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Abstract

As extreme weather events become more frequent, flooding events become
an increasing concern for a large number of comminutes around the world.
River Analysis is an important tool to predict and prepare for such events.
However, traditional river analysis tools such as HEC-RAS rely on solving par-
tial differential equations (PDEs) which is a very computationally demanding
task. Surrogate models are simplified models which trade model fidelity for
improved inference performance. This thesis evaluates the feasibility to develop
surrogate models for flood prediction using physics-informed neural networks.

The proposed physics-informed neural network based architecture learns an
implicit function of the water depth in rivers on simulation data provided by the
U.S. Army Corps of Engineers (USACE). The model has two key characteristics:
A regularization term that is used to penalize results which do no conform to
the underlying physical model, and random Fourier features which are used
to encode the model input. Using those techniques, a model architecture to
approximate the water surface level of a single river is presented. This single-
river model is then conditioned by a geometry encoder, which leads to the
multi-river model that is able to learn the geometry of the riverbed. This allows
the multi-river model to approximate an entire system of rivers.

To conduct a quantitative analysis, the accuracy of model predictions are
measured against the simulation data. Furthermore, in order to evaluate the
model qualitatively, an analysis of the learned latent space as well as an ablation
study are conducted. The results show that the models are capable of approx-
imating the simulation data, with the multi-river model outperforming the
single-river model. Furthermore, the ablation study demonstrates the impact
of both the physics-based regularization and the random Fourier features on
the representational power of the model. While the results demonstrate the
general feasibility of the approach, with an average mean absolute error of 8.342
ft (2.54 m), the obtained results, however, are still significantly worse than the
numerical simulation.
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Kurzfassung

Mit der Zunahme von Extremwetterereignissen werden Hochwasserereignisse
für viele Menschen zu einem zunehmenden Problem. Die Analyse von Flüssen
stellt daher ein wichtiges Instrument zur Vorhersage und Reaktion auf derartige
Ereignisse dar. Traditionelle Modelle wie HEC-RAS allerdings basieren auf der
numerischen Lösung partieller Differentialgleichungen, was einen sehr rechen-
intensiven Prozess darstellt. Surrogatmodelle sind eine vereinfachte Form eines
Modells, deren Berechnung mit weniger Ressourcen möglich ist. Im Rahmen
dieser Masterarbeit erfolgt eine Evaluierung der Machbarkeit eines Surrogat-
modells auf Basis von physics-informed Neural Networks.

Die vorgestellte Modellarchitektur erlernt für den Wasserstand eines Flusses
eine implizite Funktion mit Hilfe von Simulationsdaten, welche vom U.S.
Army Corps of Engineers zur Verfügung gestellt wurden. Das Modell be-
sitzt dabei zwei entscheidende Eigenschaften: Einen physikalisch motivierten
Regularisierungsterm, welcher Vorhersagen, die nicht dem zu Grunde liegenden
physikalen Modell entsprechen unwahrscheinlicher macht, und eine Transfor-
mation der Eingabewerte mit Hilfe von zufälligen Fourierfeatures. Zunächst
wird ein Modell für nur einen einzelnen Fluss trainiert, welches dann durch
einen Geometrie-Encoder konditioniert wird. Der Geometrie-Encoder erlernt
die Form des Flussbetts und ermöglicht dem Modell so mehrere Flüsse zu
repräsentieren.

Für eine quantitative Analyse der Ergebnisse wurden die Vorhersagen des
Modells mit den Simulationsdaten verglichen. Darüber hinaus wird die Struktur
des Latent Space und der Einfluss einzelner Komponenten in einer Ablation
Studie untersucht. Die Ergebnisse der Evaluierung zeigen, dass die Modelle
in der Lage sind, die Simulationsdaten vorherzusagen. Des Weiteren zeigen
die Ergebnisse den Einfluss der Regularisierung und der Fourierfeatures auf
die Fähigkeit des Modells, die Daten zu repräsentieren. Während die Ergeb-
nisse zwar die generelle Machbarkeit des Ansatzes demonstrieren, ist die
Genauigkeit des Modells mit einem durchschnittlichen absoluten Fehler von
2,54m signifikant schlechter als die des Ursprungsmodells.
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1. Introduction

Flooding and other extreme weather events are a major challenge for many com-
munities around the world. Extreme weather events can cause severe property
damage, impact the physical and mental well-being of people (Augustin et al.,
2024), and even cause loss of life. For example, the 2021 floods in Germany
caused damage of around 33 billion euro and resulted in 189 people loosing
their lives (Thieken et al., 2023). More recently, in the 2024 floods in eastern and
central Europe caused severe property damage and loss of live (Henley, 2024).
The Intergovernmental Panel on Climate Change (IPCC) projects that climate
change will make flooding events like these occur more frequently (IPCC, 2022).
Investing into flood prevention and other mitigation strategies is therefore more
important then ever.

The physics of water flow in rivers are very well understood, so the flow
can be simulated by solving the so-called governing equations of the process.
However, the process of this numerical simulation is often time consuming and
requires a lot of compute resources. Thus, in settings where model performance
is critical (like for example when making real-time decisions), it is common
practice to utilize simplified models. These surrogate models trade computa-
tional resources for model fidelity.

In recent years, Deep Learning has gained interest in the research community
as a way of constructing surrogate models from data. The aim of this thesis is
to study the potential of neural networks to build surrogate models based on
data provided by the U.S. Army Corps of Engineers (USACE). This work was
conducted in collaboration with the Canizaro Livingston Gulf States Center for
Environmental Informatics (GulfSCEI) at the University of New Orleans.

1.1. Aim and Objective

The main aim of this project is to build a surrogate model based on the syn-
thetic data provided by USACE. The project outlined in this thesis is focused
on predicting the water surface height of rivers which is of most interest for
flood prevention.

A central challenge when learning neural networks from physical data is that

1



1. Introduction

the data tends to be sparse. For example, in case of real-world rivers, measure-
ments are not taking at fixed intervals along the river. Instead, river stations
measuring the height and flow velocity of the water are placed strategically at
interesting points. Similarly, the simulation data is not provided in a dense grid.
Cross-sections are placed strategically by modellers at points of interest where
the flow of the river actually changes. However, the learned neural network has
to make physically sound predictions at every location along the river.

A common method of encouraging neural networks to learn physically sound
solutions is by using physics-informed regularization. Because the underlying
laws of physics producing the sparse data are well known, the model can be
penalized for predicting data that does not conform to it. The aim of this project
is to study the network architecture and training scheme to train a physics-
informed neural network that can approximate simulation data.

This should lead to a simple surrogate model that captures the main dynamics
of the system. The surrogate model can also serve as a basis for future research
in this area.

1.2. Methodology and Contribution

A model architecture is presented to learn a surrogate model for the simulation
data. This architecture is based on principles used in state of the art Deep
Learning models, and can either be trained on single river or be augmented to
encode the shape of the riverbed in order to be trained on multiple rivers. Then,
a training scheme used to train the models is presented which implements a
physics-informed neural network.

The model was trained using simulation data computed using HEC-RAS, a
river analysis tool developed by USACE. Because HEC-RAS provides a very
powerful tool to perform river analysis, the surrogate model is only able to use a
subset of the information provided by HEC-RAS, and focuses on predicting the
water surface height from the geometry of the riverbed including its roughness.
It does however neglect factors like structures built in the river or connected
lakes.

Next, both a quantitative and qualitative analysis of the results is presented.
In an ablation study, the impact of individual design decisions for the model
is illustrated. It studies both architectural decisions made in the design of the
model itself, as well as the impact of the physics-informed neural network.
Lastly, implementation details on the process used to prepare the simulation
data for Deep Learning is provided in order to help facilitate future research in

2



1.3. Structure

this direction.

1.3. Structure

The rest of this thesis is organized as follows. Chapter 2 covers background
and related work. It discusses the foundations of river analysis, and derives the
governing equations used. It further presents physics-informed neural networks,
and discusses how the regularization term can be implemented using common
Deep Learning frameworks. Lastly, it gives examples of Deep Learning based
surrogate models used for weather and fluid simulation.

Chapter 3 covers requirements and the overall concept, before chapter 4

describes the methodology. Chapter 4 first describes the construction of a model
trained only on single river, which is then extended to cover a whole set of
rivers. Lastly, the chapter presents how the physics-informed regularization is
used to implement the equations derived in chapter 2.

Chapter 5 analyzes the results of the models presented in the previous chap-
ter. It provides both quantitative results for the prediction error, presents an
ablation study for the different components of the river, and presents an analysis
of the latent space.

Chapters 6 and 7 reflect on lessons learned and conclude the thesis respec-
tively.

3





2. Background and Related Work

This chapter provides an overview of the background and related work for the
methodology. Firstly, a high level introduction to the simulation of water flow
in rivers is given. The basic concepts behind computational fluid dynamics are
explained, after which the workflow of performing simulations in HEC-RAS is
described. In the related work section, a brief review of physics-informed neural
networks, model reduction, and deep learning surrogate models is provided.
The literature reviewed focuses on use cases in fluid simulation and numerical
weather prediction.

2.1. River Simulation

River simulation is an important part of modern day hydraulic engineering
and flood protection. It is commonly performed by solving a series of partial
differential equations using specialized simulation software. This section de-
scribes the basic concepts of unsteady flow in open channels. The Saint-Venant
equations used for the physical model, the description of the river bed geom-
etry including the friction force are discussed. Afterwards, the workflow in
HEC-RAS, a software suite used to perform river simulation, is presented.

2.1.1. Open Channel Flow Analysis

The task of open channel flow analysis is to estimate the velocity and water
depth of a river. Open channels are any water channel where the water flows
with a free surface, like canals or rivers. There are two settings considered when
simulating water in an open channel: Steady flow and unsteady flow. Steady
flow analysis assumes that the velocity, pressure, and cross-sections of the river
will stay the same over time. Unsteady flow analysis on the other hand assumes
that these parameters do vary over time and is commonly used for the analysis
of natural rivers. Cross-sections are 2D slices of the river bed along the entire
river, and the volume between two of such cross-sections is called the control
volume. This control volume is parameterized by the parameters timestamp t
and river position x. The timestamp is usually given as the day of the year. The
river position is given as the river mile downstream from the river source. The
surrogate models presented in this thesis focus on 1D unsteady flow analysis,
which only predicts a single value for the entire cross section at a given position

5



2. Background and Related Work

x. (Chanson, 2004, p.318).

1D unsteady flow analysis can be described by the Saint-Venant equations.
These equations model two fundamental properties of water in an open channel:

1. Continuity equation: The net mass influx is equal to the total mass increase
of the volume. If no water is added to the channel (e.g. through rainfall),
the total mass of the volume stays constant.

2. Momentum equation: The change of the momentum, plus the rate of
change of the momentum flux is equal to all the forces that act on the
fluid.

Momentum per unit volume is defined as

m = pv (2.1)

where p is the density of the fluid and v its velocity. The momentum flux is
defined as

ṁ = pv2 (2.2)

where p and v are again the fluid density and velocity respectively, and describes
the rate of change of the momentum flowing through an area A (Chanson, 2004,
p.293). These two equations will now be discussed in further detail.

Continuity Equation

The continuity equation states that the total mass increase is equal to the net
influx and outflow into and out of the control volume (Chanson, 2004, eq. 16.1)∫ t2

t1

(Q1 − Q2)dt +
∫ x2

x1

(At1 − At2)dx = 0 (2.3)

where Qj refers to the discharge which is defined as:

Qj = vAj (2.4)

Here, Aj refers to the area of the upstream cross-section at the positions x1 and
x2 (Chanson, 2004, p.293). The subscripts t1 and t2 refer to two points in time.
In this case we assume that the mass in the control volume stays constant and
is set to zero. This assumption ignores effects like rainfall that would increase
the total mass (Feng et al., 2023).

6



2.1. River Simulation

Momentum Equation

The momentum equation states that net change of momentum in the control
volume between the timestamps t1 and t2 and the change of the momentum
flux over the entire control volume is equal to the sum of all the forces that act
on the volume. Firstly, the net change of the momentum can be described by
(Chanson, 2004, eq. 16.3):∫ x2

x1

((pvA)t1 − ((pvA)t2)dx (2.5)

where x1 and x2 are the locations of the cross-sections upstream and down-
stream respectively, p is the fluid density, v the velocity, and A the area of the
cross-section. The difference of the momentum between the timestamps t1 and
t2 is then integrated across the control volume from x1 to x2.

The rate of change of the momentum flux is described as (Chanson, 2004, eq.
16.4): ∫ t2

t1

((pv2A)1 − ((pv2A)2)dt (2.6)

It is similar to equation 2.5 for the momentum, where x1 and x2 again are the
river locations, p is the fluid density, and A is the area of the cross-section. Now,
however, the change in the momentum flux between the upstream and down-
stream cross-sections is integrated over time instead of space. The subscripts 1
and 2 refer to the upstream and downstream cross-section of the control volume
(Chanson, 2004, p.293). The sum of the terms 2.5 and 2.6 need to be equal to
forces that act on the control volume.

The following forces are considered (Chanson, 2004, p.293 USACE Hydrologic
Engineering Center, n.d.):

1. Pressure forces
2. Gravity
3. Friction force

These forces will now be discussed in greater detail.

Pressure. The walls of the river bed apply pressure forces that keep the water
inside the bed. There are two kinds of pressure that act on the control volume:
Forces upstream and downstream of the cross-sections, and forces coming from
walls on the side. Figure 2.1 gives an overview of the pressure forces which act
on the volume.
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2. Background and Related Work

Figure 2.1.: The forces acting on the control volume. The upper view depicts the view from the
side, the lower view the view from the top (Chanson, 2004, p.294)

8



2.1. River Simulation

The pressure forces at the cross sections can be described as following (Chan-
son, 2004, eq. 16.5):∫ t2

t1

(F′
P1
− F′

P2
)dt =

∫ t2

t1

((pI1)1 − (pI1)2)dt (2.7)

where I1 is defined as:

I1 =
∫ d

0
(d − y)Wdy (2.8)

F′
P1

and F′
P2

are forces coming from the fluid upstream or downstream in the
river, d in the water depth (the distance from the water surface to lowest point
of the river bed z0), y is the distance from bed level z0, and W is the width at
the distance y.

The pressure forces from the side walls of the river bed are described by the
following (Chanson, 2004, eq. 16.6):∫ t2

t1

(F′′
P1
+ F′′

P2
)dt =

∫ t2

t1

∫ x2

x1

pgI2dxdt (2.9)

where I2 is defined as:

I2 =
∫ d

0
(d − y)

∂W
∂x

dy (2.10)

Here, the forces F′′
PL

and F′′
PR

describe the forces coming from the left and right
wall of the river bed, p is the fluid density, and g the gravity. This equation
assumes that the width of the channel only changes gradually and is only valid
in that case (Chanson, 2004, p.294-295).

Gravity. The gravity forces acting on the water are given by the following
formula (Chanson, 2004, eq. 16.7):∫ t2

t1

∫ x2

x1

pgAS0dxdt (2.11)

where p is the density, g is the gravity, A the surface of the cross-section, and S0

the slope of the river bed. The slope can be approximated as S0 = sin θ ≈ ∂z0
∂x

where z0 is the ground level of the riverbed and θ is the downhill slope of the
riverbed (Chanson, 2004, p.295).

Friction. The friction forces act on the fluid counter to the gravity forces
(Chanson, 2004, eq. 16.8): ∫ t2

t1

∫ x2

x1

pgAS f dxdt (2.12)

9



2. Background and Related Work

where density p, gravity g, area A, are the same as in equation 2.11. S f is the
friction slope which can be estimated using the Chézy-Mannings equation. The
derivation of this equation is further detailed in section 2.1.2.
We can now combine the different forces to formulate the momentum equation
for unsteady flow. The friction acts opposite to the gravity force, thus combining
gravity and friction forces yields:∫ t2

t1

∫ x2

x1

(pgAS0 − pgAS f )dxdt (2.13)

Combining the friction forces with the equations 2.7 and 2.9 for the cross
section and side wall pressure forces, respectively, yields the following for the
following sum of forces:∫ t2

t1

((pI1)1 − (pI1)2)dt +
∫ t2

t1

∫ x2

x1

pgI2dxdt +
∫ t2

t1

∫ x2

x1

(pgAS0 − pgAS f )dxdt

(2.14)

When combining this with the definition of the momentum (equation 2.5)
and momentum flux (equation 2.6), the final momentum equation in integral
form is (Chanson, 2004, eq. 16.10):∫ x2

x1

((pVA)1 − ((pVA)2)dx +
∫ t2

t1

((pV2A)1 − ((pV2A)2)dt =∫ t2

t1

((pI1)1 − (pI1)2)dt +
∫ t2

t1

∫ x2

x1

pgI2dxdt +
∫ t2

t1

∫ x2

x1

(pgAS0 − pgAS f )dxdt

(2.15)

Differentiable Form

The form of the partial differentiable equation can be derived from the integral
form of the equations. If the parameters for the equation is differentiable with
respect to t and x, and if they are continuous, the partial differentiable equation
(PDE) form of the Saint-Venant equations can be derived from the integral form.

The differentiable form of the continuity equation is then given as (Chanson,
2004, eq. 16.14):

∂A
∂t

+
∂Q
∂x

= 0 (2.16)

where A is again the area of the cross section, and Q is the discharge (Chanson,
2004, p.297). The momentum equation can be similarly written in its PDE form
(Chanson, 2004, eq. 16.15a):

∂Q
∂t

+
∂v2A + gI1

∂x
= g(S0 − S f )A + gI2 (2.17)
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2.1. River Simulation

Now I1 can be expressed in terms of I2 (Chanson, 2004, eq. 16.16):

∂gI1

∂x
= gA

∂d
∂x

+ gI2 (2.18)

where Q refers to the discharge, the velocity v, area A, gravity g, water depth
d, riverbed slope S0, and friction force S f are the same as for the integral
form given in equation 2.15. When substituting the term in equation 2.18 into
equation 2.17, it yields (Chanson, 2004, eq. 16.15b):

∂Q
∂t

+
∂v2A

∂x
+ gA

∂d
∂x

= gA(S0 − S f ) (2.19)

The equations 2.16 and 2.19 are the PDE forms of the continuity and momentum
equations, respectively, and form the basic Saint-Venant equations (Chanson, 2004,
p.297).

2.1.2. Friction Estimation in Open Channels

Equation 2.12 introduced the friction slope S f in the momentum equation of
the Saint-Venant equation. This factor models the friction of the riverbed, and
therefore depends on its roughness. For example, riverbeds can vary from
clean to being littered with different-sized stones, while floodplains often have
different kinds of vegetation growing. It has historically been infeasible to accu-
rately model all these properties in a physically sound manner. Modelers have
therefore resorted to empirical correlations and a series of auxillery variables to
empirically describe the relationship between the channel geometry and flow
velocity. One of the most widely used formulas is the Chézy-Manning formula
which will be introduced in the following sections.

Chézys Formula

Chézys formula was first introduced as an empirical correlation between the
velocity of the water v and the hydraulic diameter DH (Chanson, 2004, eq.
4.23)1:

v = CChézy

√
DH

4
S f (2.20)

where CChézy is the Chézy coefficient, which is an auxiliary variable for describ-
ing the roughness (Chanson, 2004, p.77). The hydraulic diameter DH is defined
as the ratio between the area of the cross-section and the wetted perimeter
(Chanson, 2004, p.70):

DH =
4A
Pw

(2.21)

1S f = S0 (Chanson, 2004, p.76)
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Channel Description Minimum Medium Maximum
a. clean, straight, full stage, no rifts or
deep pools

0.025 0.030 0.033

b. same as above, but more stones and
weeds

0.030 0.035 0.040

c. clean, winding, some pools and
shoals

0.033 0.040 0.045

d. same as above, but some weeds and
stones

0.035 0.045 0.55

e. same as above, lower stages, more
ineffective slopes and sections

0.040 0.048 0.055

f. same as d with more stones 0.045 0.050 0.060

g. sluggish reaches, weedy, deep pools 0.050 0.070 0.080

h. very weedy reaches, deep pools, or
floodways with heavy stand of timber
and underbrush

0.075 0.1 0.15

Table 2.1.: A sample of Manning’s n values for natural rivers.

In case of simple rectangular channel the area A is defined as A = Wd, so the
hydraulic diameter becomes

DH =
4Wd

W + 2d
(2.22)

where the W is the channel width and d is the water depth. The geometry of
the channel will be discussed in more detail in section 2.1.3 (Malcherek, 2019,
p.67).

Manning’s Formula

The Chézy coefficient depends on the hydraulic diameter of the channels.
Manning’s formula defines a correlation between the hydraulic diameter DH
and a newly introduced coefficient n called Manning’s n (Chanson, 2004, eq.
4.24):

CChézy =
1
n

(
DH

4

) 1
6

(2.23)

The value for Manning’s n is empirically determined for different river condi-
tions. As an empirical correlation, this formula is only valid if the water is not
too shallow and the channel is not too narrow (Chanson, 2004, p.79). Table 2.1
shows a sample of different values for the Manning’s n (Te Chow, 1959).
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We can now substitute equation 2.23 for CChézy (see Chanson, 2004, eq. 4.25

analogously):

v =
1
n

(
DH

4

) 1
6
√

DH

4
S f (2.24)

v =
1
n

(
DH

4

) 2
3 √

S f (2.25)

Solving for S f gives the Chézy-Manning formula for the friction force:

S f =
4 × 2

2
3 n2v2

D4/3
H

(2.26)

2.1.3. River Channel Geometry

Thus far the cross-sections of the river channel have been assumed to be a
simple rectangle. While this makes computing the hydraulic diameter very easy,
it is also a very coarse approximation of the river geometry. In the following,
different models for the cross-section geometry are briefly presented.

Trapezoidal Channel

Figure 2.2.: Simple trapezoidal channel (Malcherek, 2019, p.113)

A trapezoid is a more accurate approximation shape of the river channel. It
can more accurately approximate the side walls of the river channel, while the
area and wetted perimeter required for the hydraulic diameter are still relatively
easy to compute. For a trapezoid the area A is defined as:

A = Wd + md2 (2.27)

where W is the width of the channel and d the water depth. The wetted
perimeter Pw is defined as:

Pw = W + 2d +
√

1 + m2 (2.28)

A sketch of the trapezoid river channel can be seen in figure 2.2 (Malcherek,
2019, p.116).
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Figure 2.3.: Trapezoidal channel with floodplain (Malcherek, 2019, p.116)

Trapezoidal Channel with Floodplain

Many natural rivers flow over their trapezoidal river channel in cases where
flooding occurs. The trapezoidal model can be extended to account for these
floodplains (see figure 2.3). In this case the area A can be computed as

A = WSd + md2
S + 2dVmdS + mVd2

V (2.29)

where dV is defined as

dV = max(d − dS, 0) (2.30)

The wetted perimeter Pw is then defined as (Malcherek, 2019, p.116-117):

Pw = WS + 2ds
√

1 + m2 + 2dv

√
1 + m2

V (2.31)

Double Trapezoidal Channel

W

Figure 2.4.: Trapezoidal channel with floodplain and dam (Malcherek, 2019, p.119)

Extending the channel model even further, dams built to prevent flooding
can now also be taken into account. If the water overflows the trapezoidal
river channel, it first reaches the floodplains discussed earlier. Here, a second
trapezoid that models the walls of a dam which can be added to the model. The
profile of the cross-section is depicted in figure 2.4. The area A is then defined
as

A = WSd + md2
S′ + 2mdV′dS + mVd2

V′ + 2mdDdS + md2
D (2.32)
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2.1. River Simulation

where dS′ , dV′ , and dD are defined as:

dS′ = min(d, dS) (2.33)
dV′ = max(min(d − dS, dV), 0) (2.34)
dD = max(d − dS − dV , 0) (2.35)

The wetted perimeter is then defined as (Malcherek, 2019, p.119-121):

Pw = WS + 2dS′
√

1 + m2 + 2dV′

√
1 + m2

V + 2dD

√
1 + m2 (2.36)

2.1.4. HEC-RAS

HEC-RAS (Hydraulic Engineering Center River Analysis System) is a suite
of tools for performing river analysis developed by the U.S. Army Crops of
Engineers2.

HEC-RAS consists of the following components:

1. 1D Steady Flow Analysis
2. 1D/2D Unsteady Flow Analysis
3. Quasi-unsteady or fully unsteady flow movable boundary sediment trans-

port computations
4. 1D water quality analysis

The following section will give an overview of the relevant parts of the software.
Firstly, the geometric modelling of rivers will be discussed, after which an
overview of the workflow to perform steady and unsteady flow simulations is
provided. HEC-RAS, however, is a large, and complex software which means
that providing an in-depth discussion of all the capabilities HEC-RAS offers is
beyond the scope of this thesis. For more information please refer to USACE
Hydrologic Engineering Center, 2024 on which this summary is based.

Modelling Geometry in HEC-RAS

First of all, modelers draw a network of rivers, junctions, and reaches. Reaches
are a continuous stretch of a river that splits larger rivers into smaller, more
manageable pieces. Junctions are created where two rivers meet or split. In
addition, modelers can add storage areas, 2D flow areas, pumps, and boundary
condition lines. Storage areas are still bodies of water, like lakes; 2D flow areas
are areas of water that require more complex 2D flow simulation algorithms.
Storage and 2D flow areas can be connected to each other as well as to river

2HEC-RAS is available at https://www.hec.usace.army.mil/software/hec-ras/
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Figure 2.5.: Editor for entering rivers, junctions, and reaches in HEC-RAS (USACE Hydrologic
Engineering Center, 2024, Entering and Editing Geometric Data)

reaches. Figure 2.5 depicts the editor to create and modify river networks in
HEC-RAS.

Figure 2.6.: Editor for cross-sections in HEC-RAS (USACE Hydrologic Engineering Center, 2024,
Entering and Editing Geometric Data)

After creating the river schematics of rivers, junctions and reaches, cross-
sections are placed in relatively small intervals along the river to compute the
simulation. The placement of cross-sections is very important for the quality
of the resulting river model. Cross-sections are therefore placed strategically
at interesting points where, for example, the slope, shape, or roughness of the
river changes, or at levees and hydraulic structures such as bridges and culverts.
The required data for each cross-section is:
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2.1. River Simulation

Figure 2.7.: Simulation results plotted in HEC-RAS

1. River and reach where the cross-section is specified
2. Station
3. Coordinates (position and elevation)
4. Coefficients for roughness and contraction and expansion

The station does not need to be a physical river station. HEC-RAS only re-
quires a numerical value of the river mile or kilometer where the river station is
located in the river. The coefficients provided for the cross-section are contrac-
tion and expansion coefficients for steady flow simulation, and the Manning’s
n values. For each cross-section at least 3 three Manning’s n values need to be
provided to describe the roughness of the left and right over bank as well as
the main channel. Figure 2.6 depicts the graphical user interface used to edit
one of the cross-section in HEC-RAS.

Lastly, after setting up the river schematic and entering data for the cross
sections, data for junctions and water structures is added. For junctions, mod-
eler’s need to select which simulation method to use. HEC-RAS provides a
simplified and an energy balance method to model the flow at the junction.
Water structures include bridges, cutlets, dams, weirs, sluice gates and others.
When adding these to the river model, HEC-RAS can take into account the
energy loss that occurs in the flow around them. In addition, cross-sections
need to be placed around structures like bridges in order to accurately simulate
the fluid dynamics in those areas of the river (USACE Hydrologic Engineering
Center, 2024, Entering and Editing Geometric Data).
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Performing Flow Analysis

After the river geometry is set up in HEC-RAS, flow analysis can be performed.
For steady flow analysis, the system requires the number of flow profiles, the
peak flow data, and boundary conditions to be computed. Likewise, for un-
steady flow analysis, boundary conditions for the external boundaries, as well
as some internal locations, and initial conditions for the river flow and 2D
flow area are required. Boundary conditions are the flow rates and stage at the
boundary of the river system, and are essential for defining the start and end
point of the hydraulic model. The initial conditions define the start conditions
for the stage and flow at each cross-section.

After an unsteady flow model has been computed, it needs to be calibrated
using real-world data. This is generally done with data of the river stage, as it
is seen as the most accurate data reaching an accuracy within ±1 feet. During
the calibration, the roughness values are adjusted to fit the real-world data.
For free-flowing rivers, the roughness coefficient will be smaller the faster
the water flows and the higher the stage is. In some exceptional cases, the
Manning’s n can increase with the stage when the overbanks are rougher than
the main channel (USACE Hydrologic Engineering Center, 2024, Performing
a Steady Flow Analysis, Performing a 1D Unsteady Flow Analysis). After the
simulation has been completed, the results can be viewed with visualization
tools integrated into HEC-RAS. Figure 2.7 depicts the flow and stage plotted
over time. Additionally, the data can also be exported to a HEC-DSS file (USACE
Hydrologic Engineering Center, 2024, View Results).

2.2. Related Work

In the following section different approaches for surrogate models will be
discussed. First, the technique of physics informed neural networks is described
which can be used to provide physical prior knowledge to neural networks.
Then, projective reduced order models are discussed as a method to create
surrogate models that does not rely on machine learning techniques. Finally,
examples are presented on how Deep Learning is used in different sciences
to develop surrogate models that either are only trained on data or include
physical priors.

2.2.1. Physics-informed Neural Networks

Physics-informed neural networks, as first introduced by Raissi et al., 2019 are
a technique to include a physics based prior knowledge to the neural networks.
The main idea is that a lot of data collected in the real world is actually governed
by the laws of physics. In addition, in many cases, datasets are either small, or

18



2.2. Related Work

at least very sparse like the river flow data considered in this thesis. However,
when training a neural network on the data, we need to make physically correct
predictions at every position along the river. These so called governing equations
are typically PDEs that take the following form:

f (t, x) = u(t, x) +N [u] (2.37)

where ut is a latent solution u(t, x) to a problem and N [·, λ] is a nonlinear
differentiable operator that is parameterized by parameters λ. In case of a
physics-informed neural network, the functions u(t, x) and f (t, x) are modeled
using neural networks. Both these networks share their learnable parameters.
The authors of Raissi et al., 2019 give the one-dimensional Burgers equation to
illustrate this. It is defined as:

N [u, λ] = λ1u
∂u
∂x

− λ2
∂u
∂x

(2.38)

We can now model the function u(t, x) as a neural network. In order to com-
pute the differentiable operator, automatic differentiation is used. Automatic
differentiation (AD) is implemented in common Deep Learning frameworks
like PyTorch (Paszke et al., 2019) or JAX (Bradbury et al., 2018). Using automatic
differentiation, the partial derivative of u(t, x) can be computed and N can be
constructed. This is possible due to the fact that neural networks are differ-
entiable, universal function approximators. The parameters λ are fixed when
we are only interested in a solution for the function u(t, x). It is, however, also
possible to let the neural network predict these parameters which the authors
term data-driven discovery of partial differential equations.

The loss term for training physics-informed neural networks usually follows
the form:

MSE = MSEu + MSE f (2.39)

where MSEu is the mean squared error between predictions and the initial
and boundary training data. This loss minimizes the distance between the
predictions of the network and the known measurements. It is defined as:

MSEu =
1

Nu

Nn

∑
i=1

[
u(ti

u, xi
u)− ui

]2
(2.40)

where ui is the value of u(t, x) at ti
u and xi

u. The second term of equation 2.39 is
the MSE f and it enforces the physical structure by minimizing the error of the
residual of the partial differential equation. It is thus defined as:

MSE f =
1

N f

N f

∑
i=1

[
f (ti

f , xi
f )
]2

(2.41)
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where ti
f and xi

f are the conditions at collocation points. These collocation
points are randomly sampled in the domain of the function. However, we do
not require training samples ui at these points. This allows us to enforce the
underlying physics of the process that has produced the data at many more
points than we actually have data for. This is what enables physics-informed
neural networks to not overfit even if they are trained on very small or sparse
datasets.

2.2.2. Reduced Order Models

Reduced order models are a method to accelerate the computation of large
dynamical systems. There are many ways to construct reduced order models,
including purely data driven neural networks and approaches that use physics-
informed neural networks (Padula et al., 2024). This section focuses on the
Galerkin projection technique to construct reduced order models, while Deep
Learning based techniques are covered in section 2.2.3.

A core assumption of reduced order modelling is that the result of the
high fidelity model lies on a low dimensional solution manifold (Hesthaven
et al., 2016). The Galerkin projection specifies a vector field by projecting the
dynamical system to a subspace S (Holmes et al., 2012, eq. 4.3):

Fs = PF(u) (2.42)

where F(u) is nonlinear operator and P is the projection onto subspace S. The
following system of n number of ordinary differential equations (ODE) then
describes the reduced order model (Holmes et al., 2012, eg. 4.7):

∂a(t)j

∂t
= ⟨F(u(t)) , ϕj ⟩ j = 1, ..., n (2.43)

where u(t) is a linear combination of time-dependent coefficients a(t)j and
the orthonormal basis ϕj that spans the space S (Holmes et al., 2012). Solving
the system of ODEs in equation 2.43 gives a reduced order model that can
approximate the behaviour of the original model.

A common way of finding a suitable basis is to use the proper orthonormal
decomposition on the solutions of the high fidelity model. For this, the pa-
rameter space is sampled and the corresponding solutions are computed. The
orthonormal basis functions are then given by the eigenfunctions of the sampled
solutions. For an N-order reduced model, only the eigenfunctions correspond-
ing to the N largest eigenvalues are used. In order to ensure a reduced basis
with sufficient accuracy, a large number of samples may be required which is
sometimes infeasible in practise. Alternatively, the basis can be computed using
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the greedy basis generation algorithm (Hesthaven et al., 2016).

Reduced order models are used to for example to evaluate the aeorelastic
performance of aircrafts, as part of optimization algorithms to discover pa-
rameters, and when performing uncertainty quantification using Monte Carlo
sampling. All these use cases require a large number of model evaluations and
thus benefit from the computationally more efficient reduced order models
(Benner et al., 2015).

2.2.3. Deep Learning for Physical Sciences

With the amazing progress in computer vision, natural language processing,
and other areas, Deep Learning has been increasingly used to replace traditional
numerical models. Large neural networks are able to learn non-linear patterns
in data and can be used to build surrogate models for much larger numerical
models. These surrogate models can either be purely data-driven, meaning they
are trained on synthetic simulation data or real-world data, or be physics-based
and include the underlying governing equations as a regularization term. Both
of these setups will be discussed in the following chapter. For a more in-depth
review of Deep Learning and fluid simulation please refer to the surveys H.
Wang et al., 2024 and Brunton et al., 2020.

Data-Driven Surrogate Models

Accelerating fluid simulation using Deep Learning has been of interest to the
scientific community for a long time. For example, Takbiri-Borujeni et al. (2020)
trained a Convolutional Neural Network (CNN) on image data of simulations.
CNNs are a standard model architecture for solving tasks in computer vision.
The model learns a feature hierarchy on images by repeatedly convolving an
image with a learned filter (Krizhevsky et al., 2012). While this results in lo-
cal features and equivariant activation maps, the architecture can sometimes
struggle to learn global dependencies in images. For generative models the
convolutional network can be augmented with an attention mechanism (H.
Zhang et al., 2019). A different architecture, the Vision Transformer (ViT) was
proposed to address this weakness (Dosovitskiy et al., 2021a) for discriminative
models.

Similarly, Lee and You, 2019 used generative adversarial neural networks
(GAN) to generate fluid flows. They additionally augment their training loss
using a physically motivated regularization term. GANs are a popular deep
learning architecture to generate images, audio, and other modalities (Brock
et al., 2019; Karras et al., 2018; Kong et al., 2020). The original GAN formulation
was proposed as a generator trying to fool a discriminator trying to discrimi-
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nate between a real and fake samples, which is why the architecture is termed
adversarial (Goodfellow et al., 2014). The training process of GANs, however, is
very unstable because neither the generator nor the discriminator may get too
strong. Follow up work to the original GAN later proposed the discriminator
(renamed to critic) to instead estimate the Wasserstein distance between the
data and generated distributions (Arjovsky et al., 2017; Gulrajani et al., 2017).
In this formulation, a strong critic only provides a better approximation of the
distance, and thus the training becomes more stable.

Another type of surrogate model was introduced by Sanchez-Gonzalez et al.
(2020) that is trained on particle-based fluid simulation data where message
passing neural networks are utilized to learn the simulation. The message
passing framework (Gilmer et al., 2017) formulates learning on graphs in two
phases. First, messages are passed on the graph for a number of T timestamps
during which hidden states at each node are updated. At each timestamp, the
features are updated using a vertex update function. In the readout phase, the
last hidden state at timestamp T is transformed by the readout function.

One of the many use cases for Deep Learning for physical sciences that has
seen an increased interest recently is accelerating weather prediction. Currently,
state-of-the-art weather prediction is done using numerical weather prediction
(NWP). These systems aim to predict the weather globally by solving the
underlying partial differential equations of the weather system. Deep Learning
models trained on historical weather data, however, can provide competitive
results while being orders of magnitude faster. Pathak et al. (2022) use a special
Transformer architecture to learn a global weather forecast or climate model.
Very similarly, Bi et al. (2023) propose a 3D-earth specific Transformer that
is derived from the Swin Transformer architecture (Liu et al., 2021) used in
computer vision. Another surrogate model for weather prediction is GraphCast
(Lam et al., 2023) which uses graph neural networks to learn a global weather
prediction. All of these models were trained on the ERA5 dataset with 39 years
worth of historical weather data.

Deep Learning Models with Physical Prior Knowledge

In addition to a purely data-driven approach, some models aim to include the
underlying physical model in the model or training process. For example, Bai
et al. (2020) uses a physics-informed neural network (PINN) (see section 2.2.1) to
estimate fluid flow. The authors used the Boltzmann equation and Navier-Stokes
equations as constraints. NSFnets (Jin et al., 2021) similarly uses a PINN that
is constrained using the Navier-Stokes equations. The model uses spatial and
temporal coordinates as input and predicts velocity and pressure fields. Recent
work has also experimented with using different model architectures like using
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CNNs to learn surrogates for the shallow water equations (Donnelly et al., 2024).

All those models use a training-time regularization term to include physical
prior knowledge into the model. Another option however is to include the
prior knowledge in the structure of the model itself. R. Wang et al. (2021)
propose a network architecture that encodes symmetry constraints for space,
time, uniform motion, rotation, reflection, and scaling. Follow up work (R.
Wang et al., 2022) suggests that hard constraints for symmetry might not always
be desirable and proposes a relaxed constraint formulation as real-world data
might not fulfill the constraint exactly. They propose a model that is biased
towards a symmetric solution but not constrained to it.

Surrogate Models for Flood Prediction

The work presented in this thesis is most similar to the model architecture
presented in Feng et al. (2023). The architecture used in their work also does not
include special structural priors to enforce symmetry or similar constraints on
the prediction, but includes physical prior knowledge through a regularization
term. Unlike other works related to flood prediction (Shi et al., 2023), the model
presented is not based on a recurrent neural network architecture. Instead, the
network will model the problem as an implicit function.

2.3. Summary

This chapter provided an overview of the background and related work. Firstly,
an overview of unsteady flow analysis was provided and the Saint-Venant equa-
tions were introduced, which enforce the continuity and momentum principles.
The continuity equation enforces the principle of conservation of mass while
the momentum principle states that the change of momentum and momentum
flux is controlled by the forces acting on the control volume. These equations
act as the governing equations that are solved by software like HEC-RAS to
simulate water flow. The workflow of modelers using HEC-RAS to perform
river analysis was also presented.

Furthermore, the chapter discussed how the geometry of the riverbed is of-
tentimes modeled. This includes the shape of the riverbed as well as estimating
the roughness, which depends on the conditions of the riverbed and can be
described by that Manning’s n coefficient.

Because river analysis is very computationally intensive, reduced order or
surrogate models are commonly deployed in settings where many model evalu-
ations are required. These models trade model fidelity for compute efficiency.
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2. Background and Related Work

The chapter gave an overview of reduced order models as well as techniques
using neural networks. There, methods only learning from data and methods
encoding prior physical knowledge using physics-informed neural networks
were explored. Physics-informed neural networks use the residual of the gov-
erning equations as a regularization term during the training process. A range
of examples of surrogate models in the fields of fluid dynamics and weather
simulation was given.
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3. Requirements and Concept

This chapter outlines the requirements of the project and gives an overview
of the solution. It first summarizes the motivation and problem statement,
after which requirements are outlined. Then, an overview of the architecture is
presented.

3.1. Motivation

Recent flooding events (Helmore, 2024; Henley, 2024) have demonstrated the
importance of flood prevention and preparedness. The aim of this thesis is to
study how surrogate models can be constructed for simulation data obtained
using HEC-RAS.

As discussed in the section 2.2.3, Deep Learning is able to provide weather
forecasts with comparable accuracy as traditional numerical weather prediction
at a fraction of the time. This is accomplished by training large neural networks
on massive amounts of historical data. Towards the goal of similar models for
river analysis, building a surrogate model on simulation data is an important
initial step.

Unlike for numerical weather prediction, however, less data is available
for river flow. Thus, regularization techniques like physics-informed neural
networks become more important. These techniques are studied on synthetic
data to assess how faithfully the neural network model can reproduce the flow
data.

3.2. Problem Statement

As outlined in section 2.1.1, river simulation using numerical models is the
predominant method for estimating fluid flow. The underlying governing equa-
tions are used to describe the physics used to model the behaviour of the river.
Software like HEC-RAS is used to solve those partial differential equations.

Furthermore, as outlined in section 2.2.2, surrogate models are lightweight
models constructed from data produced by their high-fidelity counterparts.
Deep Learning excels at learning complex, non-linear patterns from large
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3. Requirements and Concept

amounts of data. Recently, physics-informed neural networks (see section 2.2.1)
have been proposed as a mechanism to provide physics-based prior knowledge
to neural networks.

The aim of this project is to evaluate the feasibility of training physics-
informed neural networks on synthetic data provided by HEC-RAS to build
surrogate models.

3.3. Requirements

The following section outlines the requirements of the project. This covers both
scientific and engineering requirements.

Model and Evaluation. The primary aim of this thesis is to develop a set of
physics-informed neural networks that can faithfully represent simulation data
produced by HEC-RAS. The design of this model should be motivated by
contemporary methods used to solve similar problems. The design decisions
should then be evaluated both qualitatively and quantitatively. The trade-offs
between different model hyperparameters and model configurations should
be explored, to provide an overview of the impact of different elements of the
design. The results obtained in this work should further future research in this
area.

Data Representation. The data used is stored in non-standard file formats used
by HEC-RAS. A pipeline should therefore be developed to merge the data from
multiple sources into standard representations amendable to machine learning
workflows.

Modularity and Reusability. To aid the requirements outlined above, the system
should be designed to be as modular as possible. Thus, the model architecture
should not be designed as a monolith, but be able to be adopted to different
scenarios evaluated. Moreover, the dataset should be stored in a data format
that makes it reusable for future research.
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Figure 3.1.: Conceptual Components

Figure 3.1 depicts the conceptual components of the system. The inputs to the
system are the simulation data acquired using HEC-RAS, the geometry includ-
ing the Manning’s n coefficients, and the outputs of the system are the trained
models including evaluation metrics. The different conceptual components are
discussed in more detail below.

Data Preprocessing. The data used to train the network is stored in a variety of
different file formats, and comes from different data sources. In general, the data
consists of the simulation data produced by HEC-RAS and the corresponding
project data. The simulation data is stored as time series using HEC-DSS, a
proprietary file format used by HEC-RAS. The project data contains information
about the river geometry, which includes the shape of the riverbed and the
Manning’s n coefficients used to describe the roughness. As part of the data
preprocessing, the geometry gets resampled so that every cross-section uses the
same number of points. Then, all the data sources are merged into one a single
dataset. This component implements the data representation requirement, and
can be reused for different experiments.

Model Development. A model is developed to map the day of the year and
river mile to the water surface height. This kind of design lends itself very well
to the physics-informed regularization that is used as part of the training loop.
The model can be configured to only represent a single or multiple rivers. In
case of the multi-river model, the model is then augmented with a geometry
encoder, for which two different architectures are developed. In total, four
different models were constructed and trained. This design is proposed to
satisfy the Modularity and Reusability requirement. The model development
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3. Requirements and Concept

conceptual component is part of the requirement to develop and evaluate a
physics-informed neural network.

Training Loop. The training loop component uses the preprocessed data from
the Data Processing component and the configured model from the Model
Development component to train the model. During the training process, the
model is regularized using an underlying physical model (In this case, the
Saint-Venant equations described 2.1.1 are used). This component outputs the
trained model.

Evaluation. Finally, the trained model is evaluated in the evaluation conceptual
component. This component performs a quantitative and a qualitative analysis
of the trained model, implementing the evaluation requirement. For the quanti-
tative analysis, the results of the model are measured against the simulation
data produced by HEC-RAS. For the qualitative analysis, an ablation study is
performed and the latent space learned by the geometry encoder is visualized.
The visualizations produced are discussed in chapter 5.

3.5. Summary

This chapter provided an overview of the requirements and concept of the sys-
tem. As flood prevention becomes ever more important, Deep Learning based
surrogate models can help accelerate river analysis. In this thesis, a surrogate
model based on simulation data is presented.

For the system, the following requirements are specified: A model should
be trained and evaluated, data should be represented in a unified format, and
the entire system should be developed to be modular and reusable way to aid
future research. This is achieved by dividing the system into distinct conceptual
components; these cover merging and preprocessing the data acquired from
different sources, constructing different model variants, training, and finally
evaluating the model. For the evaluation, the error of the model prediction is
measured against the simulation data and an ablation study is conducted. The
output of the system are a trained model, and the results of the evaluation.

The next chapter will discuss the data preprocessing, design of the model
architecture, and training loop in greater detail. Chapter 5 will cover the evalua-
tion.
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4. Methodology and Development

This chapter will introduce the architecture and training scheme of the sur-
rogate model. The aim of the surrogate model is to approximate the results
of HEC-RAS for the water depth. It is trained on a dataset of simulations of
different rivers within the continental United States.

This chapter introduces two Deep Learning models: A single-river model that
is trained for each individual river and a multi-river model that is trained on
all rivers at once. The single-river model demonstrates how an implicit neural
representation can be learned for the water depth of the river given time t and
river mile x. The multi-river model then extends the single-river model with
a learned geometry encoder, and can thus be used on multiple rivers without
retraining.

Lastly, the training scheme used for both models, including the physics-
informed regularization, as well as details about the model development are
explained.

4.1. System Overview

Random Fourier
Features

River Prediction
Model

Water
Depth

Flow
Velocity

Physics-informed
Regularization

Training Data Loss

+ Loss
x

t

Single-river Model

Geometry
Encoder

Riverbed
Mesh
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Figure 4.1.: System Overview

Figure 4.1 depicts the overall architecture of the system. The aim of the system
is to predict the water depth at a given river mile x and point in time t. For this,
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4. Methodology and Development

the two input values are first encoded using a random Fourier feature encoding,
and are then passed to the river prediction model. The river prediction model
is used to predict the water depth and flow velocity. The training loss consists
of two components: Firstly, the training data loss which is minimized for the
predicted water depth against the ground-truth depth computed by HEC-RAS;
and secondly, a physics-informed regularization, which uses both the water
depth and flow velocity. The design of this architecture is similar to the archi-
tecture presented in Feng et al., 2023.

The multi-river model inherits the structure of the single-river model and
conditions it on features learned by a geometry encoder. This encoder model
learns a global shape descriptor from the 3D mesh of the riverbed and Man-
ning’s coefficient.

4.2. Single-River Model

This section describes the single-river model. The aim of this model is to es-
timate water depth d for a single river as an implicit function over time. The
model additionally predicts the flow velocity v, as it is required for calculating
residuals for the physics-informed regularization. The goal thus is to learn the
continuous function f (x, t) → [v, d]. As the dataset contains a single value per
day, t represents the day of the year.

Implicit neural representations like this are a popular method for repre-
senting 3D surfaces for computer vision tasks. For example, DeepSDF (Park
et al., 2019) and DISN (Xu et al., 2019) learn the signed distance between the
surface and a given coordinate in space. Perhaps most prominently, Neural
Radiance Fields (NeRFs) (Mildenhall et al., 2020) use a neural implicit repre-
sentation to estimate the radiance for a position in space and viewing angle.
By learning to render different projections of a volume, the model implicitly
learns the underlying geometry of a scene. Similarly, the single-river model
implicitly learns the geometry of the river (the shape of the riverbed and rough-
ness), and is then able to predict the water depth at a novel position x and time t.

The following sections will now go into more detail about the neural network
architecture used for the model.

4.2.1. Model Architecture

The 2D input coordinates are first transformed into a high dimensional em-
bedding space using a coordinate encoding (see section 4.2.2 for details). This
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Figure 4.2.: Structure of the single river model

embedding space is then subsequently transformed by a series of residual
blocks. This latent space is later transformed back using two separate feed-
forward networks for the water depth and flow velocity. A ReLU activation
function is used as part of these networks in the final layer to ensure the values
predicted are always positive. Figure 4.2 depicts the structure of the single-river
model.

An important feature of the architecture are residual connections. It can be
observed that vanilla deep neural networks become saturated when increasing
their network depth. If this is the case, the training and test errors of a deep
neural network are higher than of a shallower counterpart. It should, however,
always be possible to construct a network with an error that is at least as low as
the one of a shallow network by learning an identity function in the last layers
(He et al., 2015). Residual neural networks therefore group the model into a
series of so-called residual blocks, each of which learns a residual function
f (x) + x. With this structure, it is easier to learn the identity function, because
f (x) only has to map its inputs to 0. Residual connections are used in most
state of the art architectures (Dosovitskiy et al., 2021b; Liu et al., 2022; Vaswani
et al., 2017).

The residual blocks use fully connected layers to learn a transformation from
embedding space to a higher dimensional latent space and back. Inside the
blocks, leaky ReLU is used as the activation function. The model consists of
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4. Methodology and Development

6 blocks, where each block has 512 hidden dimensions, and an 256 dimen-
sional embedding space. The model has a total of around 1,662,978 trainable
parameters.

4.2.2. Coordinate Encoding

Neural networks exhibit a bias towards low frequencies (Basri et al., 2020;
Rahaman et al., 2019). In experiments on synthetic data it can be observed that
during the training process, lower frequencies are fitted first regardless of their
amplitude. It is a major reason why over-parameterized neural networks are
still able to generalize beyond the training data.

For neural networks to learn high frequency functions, models like NeRFs
(Mildenhall et al., 2020) use random Fourier features to overcome this low
frequency bias:

γ(v) = [cos (2πBv), sin (2πBv)]T (4.1)

where B is a matrix of random Fourier base frequencies (Basri et al., 2020).

These features can also be viewed as a generalization of positional embedding
used in Transformer models (Vaswani et al., 2017). As a result, the network
gains a hyperparameter that controls the convergence behaviour of the network.
By tuning the standard deviation σ of B the trade-off between over-fitting and
under-fitting can be controlled. Section 5.2.2 provides an ablation study that
demonstrates the effect of this.

4.3. Multi-River Model

While the single river model implicitly encodes the geometry of the river by
learning to predict the water depth, it is necessary to train a new model for
every river. The multi-river model extends the single-river one with a geometry
encoder to explicitly encode the geometry of the river bed.

The multi-river model learns a function f (x, t, M) → [v, d] where x, and t are
the river mile and time as in the single-river counterpart, and M is a mesh of
the riverbed constructed from the cross sections using in HEC-RAS. The mesh
is encoded using a learned geometry encoder that maps the mesh M to a single
global feature vector. This feature vector is added to the coordinates [x, t] after
they have been transformed to latent space. The generation procedure for this
mesh is discussed in more detail in section 4.4.1.
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4.3. Multi-River Model

4.3.1. Geometry Encoder

HEC-RAS uses a simplified representation of the riverbed geometry, which was
introduced in section 2.1.3. In the surrogate model, this coarse approximation is
replaced with a learned geometry encoder that encodes the shape of the cross-
sections and their corresponding Manning’s n values. The single-river model of
the previous section is then conditioned using this global representation.

For the geometry encoder, two popular architectures for learning represen-
tations on geometry were evaluated. The first one, which is heavily inspired
by the PointNet (Qi, Su, et al., 2017) architecture encodes a point cloud of the
riverbed. The second architecture, a graph convolutional network, treats the
mesh as a graph. The following sections will describe each of these architectures
in greater detail.

Geometry Encoder Baseline

As a simple baseline, an embedding layer is used to learn a set of latent codes
for the rivers. The baseline encoder allows the model to represent multiple
rivers and is able to generalize to cross-sections that were not part of the
training dataset. It, however, does not learn a representation that is aware of
the geometry of the riverbed.
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Figure 4.3.: Point cloud geometry encoder

Point clouds are a popular shape representation, where a surface is represented
by a dense, unordered collection of points. The architecture of the point cloud
geometry encoder follows the principles of the PointNet architecture (Qi, Su,
et al., 2017) as well as follow-up work (Qi, Yi, et al., 2017).

The core idea of PointNet is to learn features using a point-wise multilayer
perceptron (MLP), which means its weights are shared between the points.
These features are then aggregated using a symmetric function. In order to
learn rotation invariant features on the points, the input points are transformed
to a canonical orientation by a learned rotation matrix (The rotation matrix is
learned by the so-called T-Net, which is a smaller version of the architecture).
This design ensures that the entire model is permutation invariant, and scales
well to a large number of points. The symmetric function used in PointNet is
global max pooling. PointNet++ (Qi, Yi, et al., 2017) extends that architecture by
applying PointNet to multiple local regions of the point cloud. It can be viewed
as similar to the structure of CNNs that also aim to learn a hierarchy of local
filters to describe images.

The point cloud encoder model is organized in 4 residual blocks to learn
point-wise features on the point cloud. Layer Normalization (Ba et al., 2016)
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4.3. Multi-River Model

is used in the encoder to stabilize the training. The network does not include
the T-Net because it is only trained on the meshes of riverbeds and thus does
not need to be rotation invariant. The multi-scale features proposed in Point-
Net++ are also not used in this model, as they increase the resources required
for training while not significantly improving model performance. Figure 4.3
depicts the structure of the model.

The point cloud encoder is trained on point clouds with 3, 500 points that are
uniformly sampled from the meshes. The features at each point are its (x, y, z)
coordinates and a vector of the Manning’s n values.
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Figure 4.4.: Graph convolutional geometry encoder

Graph Convolutions aim to generalize the concept of convolutions to graphs.
For each node, the features of neighboring nodes get accumulated, and a
learned function is applied. In fact, standard convolution on images can be seen
as a special case of graph convolution where the pixels are nodes in a graph
connected to a regular grid (Wu et al., 2021; S. Zhang et al., 2019).
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Graph Convolutional Networks are popular for learning features on meshes,
as meshes can be readily interpreted as graphs. For example, Pixel2Mesh and
follow up work (N. Wang et al., 2018; Wen et al., 2019) reconstruct 3D meshes
from images by deforming a template mesh using graph convolutions. Another
very similar approach is MeshCNN (Hanocka et al., 2019), which uses local sur-
face features and so-called edge pooling to learn representations on triangular
meshes.

The graph convolutional geometry encoder uses a simplified convolutional
architecture. The convolutional layers are used to learn local features on the
mesh surface. The model consists of 5 graph convolutional layers, each followed
by layer normalization and leaky ReLU activation functions. It, however, does
not include any pooling layers; similar to the point cloud encoder, the features
are then aggregated using a global maximum pooling operation. This global
feature vector is then transformed by a feature extractor consisting of multiple
dense layers. The full model is depicted in figure 4.4.

The graph convolutional geometry encoder is trained directly on the meshes
of the riverbed. Similarly to the points sampled for the point cloud encoder, the
vertices’ features are their (x, y, z) position and a vector of Manning’s n values.

4.4. Training

The following section outlines the training procedure for both the single- and
multi-river model. First, the dataset and the different training and testing
splits are outlined. Then, the loss term and physics-informed regularization are
discussed.

4.4.1. Data Preprocessing

Feature Description
t Normalized timestamp of the sample
x Normalized position of the cross-section
Mannings’ n The Mannings’n coefficient for the cross-section (see section

2.1.2)
Geometry A list of points that describe the geometry of the cross-section
stage Water surface height predicted by HEC-RAS

Table 4.1.: Features of a sample in the dataset

Both the single-river and the multi-river models were trained on simulated
output data from HEC-RAS. The data was produced according to the workflow
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outlined in section 2.1.4. A total of 3, 240 stations from 63 rivers in the United
States was used. The stations along the river are not placed in a fixed distance,
but are placed by river modelers to achieve the highest fidelity simulation with
the least amount of cross-sections. On average, the cross-sections are 0.74 miles
apart. For each station, one data point per day was provided, resulting in a total
of 1, 182, 600 samples. Table 4.1 depicts the features of a sample.

For each river, the river mile x and time t are standardized to a range of
[−1, 1]. Furthermore, the slope and level of the riverbed are calculated from
each of the stations using the cross-section geometry.

Held-out Rivers
(only multi-river model)Proper Training Dataset Validation Test

70 % 30 %

60 % 20 % 20 %

Figure 4.5.: Splits of training dataset

The dataset is split in two ways: From the dataset used to train the multi-river
model 30% of river sections (reaches) are withheld in order to test generalization
to novel sections. The remaining dataset is then split into the usual 60% proper
training, 20% validation and 20% test datasets. Thus, for every river that is not
withheld in the first step, 60% of the stations become part of the proper training
dataset. With this setup the model can be evaluated for how well it performs
on novel river stations of known rivers and novel rivers all together. Figure 4.5
illustrates the different dataset splits. When training a single-river model, the
stations of one river are split into 60% training, 20% validation and 20% test
sets.

Riverbed Geometry

HEC-RAS only provides the geometry of the 2D cross-sections as a list of points
and a list of three or more Manning’s n coefficients. In order to encode the river
using the geometry encoders, these individual sections are combined to a single
mesh that models the entire river.

The number of points and Manning’s n values varies from cross-section to
cross-section; as a first step, the lists of points are resampled with a constant
number of 50 vertices and the Manning’s n coefficients are padded to a 16-
dimensional vector. The 3D vertex positions of the mesh are then constructed by
combining the x and y coordinates of the resampled points of the cross-sections
with the river mile as the z coordinate. A natural limitation of this approach is
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that the resulting river geometry does not model the real-world curvature of
the river.

4.4.2. Supervised Training on Simulation Data

The loss function for the training is defined as

l(ŷ, ystage) = (ŷstage − ystage)
2 + λ × residuals(ŷdepth, ŷflow) (4.2)

where ŷdepth and ŷflow are the predicted water depth and flow respectively. The
predicted stage ŷstage is defined as ŷstage = ŷdepth + z0, where z0 is the lowest
level of the riverbed. The weight λ is a tunable hyperparameter and is set to
λ = 0.1.

The first term in the loss function directly penalizes the mean squared error of
the predictions of the neural network against the stage predicted by HEC-RAS.
As we only aim to predict levee overtopping, only the stage is penalized as part
of the loss function. The second term is the physics-based regularization that
penalizes predictions that do not follow the governing equations.

4.4.3. Physics-Informed Regularization

In addition to supervising on the simulated data, the model is also regularized
to adhere to the underlying physical model. The residuals of the Saint-Venant
equations that were derived in section 2.1.1 are used. The residual of the
continuity equation is defined as:

∂d
∂t

+ v
∂d
∂x

= 0 (4.3)

where t is the day of the year, x is the river mile, and d and v refer to the water
depth and flow velocity, respectively. The total amount of water is assumed to
stay constant. The residual of the momentum equation is defined as:

∂v
∂t

+ v
∂v
∂x

+ g
∂d
∂x

+ g(S f − S0) = 0 (4.4)

where g is the gravity, S0 the slope, and S f calculated according to the Chézy-
Manning equation (see equation 2.26):

S f =
4 × 2

2
3 n2v2

D4/3
H

(4.5)

Note that these equations are slightly different from the ones introduced in
chapter 2. When assuming the channel to be a simple rectangle, the Saint-Venant
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equations can be simplified for ease of implementation. The multi-river model
still has access to the full riverbed geometry through the geometry encoder and
does not need to rely on this coarse approximation used in the regularization
term. This formulation has also been used for other physics-informed neural
networks (Feng et al., 2023). The derivation of the equations 4.3 and 4.4 can be
found in appendix A.

The full regularization term is the sum of the residuals weighted by a hyper-
parameter λ = 0.1. The partial derivatives like ∂d

∂t that appear in the residuals
are computed using automatic differentiation in PyTorch. This leverages the
fact that neural networks are differentiable, universal function approximators.
For a more detailed introduction to physics-informed neural networks please
refer to section 2.2.1.

4.4.4. Hyperparameters

Setting Geometry
Encoder

# Hidden
Dims

# Params # Epochs

Single-River - 256 1,662,978 50

Multi-River
Baseline 128 852,802 25

Point Cloud 128 1,305,538 25

Graph Con-
volutional

128 1,357,570 25

Table 4.2.: Hyperparameter Configurations

Table 4.2 depicts the hyperparameters used for the different training configura-
tions. The single-river model has slightly more parameters than the multi-river
counterparts, as the single river model has more hidden dimensions. All models
were trained using the Adam optimizer (Kingma & Ba, 2017) with a learning
rate of 0.00005. The values for β1 and β2 were set to 0.9 and 0.99 respectively.
These parameters were found using a hyperparameter search on the single-river
model.
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4.5. Development

Tool Usage
PyTorch PyTorch is a Deep Learningn library that was used to

implement the neural networks
PyTorch3D PyTorch3D provides tools for geometric Deep Learning using

PyTorch. It was used to implement the geometry encoders
pydsstools A utility Python library to load the data stored by HEC-RAS
Pandas Pandas provides tools for data analysis in Python

Table 4.3.: Tools Overview

Table 4.3 provides an overview of the tools used for the development of the
model. The source data is first loaded using pydsstools, then merged and
transformed using Pandas, and finally a model developed using PyTorch and
PyTorch3D is trained. The development of these components is described in
greater detail in the following sections. The models were trained on a system
with four A100 NVIDIA GPUs.

4.5.1. Data Format and Preprocessing

The model was trained on simulated data produced by HEC-RAS which stores
flow and stage data using a custom file format called HEC-DSS. In addition,
the geometry data is stored as part of the HEC-RAS project. During the data
pre-processing step, the results and geometry data are written to a single Pan-
das1 dataframe.

HEC-RAS offers options to view the files inside the software (USACE Hydro-
logic Engineering Center, 2024, Viewing Data Contained in an HEC-DSS File ),
but for this project, the data was loaded using the pydsstools Python library2.
The file format is conceptually organized like a container where each time series
is stored at paths. The paths are built using the river, river reach, and station
identifier. For each station, the flow and stage are fetched and stored with the
path in a Pandas dataframe.

The geometry is stored as part of the project in seperate HDF5 files. The
HDF5 files for the cross-section geometry for each river station is loaded as a
numpy array and added as a column to the dataframe. The geometry data of
the cross-sections is duplicated for each timestamp. This data duplication does
trade ease of implementation for the size of the dataset on disk.

1https://pandas.pydata.org/
2https://github.com/gyanz/pydsstools
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4.5.2. Model Development

Both the single-river and multi-river models were developed in PyTorch (Paszke
et al., 2019). All models were implemented using the standard high-level API
as PyTorch modules. The models were trained using the implementation of
Adam (Kingma & Ba, 2017) provided by PyTorch. The gradients for the physics-
informed regularization were computed using the torch.autograd.grad method.

A major benefit of using PyTorch is the dynamic nature of the library. Instead
of storing the entire mesh of a river section for each training example, only
an index is stored in the dataframe. During model training, the model then
looks up the correct mesh and passes it to the geometry encoder. This is im-
plemented using a MeshStorage class that holds a dictionary of river identifiers
and corresponding meshes. Another benefit of this design is that for the baseline
geometry encoder the river identifier can just be used directly.

4.5.3. Geometry Representation

For the geometry representation the PyTorch3D library was used. PyTorch3D
provides a wide range of tools to implement common model architectures that
work in 3D. A core component of the library is the Meshes data structure which
implements variable-sized packing. Most datatypes used in Deep Learning
have a constant size and can be easily batched as multi-dimensional arrays.
For example, images always have the same pixel size regardless of content.
Meshes, however, vary in the number of vertices and faces and therefore cannot
be batched in the same way. PyTorch3D thus stores the vertices and faces in a
single, large array with indices that store where each mesh in the batch begins
(Ravi et al., 2020). A similar technique called sequence packing is used in large
language models to handle sentences with different lengths efficiently (Krell
et al., 2022).

4.6. Summary

This chapter introduced the surrogate models and training scheme used to
approximate the simulation data provided by HEC-RAS. Firstly, the single-river
model was presented. It learns an implicit neural representation of a single
river, and is able to predict the water depth at novel locations and points in
time for the river it has been trained on. A crucial aspect is transforming the
input values with random Fourier features which helps to mitigate the spectral
bias of neural networks.

Next, the multi-river model was presented. It used the same structure as
the single-river counterpart, except that it conditions the latent space using
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a learned geometry encoder. Two architectures, a point cloud encoder and
a graph convolutional encoder, were discussed for the encoder model. The
point cloud encoder uniformly samples a point cloud of the mesh and learns
point-wise features, that are subsequently aggregated using a global pooling
operation. The graph convolutional encoder works similarly, but the features
are learned in a local neighbourhood of the mesh.

Afterwards, the training scheme was detailed. The model is trained using
a data term and a physics-informed regularization term. The regularization
term is used to penalize the model for predictions that do not conform to the
underlying physical model. The physical model used were the Saint-Venant
equations which were presented in chapter 2.

Lastly, the chapter described the development of the river models. Both
models were developed using the PyTorch Deep Learning framework, and
PyTorch3D was additionally used for the geometry encoder models. The data
to train the models are stored as HEC-DSS files in case of the simulation results,
while the project files are stored as HDF5 files. The different data sources are
merged and preprocessed using Pandas.
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This chapter evaluates the performance of both the single-river and multi-river
models. First, a quantitative analysis of the single-river model is provided.
Then, an ablation study is conducted to investigate the impact of the random
Fourier features and physics-informed regularization on the model. Next, the
multi-river model the performance of the multi-river model is analyzed and
the latent space of the geometry encoder is visualized. Lastly, the results are
interpreted.

5.1. Results Overview

Setting Geometry
Encoder

Test Error Held-out Error

Single-River - 9.716 ft (2.96m) -

Multi-River
Baseline Encoder 8.661 ft (2.64m) 18.860 ft (5.74m)
Point Cloud
Encoder

8.678 ft (2.64m) 24.497 ft (7.46m)

Graph
Convolutional

8.342 ft (2.54m) 18.663 ft (5.68m)

Table 5.1.: Overview of the results

Table 5.1 gives an overview of the results of the model configurations. For the
multi-river setting, model architectures using a point-cloud based encoder (see
4.3.1), and graph convolutional encoder (see 4.3.1) were evaluated. Additionally,
results for the baseline encoder introduced in section 4.3.1 are presented. Please
refer to section 4.4.4 for more details on the hyperparameters used for training.

The error values presented in the table are calculated using the means abso-
lute error. As outlined in section 4.4.1, the dataset was split in a proper training,
test, and validation dataset. In addition, some river sections (also called reaches)
were held back to evaluate generalization performance. The used hyperparame-
ters are detailed in 4.4.4

The following section will present the results for the single-river and multi-
river models in detail.
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5.2. Single-River Model

This sections discusses the evaluation of the single-river model. First, the
stage prediction results are discussed. Then, an ablation study for the physics-
informed regularization and random Fourier features is performed.

5.2.1. Stage Prediction Results

Figure 5.2 depicts the mean absolute error of the stage for the single-river
model. Each of the box plots shows the distribution of the error over all the
cross-sections for one river. The model architecture and training hyperparame-
ters (e.g. number of blocks, hidden dimensions, learning rate, regularization
etc.) have been tuned on part of the Arkansas River. The results on different
rivers therefore also shows how well the architecture generalizes to different
rivers.

The mean absolute error achieved on average by all models is 9.716 feet (2.96
meters). It can be observed that there is a variance in the error within the rivers
(i.e. the slices of the simulation) as well as between the rivers. For example, the
error of the Arkansas River is far above the average error achieved. Conversely,
it is possible to model some of the rivers with far better accuracy (e.g. Tensas
River).
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Figure 5.1.: Histogram of the relative error scores of the river

To better asses the quality of the stage predictions on the rivers the mean rel-
ative absolute error (MRAE) is computed. The MRAE is calculated by deviding
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the mean absolute error of the stage by the average ground truth stage:

1
N ∑N

i=1(|ŷi − yi|)
1
N ∑N

i=1 yi
(5.1)

where ŷ is the predicted stage, y is the ground truth. Figure 5.1 depicts a
histogram of the mean absolute relative error for each of the single river models.
For the vast majority of rivers, the relative error is close to 0. This indicates that
the model architecture is able to make accurate predictions on a many different
rivers.

5.2.2. Ablation Study

We aim to explore the effect of individual components of the single-river model
and the training mechanism. For this, an ablation study is presented (see figure
5.3), where the model is trained without the physics-informed regularization
and Fourier features.

The base model depicted in figure 5.3a shows that it is possible to predict
a coarse curve without random Fourier features or physics-informed regular-
ization. The low frequency bias of the model acts like a regularizer, which
prevents overfitting. As shown in figure 5.3b, random Fourier features let the
network also learn the high frequency features of the data. However now the
curve does not follow the ground truth data as well as before. To remedy this,
the physics-informed regularization term is introduced as part of the training
process of the model. The model is now able to model both the high frequency
features as well as the global shape of the curve.

The following sections will discuss the effects of the parameters for the
regularization term and random Fourier features in greater detail.

Physics-Informed Regularization

The physics-informed regularization can aid fitting the model by smoothing
out intermediate values (see section 4.4.3). Experiments were conducted to
empirically demonstrate the effect of the regularization. The single-river model
was fit on the simulation data of the the Arkansas River with weights 0.01,
0.1, 1.0, as well as no regularization at all. The value for σ, which controls the
random Fourier features, was fixed at σ = 4. The results of these experiments
are depicted in Figure 5.4.

It can be seen that without the regularization (top right), the model does
capture many fine details of the curve, but fails to capture the overall shape well.
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Figure 5.2.: Mean absolute error of each river predicted by the single-river model.
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Figure 5.3.: Overview of the ablation study

When using the weights 0.001 and 0.1, the simulated water surface height is
captured well by the surrogate model. The last plot depicts an over-regularized
model. It can be observed how the curve becomes too smooth and loses some of
the higher frequency features. Using a hyperparameter search, 0.15 was found
as a good value for the weight of the regularization.

Random Fourier Features

Next, we demonstrate the impact of the Fourier feature encoding, which was
introduced in section 4.2.2, on the model predictions. For this, the standard
deviation σ of the normal distribution used to sample the random Fourier
features is altered while the weight of the physics-informed regularization is
fixed at λ = 0.1.

Figure 5.5 depicts the results of the experiments. When replacing the random
Fourier features with a learned linear transformation (see figure 5.5a), low fre-
quency bias becomes visible. The model is not able to fit the higher frequencies
of the data. As shown in figures 5.5b and 5.5c how a higher value for σ helps
the model to learn those high-frequency features. However, if the value of σ
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Figure 5.4.: Predictions on models with different amount of physics-informed regularization.
Without it, the model struggles to capture the global shape of the simulation data.

grows too large (see figure 5.5d) the model is not able to learn the global shape
of the data.

5.3. Multi-River Model

This section presents the results for the multi-river models. Like for the single-
river model the stage prediction results are discussed, and then compared to
the errors achieved using the single-river models. Then, the embedding space
learned by the geometry encoder is discussed.
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Figure 5.5.: Model predictions with different random Fourier features. When the value for
the standard deviation of the random features is larger, the model learns more
high-frequency features.

5.3.1. Stage Prediction Results

Geometry
Encoder

Test error Held-out
rivers error

Test error
(relative)

Held-out
rivers error
(relative)

Baseline
encoder

8.661 ft
(2.64m)

18.860 ft
(5.74m)

0.204 0.351

Point cloud
encoder

8.678 ft
(2.64m)

24.497 ft
(7.46m)

0.272 0.406

GraphConv
encoder

8.342 ft
(2.54m)

18.663 ft
(5.68m)

0.233 0.322

Table 5.2.: Error of the multi-river model on the test- and held-out datasets

Table 5.2 outlines the results of the multi-river model. The model is evaluated
on the test dataset and the held-out dataset. The test dataset contains novel
stations on known river sections, while the held-out dataset contains river
sections that the model was not trained on. The mean absolute error and mean
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Figure 5.6.: Mean absolute errors of the multi-river models and single-river models. Rivers
marked with asterisks are part of the held-out dataset.
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relative absolute error (see equation 5.1) for both datasets are calculated. From
the table it can be observed that all configurations of the multi-river model
outperform the single-river model architecture which achieved a mean absolute
error of 9.716 ft (2.961m) on the test dataset. This is true even when using the
baseline encoder which is not geometry-aware.

The choice of geometry encoder does at first glance not appear to signifi-
cantly impact the model performance. On average, the multi-river model with
the graph convolutional encoder does achieve roughly the same error as the
baseline encoder. This and that the observed errors on the held-out dataset are
higher than on the test dataset indicate that the geometry encoder overfits on
the limited number of rivers. This effect persists when using the relative test
error which corrects for the different sizes of the rivers. However, as depicted in
figure 5.6, the graph convolutional encoder is still preferable over the baseline
encoder because the distribution of errors on each river is closer to the one of
the single-river model.

Figure 5.6 compares the mean absolute error of the multi-river and single-
river models on each river. River sections marked with an asterisks are part
of the held-out dataset. When looking at river sections of rivers in the test
dataset (e.g., Yazoo river) the baseline encoder tends to outperform the graph
convolutional counterpart. The same is true for rivers where all sections are part
of the held-out dataset (e.g., Outachita river). Here it can be observed that both
models struggle to generalize to novel rivers while the graph convolutional
encoder slightly outperforms the baseline. An interesting case are rivers where
some sections were part of the held-out dataset (e.g., Old river or Black river):
Here the geometry-aware graph convolutional encoder tends to outperform the
baseline model. The river sections of a single river naturally are very similar,
which means that an encoder that is aware of the geometry is able to learn very
similar latent codes. This, however, crucially does not imply that the model
is able to generalize to entirely novel rivers. It only means that the encoder
is capable of storing a discrete set of river geometries that are then used to
condition the single-river model.

5.3.2. Visualization of Geometry Embedding Space

Figure 5.7 depicts a visualization of the latent space produced by the graph
convolutional geometry encoder. To produce this visualization, each river was
encoded using the geometry encoder and the resulting feature vector was re-
duced using T-SNE (van der Maaten & Hinton, 2008).

From the visualization it can be seen that the geometry encoder is able to
learn a meaningful embedding space. Different river sections belonging to the
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Figure 5.7.: Visualization of the latent space of the graph convolutional geometry encoder

same river tend to be clustered together in the visualization (e.g., the cluster
of the sections belonging to the Mississippi river). Thus, they also map to
very similar embedding vectors which can explain the behaviour discussed in
section 5.3.1. As discussed there, the geometry encoder is more likely learning
a mapping of river sections to a discrete set of river clusters than the actual
underlying dynamic of the governing equation. The results of the river encoder
is discussed in more detail in section 5.4.2.

5.4. Findings and Discussion

In the following section the results presented will be discussed. It first covers
design considerations for the river model and discusses limitations. Further, the
results of the geometry encoder are discussed in more detail.

5.4.1. River Model Design Considerations

The design of the model architecture has a significant impact on the model per-
formance. This applies to both the single-river as well as the multi-river model,
as the multi-river model inherits the model structure from the single-river one.

First of all, the model is trained to fit an implicit function that maps coordi-
nates (t and x) to predictions. The major benefit of this approach is that it does
allow the most flexibility for the placement of cross-sections. An alternative
design could have treated the time series akin to image data and have used a
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convolutional neural network or denoising Transformer architecture (Devlin
et al., 2019; Lewis et al., 2020) for the model. However, this would require a
dense collection of river stations. While it might be possible to obtain those for
simulated data, it is hardly possible for real-life flow data.

Random Fourier features are an essential component of the architecture that
allows the model to learn high-frequency components of the curve. As demon-
strated in the ablation study, the model only learns a very coarse approximation
of the curve. Random Fourier features are a common architectural feature of
coordinate-based generative models like neural radiance fields (Mildenhall et
al., 2020). The experimental results presented in this chapter validate the results
presented in literature which is predominantly focused on the computer vision
domain. In fact, one can argue that the model treats the surrogate modelling
problem as modelling the implicit geometry of the water surface elevation,
and therefore the river, over time. This model paradigm has been successfully
applied in computer vision, and provides a flexible architecture for building
neural surrogate models.

Physics-informed regularization plays an equally crucial part in the design
of the model. Regularization techniques like weight decay are common in Ma-
chine Learning to avoid overfitting. When training neural surrogate models, the
physics-informed regularization is crucial to enforce the dynamics of the system
at parts where no training data is available. Here, the advantage of learning
an implicit function also becomes clear. When learning a continuous function,
we can make predictions, and regularize them, at any continuous coordinate
location.

However, the model architectures presented also have limitations. Most im-
portantly, both the single-river and multi-river models exhibit a significant test
error. This high error, for now, means that these models should not be used to
replace numerical simulations performed in HEC-RAS. A likely reason for this
is that the surrogate model is only capable of modelling parts of the HEC-RAS
simulation. The surrogate model presented does not cover structures such as
dams, lakes, pumps, and other parts of the river network that HEC-RAS takes
into account. This is especially noteworthy since water depth predictions are
sometimes wrong a near-constant offset when compared to the ground truth
simulation data.

Another limitation is generalizability of the model. While both the single-
river and multi-river model are able to generalize to novel station locations
within known rivers, the multi-river model fails to generalize to novel rivers.
As analyzed in section 5.3.1, the geometry encoder remembers the geometry
but does not generalize beyond the training dataset. The geometry encode is
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discussed in more detail in section 5.4.2 below.

In addition, the model is only capable of generalizing to values of x and t
that lie within the range of [−1, 1] the model was originally trained on. This
limitation arises naturally from the problem setting: A dataset that would span
multiple years would also have to contain multiple instances of the training
example (x, t) → [v, d] (Assuming x is the day of the year; if this were not
the case, the model would not have access to more useful patterns to learn
from, but just a longer series). The way to disentangle these examples is by
conditioning the model on the actual weather conditions at or around the
river station. Unfortunately, the HEC-RAS dataset does not contain this kind of
weather data.

5.4.2. Analysis of the Geometry Encoder

The results indicate that while the multi-river model is able to outperform the
single-river models on average, the graph convolutional geometry encoder does
not outperform the baseline encoder. A likely explanation for the failure of the
geometry encoder is that the proper training dataset only contains 63 distinct
river sections. Overfitting on this very small number of rivers is thus a very
likely problem.

Another explanation for the observed behavior may point to a deeper failure
of neural networks to learn arithmetic operations. The aim of the geometry
encoder is to provide a surrogate for the approximation of the hydraulic radius
and the roughness coefficient. These two parameters then influence the flow
velocity and stage of the river. There has been research that shows that neural
networks struggle to learn to learn arithmetic operations and generalize beyond
the range they were trained on. Special network architectures are used to solve
this problem (Trask et al., 2018).

If the geometry encoder indeed fails to generalize because neural networks
have an inductive bias against it, a specialized network architecture might be
necessary. However, a larger and more diverse river geometry dataset may also
compensate for the missing inductive bias, and allow the model to learn an
effective geometry encoder. If such a dataset is not available, another option
is to either use available approximation of the riverbed presented in section
2.1.3 or use an alternative geometry representation (Flanagin et al., 2007) to
formulate a descriptor. This is similar to approaches in computer vision like
histograms of orientated gradients that compute global descriptors for natural
images. These descriptors are then used in models like support vector machines
to classify images.
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5.4.3. Limitations

While it is possible to learn a surrogate model to approximate the simulation
data generated using HEC-RAS, the prediction accuracy and generalization
capabilities of the model are limited. This section summarizes the limitations of
the method in more detail.

Prediction Accuracy. While the model is able to predict the general trend of the
simulation data, the evaluation has shown that the accuracy of the model is lim-
ited. The best model achieved a mean absolute error of 8.342 ft (2.54m), which
may not be enough to replace the original HEC-RAS model. A major reason for
this is that the surrogate model only covers a subset of the functionality that
HEC-RAS provides. Given that the model is also only trained on simulation
data, it inherits the accuracy of HEC-RAS itself as a ceiling. Real-world historical
datasets are most likely much larger than simulated ones.

Generalization. While the multi-river model is shown to generalize to unseen
cross-sections, it is unable to generalize to novel rivers altogether. For an open
set of rivers, which would require a global model, the method may not be a
good fit. However, if the set of rivers does not change between training and
inference, the method can provide approximations of the data.

Data Availability. The underlying reason driving the limited prediction accu-
racy and generalization is the size of the dataset. The models were trained on
synthetic data acquired using HEC-RAS. Unfortunately, generating a larger
dataset would require a larger river network which was not available for this
project.

5.5. Summary

This chapter presented an evaluation of the models introduced in the prior
chapter. First, the single-river models were evaluated, which achieved an av-
erage mean absolute error of 9.716 ft (2.96m). The ablation study showed that
both the random Fourier features and the physics-informed regularization
play an important role to achieve good results. When modifying the standard
deviation σ for the Fourier features and regularization weight λ, the effect of
both becomes visible. If the random Fourier features are not used, the model is
not able to represent the high-frequency details of the data. When the model is
trained without the regularization, the global shape of the curve is not modeled
well.

Afterwards, the multi-river model was evaluated. All configurations of the
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multi-river model achieved better results than the single-river models achieved
on average. Of the multi-river models, the model configured with the graph
convolutional geometry encoder performed best with an mean absolute error
of 8.342 ft (2.54m). However, the model does struggle to generalize to river
sections not contained in the training dataset. When visualizing the latent
space learned by the graph convolutional geometry encoder, it can be seen
that the latent codes of sections from the same river tend to be clustered together.

The discussion section covered design configurations for the model itself, and
discussed the generalization capabilities of the geometry encoder further. It is
theorized that the geometry encoder does not generalize well because of the
lack of diverse training data.

The next chapters will cover lessons learned and conclude the thesis.
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This chapter outlines key lessons learned from conducting the research pre-
sented in this thesis.

6.1. Literature Research

Gaining a deep understanding of the research domain was a crucial initial step
for this project. Deep Learning research has sometimes tended to disregard
domain knowledge acquired by other fields. The most well known example of
this probably is linguistics in the case of language modelling (“Language mod-
els and linguistic theories beyond words,” 2023). On the other hand, training
relatively generic model architectures like Transformers on very large datasets
has led to many breakthroughs. In the field of environmental sciences, for
example, the weather prediction models presented in section 2.2.3 use adapted
versions of the Transformer architecture and graph neural networks.

For this project, however, it was important to incorporate the physics as prior
information. A major aspect of the literature research therefore was understand-
ing and summarizing the derivation of the Saint-Venant equations. Further,
different forms of these equations are used in literature. The equations derived
in hydraulics literature and the ones used in practice like in Feng et al., 2023

are slightly different. Thus, bridging the gap between the two formulations was
an important aspect of the literature research. A deeper understanding of the
physics behind river analysis also helped inform the discussion of the geometry
encoder.

6.2. Development

Building on the literature research, a surrogate model was developed. Initially,
some of time was spent trying to forecasting the stage from weather data using
sequential models like Transformers. However, this approach unfortunately
turned out to be infeasible due to the lack of high-quality data. Therefore, the
scope of the project was limited to building a surrogate model for HEC-RAS. A
significant influence of the early model design was the work of Feng et al., 2023

as it demonstrated a neural network optimized with a regularization term that
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implemented the Saint-Venant equations. The models described in this work
can be viewed as an extension of the model described by the authors.

Given how extensive the HEC-RAS software suite is, for a project like this
it is essential to limit its scope in order to avoid mission creep. HEC-RAS not
only covers the rivers themselves, but also dams, lakes, and other elements. All
these influence the outcome of the simulation. Therefore, working with domain
experts to define the scope of the project, and to find the most influential
elements is critical. Further, for future projects it may be helpful to work with
simplified simulation setups.

Another major challenge during the development of this project was that
while the U.S. Army Corps of Engineers provides a good documentation for
HEC-RAS itself, the file formats are less well-documented. For example, to
develop the geometry encoder, the geometry of cross-sections needed to be
extracted. The structure of the geometry files used to store the geometry is
undocumented, which is why the files had to be reverse-engineered to work
with the geometry.

Lastly, different Deep Learning frameworks have different strengths and
weaknesses. For a project like this, PyTorch is preferable because of is dynamic
nature. The initial experiments were developed using TensorFlow. While Ten-
sorFlow provides better performance than PyTorch in some instances, it also is
very opinionated. The pythonic nature of PyTorch, on the other hand enables to
implement the geometry storage mechanism which greatly reduces the amount
of redundant data to be stored. Additionally, PyTorch provides the PyTorch3D
library which includes many useful primitives for the geometry encoder.

6.3. Personal

As part of this master’s thesis, I had the pleasure of spending half a year at
the University of New Orleans in the United States. In addition to getting a
taste of the culture of New Orleans, I was able to meet many new and exciting
people, and make both personal and professional lasting connections. Before
working on this master’s thesis, my work was mostly focused on computer
vision. Therefore, working on an entirely different research topic in a new
environment greatly helped me to expand my horizon. It also helped me
recognize the importance of adhering to a well-established and rigorous process
when conducting high-quality research.
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This chapter concludes the project described in this thesis. It describes the main
conclusions drawn and provides a possible road map for future work related to
this project.

7.1. Conclusion

The aim of this thesis was to build and evaluate surrogate models for river anal-
ysis which were trained on synthetic data produced by HEC-RAS. As expected,
neural networks are very well-suited for approximating the simulation data.
Formulating the model as an implicit function makes it straightforward to han-
dle the sparse nature of cross-section locations. It allows to easily regularize the
model at locations where there are no training samples available. As described
in the chapter 5, both the random Fourier features and the physics-informed
regularization play a crucial role in learning a representation of the simulation
data. The ablation study presented shows that without the Fourier features the
model is only able to learn a very coarse representation of the data. While this
acts as an implicit regularization of the model, it also limit its expressiveness.
The model becomes more expressive when the random Fourier features are
added, as the transformation helps mitigate the low frequency bias of neural
networks. As the model now loses the natural regularization of the spectral
bias, the physics-informed regularization helps to regularize the model and
adhere to the underlying physical model. The combination of random Fourier
features and physics-informed regularization results in a model that can rep-
resent high-frequency features, and adhere to the underlying physical model.
This does confirm results from literature that has studied the spectral bias of
neural networks.

For the surrogate model two scenarios, a model trained on a single river and
one trained on multiple rivers, were studied. For the multi-river models, differ-
ent model architectures to encode the geometry of the riverbed were evaluated.
The single-river model achieved an average mean absolute error of 9.716 ft (2.96
m). Every configuration of the multi-river model outperforms the error achieved
by the single-river model, with the configuration with the graph convolutional
encoder achieving an mean absolute error of 8.342 ft (2.54 m). Even when using
the baseline geometry encoder, which is not aware of the river geometry, the
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model is able to benefit from the larger training dataset (MAE 8.661 ft or 2.64 m).

However, the method still has significant limitations. The surrogate models
presented in this thesis do still exhibit a significant error when compared to
the ground truth simulation data. This may first of all be attributed to the
necessary simplifications a surrogate model has to make. Many aspects of the
simulation like bridges, dams, or bodies of water, are not taken into account
by the surrogate model. These effects, however, still influence the flow, and
therefore also the stage, which contributes to the error of the surrogate model.
Secondly, it was observed that the river geometry encoder struggles to gener-
alize, as the system was only trained on a small set of river sections. When
training surrogate models for geographically limited areas, which do not have
to generalize to rivers outside the training dataset, the baseline encoder may
be preferable in some instances. However, for global surrogate models, a better
geometry encoder trained on a larger, more diverse training dataset, will be
necessary.

7.2. Future Work

We identify multiple potential areas of research for future work. Firstly, the
currently model architecture could be scaled up as neural network performance
tends to improve with larger model sizes. As scaling up the model will require
more training data, additional data sources should be considered. Many gov-
ernment agencies around to world collect data on river flow. Collecting and
consolidating those real-world data sources would be an important aspect of
scaling up the surrogate models presented here. The models could then be
trained on either only real-world data or a mixture of real-world data and
simulation data. Training on a larger, more diverse training dataset may already
mitigate the overfitting observed for the geometry encoder.

Another possible line of research would concern the estimation of the friction
force (see chapter 2.1.2). While most forces acting on the fluid are physically
motivated, the friction force is estimated using empirical formulas. The values
for the Manning’s n coefficient have been determined from experimental data.
Deep Learning, however, could use a combination of satellite images, elevation
data, and other measurements to directly predict the friction force. A system
like this could be trained in similar manner as the surrogate model of this
project, except that the model would also have to predict the force. This is
also known as partial differential equation discovery (Raissi et al., 2019). The
estimation of the friction coefficient could be used in HEC-RAS itself, improving
the predictions of the system, and saving modellers time. In this case, it may
be beneficial to train models on simplified river environments that have been

60



7.2. Future Work

simulated using HEC-RAS, before moving to real-world data.

And finally, all of these strains of research could lead to an end-to-end
surrogate model that may even surpass the performance of HEC-RAS. For this,
in addition to collecting river flow data and riverbed geometry, the data would
need to be connected with corresponding weather data. For weather simulation
(see section 2.2.3) models like this already exist, and similar models for river
analysis could have an enormous impact for flood prevention, help respond to
natural disasters, and drive foundational research.
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Appendix A.

Simplification of Saint-Venant
Equations

The Saint-Venant equations (equations 2.16 and 2.19) presented can be simplified
under the assumption that the channel is rectangular. This leads to the equations
used in the regularization term in 4.4.3.

Continuity Equation

∂A
∂t

+
∂Q
∂x

= 0 Q = vA, A = Wd (A.1)

∂Wd
∂t

+
∂vWd

∂x
= 0 (A.2)

W
∂d
∂t

+ Wv
∂d
∂x

= 0 (A.3)

∂d
∂t

+ v
∂d
∂x

= 0 (A.4)
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Momentum Equation

∂vA
∂t

+
∂v2A

∂x
+ gA

∂d
∂x

= gA(S0 − S f ) Q = vA, A = Wd

(A.5)

∂vA
∂t

+
∂v2A

∂x
+ gA

∂d
∂x

= gAS0 − gAS f (A.6)

∂vA
∂t

+
∂v2A

∂x
+ gA

∂d
∂x

− gAS0 + gAS f = 0 (A.7)

∂vA
∂t

+
∂v2A

∂x
+ gA

∂d
∂x

+ gA(S f − S0) = 0 (A.8)

A
∂v
∂t

+ A
∂v2

∂x
+ gA

∂d
∂x

+ gA(S f − S0) = 0 (A.9)

∂v
∂t

+ v
∂v
∂x

+ g
∂d
∂x

+ g(S f − S0) = 0 (A.10)
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