. by Laure Petrucci and Jeremy Sproston.
Cham: Springer Nature Switzerland, 2023, pp. 69–85. isbn: 978-3-031-42626-
1. doi: 10.1007/978-3-031-42626-1_5.

[Von39] Richard Von Mises. Über Aufteilungs-Und Besetzungswahrscheinlichkeiten.
na, 1939.

50

https://doi.org/10.1145/1840845.1840901
https://doi.org/10.34726/hss.2022.98624
https://doi.org/10.34726/hss.2022.98624
https://doi.org/10.1007/978-3-031-42626-1_5

	Contents
	Introduction
	Synchronous Logic
	Asynchronous Logic

	Asynchronous circuit description
	Abstract Serial Description / CHP
	Dataflow
	Production Rule Set
	Benefits and Drawbacks of Description Levels
	Important Circuit Elements

	Related work / starting point
	Capabilities
	Internal Tool Flow
	Output
	Shortcomings
	ACT tool flow integration

	Research questions
	Cluster Build and Simulation System
	Basic Setup
	Configuration
	Cluster Architecture
	Database Layout
	Worker Nodes
	Writing a prepare Stage
	Writing a deploy Stage
	Writing a Cluster Agent

	Fault-Injection Framework
	Definitions
	Integration into action

	Simulation
	Additions to the Simulator
	Simulation library

	Future Work
	Refinement of Number of Insertions
	Engine and Data Quality
	Tool Setup

	Conclusion
	List of Figures
	Listings
	List of Abbreviations
	Bibliography

