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Abstract
We consider quadratic forms of deterministic matrices A evaluated at the random eigenvectors of a large N ×N

GOE or GUE matrix, or equivalently evaluated at the columns of a Haar-orthogonal or Haar-unitary random
matrix. We prove that, as long as the deterministic matrix has rank much smaller than

√
N , the distributions

of the extrema of these quadratic forms are asymptotically the same as if the eigenvectors were independent
Gaussians. This reduces the problem to Gaussian computations, which we carry out in several cases to illustrate
our result, finding Gumbel or Weibull limiting distributions depending on the signature of A. Our result also
naturally applies to the eigenvectors of any invariant ensemble.
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1 Introduction

1.1 Overview.
This paper studies fluctuations of the random variables

Nmax
i=1

⟨ui, AN ui⟩ and Nmax
i=1

|⟨ui, AN ui⟩| (1.1)

asymptotically in the large-N limit. Here the (ui = u(N)
i )N

i=1 are the ℓ2-normalized eigenvectors of an N × N
random matrix drawn from the Gaussian Orthogonal Ensemble (GOE), and (AN )∞

N=1 is a sequence of deterministic
N ×N real-symmetric matrices, which can be chosen freely subject to an important rank restriction, which we state
informally as

rank(AN ) ≪ N1/2. (1.2)
We recall that the N×N GOE consists of real-symmetric random matrices HN , whose entries are centered Gaussians,
independent up to the symmetry constraint, normalized as E[(HN )2

ij ] = 1
N (1 + δij). Since GOE eigenvectors are

distributed as the columns of a Haar-orthogonal random matrix, the variables (1.1) can equivalently be thought of
as observables of Haar measure.

The joint distribution of a few Haar columns is almost that of independent Gaussian vectors. Our main result,
very informally, says that this approximation holds for extremal statistics of quadratic forms involving ≪

√
N

columns. More precisely, our main Theorem 2.1 states that, under the rank restriction (1.2), the variables (1.1) have
the same fluctuations as their Gaussian counterparts, i.e., as the analogues of (1.1) with the vectors ui replaced
by appropriately normalized i.i.d. Gaussian vectors. This reduces the study of (1.1) to (much easier) Gaussian
computations, which can be carried out for any choice of AN , with an outcome depending on the signature structure
of AN and on the multiplicity of its extreme eigenvalues. To keep the paper at a manageable length, however, we
only present these computations for some representative choices of AN . We study all the cases where AN has an
N -independent rank, plus the case where AN = diag(1, . . . , 1, 0, . . . , 0) with rank(AN ) ≈ Nα for some 0 < α < 1/2.
This leads to explicit limit laws for the variables (1.1) in these special cases (Theorems 2.6 and 2.9, respectively). The
limiting distributions in these cases are those of classical extreme value theory: mostly Gumbel, except for the special
case of maxN

i=1⟨ui, AN ui⟩ when AN has finite rank and all eigenvalues negative, in which case the limit is Weibull.
Our precise theorems have many cases to cover every possible situation, but here we just give one representative
result for easy orientation:
Theorem 1.1. Fix k ∈ N, and k nonzero real numbers ordered as a1 ⩽ · · · ⩽ ak =: a. Notate the multiplicity of the
largest one as m := #{i : ai = a}. If

AN = diag(a1, . . . , ak, 0, . . . , 0),
and a > 0, then

N

2a
Nmax

i=1
⟨ui, AN ui⟩ − logN +

(
1 − m

2

)
log logN + log

Γ
(m

2

)√√√√k−m∏
j=1

(
1 − aj

a

) N→∞→ Λ in distribution,

where Λ is a Gumbel-distributed random variable, with distribution function P(Λ ⩽ x) = exp(−e−x).
This result is formulated for GOE for definiteness, but it clearly also applies to any random matrix whose eigen-

vectors are Haar distributed. In particular it applies to invariant ensembles, i.e., real-symmetric N × N random
matrices XN such that, for any deterministic orthogonal O, the matrices XN and OXNO

−1 have the same distribu-
tion. This includes smooth invariant ensembles, i.e., random matrices XN whose law has a density with respect to
Lebesgue measure that is proportional to exp(−N TrV (XN )) for some mildly regular function V : R → R.

While stated for real symmetric ensembles, all our results as well as their proofs also hold for the complex
Hermitian case, meaning they apply to Haar unitary matrices, and consequently to Gaussian Unitary Ensemble
(GUE) and to complex Hermitian invariant ensembles. In fact, the very special rank-one case for GUE has already
appeared in the physics literature [LTBM08] in the context of detecting quantum chaos. See Remark 2.8 for more
details and possible further applications in physics.

Finally, one can also ask about universality beyond invariant ensembles, e.g. in the class of Wigner matrices,
which are real symmetric random matrices whose i.i.d. upper-triangular entries are not necessarily Gaussian. We
conjecture that Theorem 1.1 holds at least when the ui’s are the eigenvectors of a large class of Wigner matrices.
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1.2 Previous results on extremal statistics in random matrices.
Classical extremal statistics is primarily concerned with three named probability distributions – Gumbel, Weibull,

and Fréchet, which we will call classical – because of the Fisher-Tippett-Gnedenko theorem, which states that these
three are the only possible limiting laws for the normalized maximum of independent and identically distributed
random variables. But random-matrix eigenvalues tend to be strongly correlated, so their extremes often (although
not always) have non-classical limiting distributions. The most prominent of these is the Tracy-Widom distribution,
which was first introduced by Tracy and Widom to describe the fluctuation of the top eigenvalue of GOE or GUE
matrices [TW93, TW94, TW96], but later extended to a large class of models, demonstrating the universality
phenomenon [Sos99, Ruz06, TV10, Sod10, BEY14, LY14, LS15, AEKS20]. As another example, we mention results
on the variables XN = maxθ∈[0,2π]

∣∣det(eiθ − UN )
∣∣, where UN is a random matrix from the so-called Circular Unitary

Ensemble. These variables are conjectured [FK14, FHK12] to satisfy

XN − (logN − 3
4 log logN) N→∞→ 1

2(G1 +G2) in distribution,

where G1 and G2 are independent Gumbel variables, i.e., the limiting distribution is supposed to be almost classical.
Recent results have proved that XN − (logN − 3

4 log logN) is tight [ABB17, PZ18, CMN18].
For non-Hermitian random matrices, however, classical extremal statistics prevail: the spectral radius and the

real part of the rightmost eigenvalue of a Ginibre matrix follow the Gumbel distribution after an appropriate shift
and rescaling [Kos92, Rid03, Ben10, AP14, RS14, CESX22a]. The same limit behavior is conjectured for general
entry distribution (universality); see [CESX22b] for the most recent result in this direction.

In contrast to the eigenvalues, the eigenvectors tend to be much less correlated, almost independent, so their
statistics tend to have the usual limiting distributions. This has been demonstrated in various results on quantum
unique ergodicity (that we will survey in Section 1.4), and our current result is in line with these findings: GOE
eigenvectors are so weakly dependent that even their extremes (at the level of low-rank quadratic forms) fall into the
universality class of classical extremal statistics.

1.3 Previous results on Gaussian approximations to GOE eigenvectors.
It is classical that GOE eigenvectors have the exact same distribution as the Gram–Schmidt orthonormalizations

of i.i.d. standard Gaussian vectors. This simple fact has appeared in various forms in the literature, e.g. in [Eat07,
Proposition 7.2], [Mec19, pp. 12-13], [GM05, Fact 8]. Here we recall its easy proof that goes via the Haar measure.
Consider the N × N orthogonal matrix whose columns are ℓ2-normalized GOE eigenvectors. Since the GOE is
invariant under conjugation by any deterministic orthogonal matrix, so is this eigenvector matrix. Thus it must
be Haar distributed on the orthogonal group. On the other hand, one can easily check that the orthogonal matrix
obtained by starting with columns that are independent standard Gaussian vectors and performing Gram–Schmidt
orthonormalization on the columns has the same invariance property, so it must also be Haar distributed. But the
Haar measure is unique, so they coincide in law.

However, roughly speaking, high-dimensional standard Gaussian vectors are almost orthogonal, and their norms
are almost deterministically

√
N . This might seem to indicate that Gram–Schmidt does little beyond a rescaling, so

that Haar entries are almost independent Gaussians. This principle first appeared in a 1906 result of Borel, showing
that one entry of a Haar-distributed matrix behaves like a Gaussian variable [Bor06]. One can also ask for this
approximation to hold jointly in the entries, and as long as only a few Gram–Schmidt steps are performed, this
essentially works. Not only the individual eigenvectors, but also their correlations and the joint distribution of not
too many of them is almost Gaussian. But one has to be careful about applying this heuristic to a large number of
columns: While each vector is close to Gaussian and their pair correlations are very weak, these may add up if we
consider a family of too many of them. This can lead to a thresholding phenomenon, where the “Haar measure is
almost independent Gaussian” heuristic is good up to a certain number of joint entries, and fails beyond it.

Of course, this threshold can depend on both the observable being compared and the norms used to compare.
We give several examples: First, if Y = (yij)N

i,j=1 is the matrix of independent Gaussians and Γ = (γij)N
i,j=1 is the

result after applying Gram–Schmidt on its columns, one can ask for the largest number of columns m = mN such
that maxn

i=1 maxm
j=1 |

√
Nγij − yij | still tends to zero in probability. Jiang in [Jia05], [Jia06] identified this threshold

by showing that one can take mN = o(N/(logN)) and that one cannot take mN = CN/(logN).
Second, one can ask for the largest pN and qN such that the total variation distance between the law of the

pN × qN principal minors of Y and Γ tends to zero. Diaconis, Eaton, and Lauritzen showed that one can take
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pN , qN = o(N1/3) [DEL92], which was improved to pN , qN = O(N1/3) in the thesis of Collins [Col03, Theorem 4.4.2].
Then Jiang showed both that one can take pN , qN = o(N1/2), and the total-variation distance does not tend to zero
if pN , qN = CN1/2 [Jia06]. Later, in simultaneous independent work, both Stewart [Ste20] and Jiang and Ma [JM19]
showed that one can take non-square pN × qN minors as long as pNqN = o(N). In this context, our result says
that pN = O(N1/2−δ) and qN = N are still jointly Gaussian as far as the extremal statistics of the corresponding
quadratic forms are concerned, even if they are not close in total variation.

The papers [Jia05, Jia06] are important for us; we comment on the relationship between them and our work in
Remark 2.3 below. In fact, with a relatively simple argument, Jiang’s result can be used to prove a weaker version of
our main result, with the restriction (1.2) replaced with the non-optimal condition rank(AN ) ≪ N1/3; see Remark
3.9 for details.

Finally, we mention some other related results. Jiang also showed the largest entry of a Haar-distributed matrix
has Gumbel fluctuations [Jia05], a result which had been conjectured on the basis of numerics by Donoho and Huo
[DH01]. Similar techniques have been used by Guionnet and Maïda in their study of rank-one Harish-Chandra–
Itzykson–Zuber integrals [GM05].

1.4 Previous results on quadratic forms of random-matrix eigenvectors.
Owing to their quantum physics interpretation as measurable quantities, the variables (⟨ui, AN ui⟩)N

i=1 have a
long history in random matrices, although to our knowledge this paper is the first study of their extremal statistics.
One motivation for these variables is delocalization, i.e. the idea that for sufficiently mean-field random matrices
the ℓ2-mass of the eigenvector ui should be approximately uniformly distributed across its components ui(α). For
example, as an entrywise bound one can prove that

|ui(α)| ≪ Nε

√
N

with high probability for each i and α, (1.3)

or even the stronger result
Nmax

i=1

Nmax
α=1

|ui(α)| ≪ Nε

√
N

with high probability, (1.4)

which is tight up to the factor Nε since the normalized eigenvector has unit mass. Of course, one can interpret
ui(α) = ⟨ui, eα⟩ as a projection onto the αth standard basis vector eα, and from this perspective there is no reason
to single out the standard basis. One could equally study ⟨ui,q⟩ for some deterministic unit vector q. This leads to
the special case of our quadratic form when AN has rank one, since

|⟨ui,q⟩| =
√

⟨ui, (qqT )ui⟩.

In the literature on random-matrix eigenvectors (and more generally on local laws for resolvents), results with generic
q instead of eα, which first appeared in [KY13b], are called isotropic. For example, [KY13b] showed that (1.3) holds
for ⟨ui,q⟩ with any fixed deterministic unit vector q.

From our perspective, high probability size estimates like (1.3) and (1.4) can be complemented and refined by
distributional results of two types:

(i) On the one hand, in the spirit of (1.3), one can show that any given N1/2⟨ui,q⟩ is asymptotically Gaussian.
This is a distributional result about typical behavior.

(ii) On the other hand, in the spirit of (1.4), one can show that maxN
i=1 N⟨ui,q⟩2 after an appropriate shift is

asymptotically Gumbel. This is a distributional result about extremal behavior.

All of these results are short exercises in the special case of GOE eigenvectors, but they are highly nontrivial for
other ensembles, such as general Wigner matrices, where orthogonal invariance is not present. Generally speaking,
in the literature there are more size estimates like (1.3) and (1.4) than there are distributional results, and more
distributional results on typical behavior than there are on extremal behavior.

Size estimates like (1.4) were proved first for Wigner matrices in [ESY09], then in [EYY12] for a broader class called
generalized Wigner matrices, as simple corollaries of optimal local laws. The Gaussian fluctuations of

√
N⟨ui,q⟩ were

established for generalized Wigner matrices first under a four-moment-matching condition in the bulk [KY13a, TV12]
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and a two-moment-matching condition at the edge [KY13a] using comparison techniques for resolvents, then in full
generality [BY17] using Dyson-Brownian motion techniques.

To the best of our knowledge, Gumbel fluctuations of maxi N⟨ui,q⟩2 are still open beyond GOE and GUE. The
corresponding size estimates have been obtained only recently for generalized Wigner matrices with subexponential
entries, in work of Benigni and Lopatto [BL22b, Theorem 1.2], who showed that for every D > 0 there exists CD > 0
with

sup
q∈SN−1

P
(

Nmax
i=1

N⟨ui,q⟩2 ⩾ CD logN
)
⩽ CDN

−D. (1.5)

In comparison, the rank-one case of our result shows, informally, that for GOE eigenvectors

Nmax
i=1

N⟨ui,q⟩2 ≈ 2 logN − log logN − log π + 2Λ (1.6)

with Λ a Gumbel variable. The analogous result for GUE is:

Nmax
i=1

N⟨ui,q⟩2 ≈ logN + Λ; (1.7)

see also [LTBM08] and Remark 2.8.
Our goal is to understand the distributional analogue of the high probability bound (1.5) in the special case of

GOE and GUE, but for higher-rank observables. This extension is naturally related to the celebrated phenomena
of quantum ergodicity (QE) and quantum unique ergodicity (QUE) that appear in a variety of disordered quantum
systems. They say roughly that, for ψ1, ψ2, . . . the eigenfunctions of some Hamiltonian operator, A a deterministic
operator (“observable”) in some appropriate class, and f a model-dependent linear functional on this class, we have

lim
i,j→∞

⟨ψi, Aψj⟩ → δijf(A).

Results proving this for most pairs (i, j), sometimes by averaging in i and j, are termed QE. Results proving this
along all (i, j) sequences are termed QUE. In the context of the Laplace-Beltrami operator on a Riemannian manifold
with an ergodic geodesic flow, QUE was defined and conjectured by Rudnick and Sarnak [RS94], following earlier
QE results for the same model by Shnirelman [Š74], Colin de Verdière [CdV85], and Zelditch [Zel87]. In this context
A is from a suitable class of pseudodifferential operators and f(A) is the integral of its symbol on the unit cotangent
bundle. To date, the conjectures of Rudnick and Sarnak have been proved only in certain special cases of arithmetic
surfaces [Lin06, Sou10, HS10]. In recent years, these phenomena have also been established in regular graphs, both
deterministic (in work of Anantharaman and Le Masson [ALM15]) and random (in work of Bauerschmidt, Huang,
Knowles, and Yau [BHY19, BKY17]).

In random matrices, QE and QUE naturally appear when considering ⟨ui, AN uj⟩ for (ui)N
i=1 the eigenvectors of

the random matrix and AN a deterministic matrix. For generalized Wigner matrices, Bourgade and Yau in [BY17]
showed a local form of QUE in the bulk of the spectrum, namely that for i any bulk index we have

N

rank(AN )

(
⟨ui, AN ui⟩ − 1

N
TrAN

)
→ 0 in probability, as long as rank(AN ) → ∞.

The corresponding QUE result, showing this limit for all eigenvectors simultaneously, was established in [BYY20] for
matrices with a Gaussian component, strengthened in [Ben21], and resolved in full generality for Wigner matrices
in [CES21] with the optimal speed of convergence. These QUE statements are the analogues of (1.3) for general
observables. Concerning the refinement of these QUE results in the distributional direction for the typical behavior
(in the spirit of (i) above), we mention that Gaussian fluctuations around the QUE were proven in [BL22a] for
special low-rank observables for all i, in [CES22a] for general full-rank observables, and finally for any observable
in [CES22b] in the bulk. More precisely, Theorem 2.8 in [CES22b] asserts that for any Wigner eigenvector ui with
eigenvalue away from the spectral edges we have

QN (i) := N√
2 Tr(ÅN )2

(
⟨ui, AN ui⟩ − 1

N
TrAN

)
N→∞→ N (1.8)
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as long as Tr(ÅN )2 → ∞, where ÅN := AN − 1
N TrAN is the traceless part of AN and N stands for the standard

normal distribution.
In this paper we prove distributional results for the corresponding extremal statistics in the spirit of (ii) above.

The asymptotically normal random variables QN (i) are expected to be almost independent for different indices i,
hence their extremal statistics should be classical. Indeed, our Theorem 2.9 below shows the Gumbel distribution
emerging for maxi QN (i), at least for GOE/GUE eigenvectors and AN = diag(1, 1, . . . 1, 0, . . . 0). When AN has
bounded rank, but is otherwise general, then (1.8) does not hold since ⟨ui, AN ui⟩ is the sum of a few asymptotically
χ2 distributed random variables. Nevertheless the extremal statistics of the QN (i)’s are still classical: either Gumbel
or Weibull, depending on the signature of AN (see Theorem 2.6). These results may be considered as yet another
manifestation of the chaotic behavior of the GOE/GUE eigenvectors via a large class of statistics (parametrized by
AN ) that are sensitive to all eigenvectors at the same time.

1.5 Organization and Notation.
The organization of the paper is as follows: In Section 2, we give our main result comparing the variables (1.1)

and their Gaussian counterparts, as well as some applications, and a sketch of the proof. The proof relies heavily on
the key technical Proposition 2.11, which essentially asserts that, for the purpose of our observable, applying Gram–
Schmidt to Gaussian vectors is little more than rescaling; the proof of this result constitutes Section 3. Finally, the
applications of our main result to fixed-rank and diverging-rank problems rely on Gaussian computations, which are
carried out in Sections 4 and 5, respectively.

Throughout the paper, we use the following notation. We write ∥v∥ for the Euclidean norm of a vector v (always
writing vectors in boldface) and ∥M∥ for the corresponding operator norm of a matrix M . If M has size a × b, we
write

|||M ||| := amax
i=1

bmax
j=1

|Mij |

for the entrywise maximum norm (in particular, we can take |||·||| of a vector v). The standard notation X
d= Y

means that the random variables X and Y have the same distribution, and aN = O(bN ) means that there is some
constant C such that the sequences (aN )∞

N=1, (bN )∞
N=1 satisfy aN ⩽ CbN . The notation diag(m1, . . . ,mN ) means

the diagonal matrix with entries m1, . . . ,mN along the diagonal.

Acknowledgements.
LE was supported by the ERC Advanced Grant “RMTBeyond” No. 101020331. BM was supported by Fulbright

Austria and the Austrian Marshall Plan Foundation.

2 Results

2.1 Main result.
Our main result states that the extremal statistics of quadratic forms of GOE eigenvectors coincide with those

of independent Gaussian vectors as long as the rank of AN is much smaller than N1/2. To formulate it precisely,
let (ui)N

i=1 be the ℓ2-normalized eigenvectors of an N ×N GOE matrix, and let (yi)N
i=1 be i.i.d. standard Gaussian

vectors of length N , meaning that yi ∼ N (0, IdN×N ) for each i (so that ∥yi∥2 ≈ N).

Theorem 2.1. Let (AN )∞
N=1 be a sequence of real symmetric deterministic matrices such that, for some δ > 0,

kN := rank(AN ) = O(N1/2−δ) (2.1)

and
sup

N
∥AN ∥ < ∞.

1. If the deterministic real sequences (cN )∞
N=1 and (dN )∞

N=1, and the probability distribution χ, are such that

cN
Nmax

i=1
⟨yi, AN yi⟩ + dN

N→∞→ χ in distribution
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and
sup

N
|cN | < ∞,

then
cN

Nmax
i=1

N⟨ui, AN ui⟩ + dN
N→∞→ χ in distribution.

2. If the deterministic real sequences (c′
N )∞

N=1 and (d′
N )∞

N=1, and the probability distribution χ′, are such that

c′
N

Nmax
i=1

|⟨yi, AN yi⟩| + d′
N

N→∞→ χ′ in distribution

and
sup

N
|c′

N | < ∞,

then
c′

N

Nmax
i=1

N |⟨ui, AN ui⟩| + d′
N

N→∞→ χ′ in distribution.

Remark 2.2. Our result is stated for the real case, but the same result holds for the complex case, meaning when
the (ui)N

i=1 are eigenvectors of the Gaussian Unitary Ensemble (GUE), the (yi)N
i=1 are complex Gaussian vectors

normalized so that ∥yi∥2 ≈ N , and the AN are complex Hermitian matrices. For simplicity we write the proof only
for the real case, as the argument for the complex case is exactly the same with some natural minor adjustments.

Remark 2.3. We comment on the relationship between our work and that of Jiang [Jia05, Jia06], which is a very
important precedent for us. Our paper and his consider the same underlying objects (what we will call

√
Nγij − yij

in, e.g., (3.27)) to compare the outcome of a Gram–Schmidt orthonormalization with independent Gaussian. His
work gives essentially tight estimates on their size. However, for the purpose of the extremal statistics our result boils
down to estimating a certain sum of products of these objects. One could estimate this sum by the absolute value
of each summand using Jiang’s estimates; this would lead to our result but with the tighter and non-optimal rank
restriction

kN = O(N1/3−δ).
The details are given in Remark 3.9 below. To reach the exponent almost 1/2, which we believe is a threshold (see
Remark 2.4), one has to estimate the cancellations between terms in this sum; this is substantially more complicated
than applying the term by term estimates and it requires a quite different method. Our proof still uses some results
from [Jia05], namely in Proposition 3.4 and its corollary Lemma 3.3 below. These are borrowed for convenience: by
replacing the good event there with a high-moment expansion, like we give in the proof of Lemma 3.6, we could have
written a formally independent proof.

Remark 2.4. Of course, one wonders to what extent the restriction (2.1) is tight for Theorem 2.1 to hold. Some
restriction on AN is necessary: If we take AN = Id = IdN×N , then maxN

i=1⟨yi,yi⟩ is the maximum of independent
chi-squared random variables, so has Gumbel fluctuations, but maxN

i=1⟨ui,ui⟩ = 1 deterministically.
If extremal quadratic forms of GOE eigenvectors cease to have Gumbel fluctuations as the rank of AN increases,

then the relationship between this phase transition and our result may be subtle, since our result relies on a comparison
between the GOE eigenvectors (ui)N

i=1 and the independent Gaussian vectors (yi)N
i=1. For simplicity, consider the

case when AN = diag(1, . . . , 1, 0, . . . , 0) with kN = Nα for some α ∈ (0, 1). It may happen that there are two critical
thresholds, αi.i.d. and αGumbel, such that

(i) maxN
i=1 N⟨ui, AN ui⟩ is well approximated by the independent-Gaussian analogue maxN

i=1⟨yi, AN yi⟩ for α <
αi.i.d. but not beyond,

(ii) and maxN
i=1 N⟨ui, AN ui⟩ has Gumbel fluctuations for α < αGumbel (these two already imply αi.i.d. ⩽ αGumbel),

(iii) but αi.i.d. < αGumbel with strict inequality.

If such thresholds exist, we believe that probably αi.i.d. = 1/2, but we leave open the value of αGumbel. It may
happen that, for some α > αi.i.d. (possibly even for any α < 1), one still has Gumbel limiting distribution, but for
the correct Gaussian approximation one should take the vectors yi to be appropriately correlated Gaussians.
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Remark 2.5. It would be interesting to study universality, i.e., to see whether Theorem 2.1 is true when the ui’s
are the eigenvectors of a non-invariant ensemble, such as generic Wigner matrices. At the moment, the main
difficulty is that existing universality proofs relying on the Dyson Brownian motion typically consider only finitely
many eigenvectors simultaneously (see [MY20] for the strongest result to date), while maxN

i=1⟨ui, AN ui⟩ involves all
eigenvectors at the same time.

The value of Theorem 2.1 is that it reduces the study of maxN
i=1⟨ui, AN ui⟩ and maxN

i=1|⟨ui, AN ui⟩| to the corre-
sponding Gaussian problems. The latter are easier, since they are of the form maxN

i=1 fAN
(yi) for some deterministic

functions fAN
(·), and especially since the variables fAN

(yi) are i.i.d. The following subsection gives several illustrative
examples of how this theorem can be used in practice.

2.2 Corollaries and physical application.
To illustrate the use of Theorem 2.1, we prove limit laws for maxN

i=1⟨ui, AN ui⟩ and maxN
i=1|⟨ui, AN ui⟩| for two

special cases of AN ’s via performing the corresponding Gaussian calculation essentially explicitly. Theorem 2.6, with
proof in Section 4, completely characterizes the case when the matrices AN have a fixed rank and fixed eigenvalues;
Theorem 2.9, with proof in Section 5, considers the special case of diverging rank when AN = diag(1, . . . , 1, 0, . . . , 0)
and rank(AN ) ≈ Nα for some 0 < α < 1/2. Similar calculations for more general observables with diverging ranks
can also be carried out, but for the sake of brevity we refrain from doing so.
Theorem 2.6. Fix k ∈ N and nonzero real numbers a1, . . . , ak. Set

a := kmax
i=1

ai, m := #{i : ai = a},

a∗ := kmax
i=1

|ai|, m+ := #{i : ai = a∗}, m− := #{i : ai = −a∗},
(2.2)

as well as

cm(a1, . . . , ak) := log

Γ
(m

2

)√√√√√ ∏
j∈J1,kK

aj ̸=a

(
1 − aj

a

), (2.3)

c∗
m+,m−

(a1, . . . , ak) :=



log
(

Γ
(m+

2
)√∏

j∈J1,kK
aj ̸=a∗

(
1 − aj

a∗

))
if m+ > m−

log
(

Γ
(m−

2
)√∏

j∈J1,kK
aj ̸=−a∗

(
1 + aj

a∗

))
if m+ < m−

log

Γ
(m+

2
)(√∏

j∈J1,kK
aj ̸=a∗

(
1 − aj

a∗

))−1

+
(√∏

j∈J1,kK
aj ̸=−a∗

(
1 + aj

a∗

))−1
−1

 if m+ = m−

(2.4)

with the empty product interpreted as one as usual. Write Λ for a Gumbel-distributed random variable, with dis-
tribution function P(Λ ⩽ x) = exp(−e−x), and Ψk/2 for a k

2 -Weibull-distributed random variable, with distribution
function P(Ψk/2 ⩽ x) = max(exp(−(−x)k/2), 1). Suppose that

Spec(AN ) = {a1, a2, . . . , ak, 0, . . . , 0}.

1. Suppose that a > 0. Then we have
N

2a
Nmax

i=1
⟨ui, AN ui⟩ − logN +

(
1 − m

2

)
log logN + cm(a1, . . . , ak) N→∞→ Λ in distribution. (2.5)

and
N

2a∗

Nmax
i=1

|⟨ui, AN ui⟩| − logN +
(

1 − max(m+,m−)
2

)
log logN + c∗

m+,m−
(a1, . . . , ak) N→∞→ Λ in distribution.

(2.6)
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2. Suppose that a < 0. Writing γk = 1
2

(
2

kΓ(k/2)

)2/k

, we have

γkN
1+ 2

k(∏k
k=1|aj |

)1/k

Nmax
i=1

⟨ui, AN ui⟩
N→∞→ Ψk/2 in distribution. (2.7)

(If a < 0, then maxN
i=1|⟨ui, AN ui⟩| = maxN

i=1⟨ui, (−AN )ui⟩, since −AN is positive semidefinite; thus this
“fourth case” can be treated with (2.5).)

Remark 2.7. Note that the maximal statistics are all asymptotically Gumbel-distributed except for the case when
all the ai’s are negative, in which case they are asymptotically Weibull-distributed. This is not surprising, since the
latter case is essentially the same as the minimum of independent χ2 random variables. The latter are asymptotically
Weibull-distributed, related to the fact that the minimum has no tails: it is deterministically nonnegative. Also note
that the N -scaling in (2.7) is different from (2.5) and (2.6).

Remark 2.8. The rank-one, complex-Hermitian special case of this result already appeared in the physics literature,
in a dual form. Indeed, if q is a complex unit vector, (ui)N

i=1 are GUE eigenvectors, and e1 = (1, 0, . . . , 0), then by
rotation invariance

Nmax
i=1

⟨ui,qq∗ui⟩
d= Nmax

i=1
⟨ui, e1e∗

1ui⟩ = Nmax
i=1

|ui(1)|2 d= Nmax
i=1

|u1(i)|2,

Nmax
i=1

⟨ui, (−qq∗)ui⟩
d= −

N
min
i=1

|u1(i)|2,

i.e., we are just considering the largest and smallest squared components of a uniform random vector on the unit
sphere. For these quantities, Lakshminarayan, Tomsovic, Bohigas, and Majumdar [LTBM08] rigorously showed that

N
Nmax

i=1
|u1(i)|2 − logN N→∞→ Λ in distribution,

−N2 N
min
i=1

|u1(i)|2 N→∞→ Ψ1 in distribution.

We mention that these formulas look a bit different from Theorem 2.6, which is written for the real case, but they
follow directly from Theorem 2.1 and easy classical computations for complex Gaussians.

The physical motivation of the authors of [LTBM08] was to detect quantum chaos via extremal statistics of
eigenvectors. In particular, they performed extensive numerics for the eigenfunctions of the quantum kicked rotor
model in the strongly chaotic parameter regime and found Gumbel and Weibull distributions emerging. As often
happens in physics of disordered quantum systems, they used GUE eigenvectors as phenomenological replacements
for the actual eigenvectors and for this test case they could actually prove the limiting behavior. Our result for higher
rank observables AN may inspire an analogous numerical study for the kicked rotor with higher rank observables, but
such investigation would go beyond the scope of this paper.

Theorem 2.9. Fix 0 < α < 1/2, and let (AN )∞
N=1 be any sequence of N ×N matrices of the form

AN = diag(1, . . . , 1, 0, . . . , 0)

such that, for some ε > 0,
|rank(AN ) −Nα| ⩽ N

α
2 −ε.

Then(√
logN
Nα/2

)
Nmax

i=1
N⟨ui, AN ui⟩ −Nα/2

√
logN − 2 logN + log logN

2 + log(4π)
2

N→∞→ Λ in distribution. (2.8)
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2.3 Main steps in the proof of Theorem 2.1.
The proof of Theorem 2.1 goes by coupling. Namely, recalling that (yi)N

i=1 are i.i.d. standard Gaussian vectors
of length N with entries (yi)j = yij , we will need both their Gram–Schmidt orthogonalizations (wi)N

i=1 (with entries
(wi)j = wij), defined by w1 = y1 and

wi := yi −
i−1∑
j=1

⟨yi,wj⟩
∥wj∥2 wj , i = 2, . . . , N,

as well as their orthonormalizations
γi := wi

∥wi∥
,

with entries (γi)j = γij .
The following simple lemma is classical and its proof was already explained in Section 1.3.

Lemma 2.10. Let (ui)N
i=1 be ℓ2-normalized GOE eigenvectors. Then

(u1, . . . ,uN ) d= (γ1, . . . ,γN ).
In other words, we realize the eigenvectors as the outcome of a Gram–Schmidt procedure on independent Gaussian

vectors yi and then we estimate the error. Since y’s are almost orthogonal, the effect of the first few Gram–Schmidt
steps is minor, but it adds up when we perform k of them. The following proposition, which is at the heart of the
proof of Theorem 2.1, shows that k ≪

√
N steps are still controllable as far as the extremal statistics of quadratic

forms are concerned. Its proof takes up the entire Section 3; some more intuition is explained in Section 3.1.
Proposition 2.11. Fix δ > 0, and take some sequence (k = kN )∞

N=1 of positive integers satisfying

k = O(N1/2−δ).

For each k, choose a k-tuple of deterministic real numbers (a1, . . . , ak) = (a(k)
1 , . . . , a

(k)
k ), and suppose there is some

fixed a > 0, independent of N and of k, with

max
k

kmax
i=1

∣∣∣a(k)
i

∣∣∣ ⩽ a. (2.9)

Then
Nmax

j=1

∣∣∣∣∣
k∑

i=1
ai(

√
Nγij)2

∣∣∣∣∣− Nmax
j=1

∣∣∣∣∣
k∑

i=1
aiy

2
ij

∣∣∣∣∣ N→∞→ 0 in prob. (2.10)

and
Nmax

j=1

(
k∑

i=1
ai(

√
Nγij)2

)
− Nmax

j=1

(
k∑

i=1
aiy

2
ij

)
N→∞→ 0 in prob. (2.11)

Remark 2.12. A close reading of the proof gives effective estimates of the form P(| . . . | ⩾ ε) ⩽ CD,εN
−D for any

fixed ε and D for (2.10) and (2.11).
Proof of Theorem 2.1. We give the proof for the version without absolute values, the version with absolute values
being similar. Write Y (respectively U, respectively Γ) for the matrix whose columns are y1, . . . ,yN (respectively
u1, . . . ,uN , respectively γ1, . . . ,γN ). Since the distributions of Y and U are each invariant under orthogonal conju-
gation, we can assume without loss of generality that AN is diagonal, and has the form

AN = diag(a1, . . . , ak, 0, . . . , 0)
for some real, nonzero a1, . . . , ak. Furthermore, since the distributions of Y and Γ are each invariant under switching
rows and columns, we have

Nmax
i=1

⟨yi, AN yi⟩ = Nmax
i=1

k∑
j=1

ajy
2
ij

d= Nmax
j=1

k∑
i=1

aiy
2
ij ,

Nmax
i=1

N⟨ui, AN ui⟩
d= Nmax

i=1
N⟨γi, AN γi⟩ = Nmax

i=1

k∑
j=1

aj(
√
Nγij)2 d= Nmax

j=1

k∑
i=1

ai(
√
Nγij)2,
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where the first equality in distribution in the second line follows from Lemma 2.10. The rest of the proof follows
from Proposition 2.11.

Remark 2.13. The swapping of row and column indices in the above proof is very important: It allows one to
consider, not the first few entries of all the γi’s, but all the entries of the first few γi’s. Since the effect of Gram–
Schmidt is smaller on vectors considered earlier in the process, this is a beneficial switch. We point out that we do not
know how to prove the analogue of Proposition 2.11 that considers maxk

j=1(
∑N

i=1 ai(
√
Nγij)2)−maxk

j=1(
∑N

i=1 aiy
2
ij).

For the remainder of the paper, the first index in terms like γij, typically denoted by i and subject to i ⩽ k, will
always track the order in the Gram–Schmidt orthogonalization procedure.

3 Undoing Gram–Schmidt: Proof of Proposition 2.11

3.1 Preliminaries.
The Gram–Schmidt vectors γ are complicated rational functions of the Gaussian vectors y, but to leading order

γi ≈ yi/
√
N , at least when i is not too big; this is the main intuition behind Proposition 2.11. We need to estimate

the effect of the error terms on the extremal statistics and it will be done in several steps; see Lemma 3.2 below. In
some easier steps, high probability Gaussian concentration bounds on the y’s suffice (Section 3.2) – this is similar
to Jiang’s method and it is sufficient up to k ≪ N1/3, see Remark 3.9. However, to reach our k ≪ N1/2 threshold,
we need to use a delicate cancellation mechanism in a big sum of Gaussian monomials; in Section 3.3 we apply a
fully nonlinear chaos expansion and bookkeep the various terms by graphs, reminiscent to a Feynman diagrammatic
expansion. Here we crucially use the martingale structure built in the Gram–Schmidt procedure: for any index i,
the first i Gram–Schmidt vectors depend only on the first i Gaussian vectors.

Define the error vectors ∆i (with entries (∆i)j = ∆ij) given by

∆1 := 0, ∆i :=
i−1∑
ℓ=1

⟨yi,γℓ⟩γℓ for i = 2, . . . , N,

and notice that

wi = yi −
i−1∑
ℓ=1

⟨yi,γℓ⟩γℓ = yi − ∆i.

The variables ∆i appear naturally in the Gram–Schmidt procedure, but they include the normalization of w
which is not convenient for expansions, so we will replace them by the variables ∆̃i, defined as

∆̃1 := 0, ∆̃i := 1
N

i−1∑
ℓ=1

⟨yi,yℓ⟩yℓ for i = 2, . . . , N,

which are polynomials in the y’s. Note that ∆̃/
√
N is the next order correction to γi ≈ yi/

√
N in Gram–Schmidt.

The main goal of Section 3 is to prove the following proposition, which essentially shows that higher-order corrections
can be ignored for our purpose. Proposition 2.11 will relatively easily follow from it in Section 3.5.

Proposition 3.1. Fix δ > 0. If
k = O(N1/2−δ),

then for every D > 0 there exists CD > 0 with

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆ij − ∆̃ij

∣∣∣ ⩾ 1
N1/2

)
⩽ CDN

−D. (3.1)
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We introduce the intermediate quantities

∆(1)
i := 1

N

i−1∑
ℓ=1

⟨yi,wℓ⟩wℓ,

∆(2)
i := 1

N

i−1∑
ℓ=1

⟨yi,wℓ⟩yℓ = 1
N

i−1∑
ℓ=1

⟨yi,yℓ − ∆ℓ⟩yℓ,

∆(3)
i := 1

N

i−1∑
ℓ=1

〈
yi,yℓ − ∆(2)

ℓ

〉
yℓ,

∆(4)
i := 1

N

i−1∑
ℓ=1

〈
yi,yℓ − ∆̃ℓ

〉
yℓ.

Proposition 3.1 will follow from the following lemma (the constants 10 below do not matter; they simply guarantee
that we can use a few triangle inequalities).

Lemma 3.2. Fix δ > 0. If k = O(N1/2−δ), then for every D > 0 there exists CD > 0 with

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆ij − ∆(1)
ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ CDN

−D, (3.2)

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆(1)
ij − ∆(2)

ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ CDN

−D, (3.3)

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆(2)
ij − ∆(3)

ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ CDN

−D, (3.4)

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆(3)
ij − ∆(4)

ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ CDN

−D, (3.5)

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆(4)
ij − ∆̃ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ CDN

−D. (3.6)

The estimates (3.2), (3.3), (3.4), and (3.5) are easier; the technically delicate one is (3.6), where a full diagrammatic
expansion is used. The proofs of these estimates share the same starting steps, which we now describe in the case of
(3.2). One can rewrite

∆i =
(

i−1∑
ℓ=1

γℓγ
T
ℓ

)
yi =: M (i)yi,

∆(1)
i =

(
1
N

i−1∑
ℓ=1

wℓwT
ℓ

)
yi =: M (1,i)yi,

and then observe that the matrices M (i) and M (1,i) depend only on y1, . . . ,yi−1. In particular they are independent
of yi, so that for each i and j, we have the equality in distribution

∆ij − ∆(1)
ij

d= σ
(0,1)
ij Z,

where Z is a standard Gaussian variable independent of everything else, and

(σ(0,1)
ij )2 := ((M (i) −M (1,i))(M (i) −M (1,i))T )jj .

With this information, the union bound gives

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆ij − ∆(1)
ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ kN

kmax
i=1

Nmax
j=1

P
(∣∣∣∆ij − ∆(1)

ij

∣∣∣ ⩾ 1
10N1/2

)
= kN

kmax
i=1

Nmax
j=1

P
(
N(σ(0,1)

ij )2Z2 ⩾
1

100

)
.

(3.7)
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Thus it remains only to understand N(σ(0,1)
ij )2, which we will see is o(1). For the proofs of the other estimates, we

write

∆(2)
i = M (2,i)yi where M (2,i) := 1

N

i−1∑
ℓ=1

yℓwT
ℓ ,

∆(3)
i = M (3,i)yi where M (3,i) := 1

N

i−1∑
ℓ=1

yℓ(yℓ − ∆(2)
ℓ )T ,

∆(4)
i = M (4,i)yi where M (4,i) := 1

N

i−1∑
ℓ=1

yℓ(yℓ − ∆̃ℓ)T ,

∆̃i = M̃ (i)yi where M̃ (i) := 1
N

i−1∑
ℓ=1

yℓyT
ℓ ,

so that
∆(1)

ij − ∆(2)
ij

d= σ
(1,2)
ij Z, where (σ(1,2)

ij )2 := ((M (1,i) −M (2,i))(M (1,i) −M (2,i))T )jj ,

∆(2)
ij − ∆(3)

ij
d= σ

(2,3)
ij Z, where (σ(2,3)

ij )2 := ((M (2,i) −M (3,i))(M (2,i) −M (3,i))T )jj ,

∆(3)
ij − ∆(4)

ij
d= σ

(3,4)
ij Z, where (σ(3,4)

ij )2 := ((M (3,i) −M (4,i))(M (3,i) −M (4,i))T )jj ,

∆(4)
ij − ∆̃ij

d= σ
(4,∞)
ij Z, where (σ(4,∞)

ij )2 := ((M (4,i) − M̃ (i))(M (4,i) − M̃ (i))T )jj .

Here the Z’s denote standard Gaussian variables, not the same ones from line to line. In the proof of each estimate,
we will jump straightaway into estimating the relevant Nσ2

ij , showing that it is o(1). Sometimes this will be in the
sense of high moments (typically order 1/δ moments, where k = O(N1/2−δ)), but other times we will just bound it
on a certain high probability “good” event which we now define, using the error variables

Li :=
∣∣∣∣∣
√

N

∥wi∥2 − 1
∣∣∣∣∣ for i = 1, . . . , N.

Lemma 3.3. Fix δ > 0, k = O(N1/2−δ), and consider the event

Ek,N :=
{

Nmax
a,b=1

|yab| ⩽ logN
}

∩
{

Nmax
a,b=1

|⟨ya,yb⟩|
(
√
N)1+δab

⩽ logN
}

∩
{

kmax
a=1

La ⩽
logN√
N

}
∩
{

Nmax
a,b=1

|wab| ⩽ logN
}

∩
{

Nmax
a=1

∥wa∥2 ⩽ N logN
}

∩
{

kmax
a=1

Nmax
b=1

|∆ab| ⩽ logN
N1/4

}
.

(3.8)

Then the complement of Ek,N has very small probability: For some c > 0,

P((Ek,N )c) = O(e−c(log N)2
).

The proof of this will be given after the following proposition, which collects some estimates of Jiang [Jia05], and
uses the error variable

εN (k) := max
1⩽i⩽k,1⩽j⩽N

∣∣∣√Nγij − yij

∣∣∣.
Proposition 3.4. Fix some sequence (k = kN )∞

N=1 of positive integers satisfying k = O(N1/2). Then for some
small c > 0 we have

P
(

kmax
i=1

|||∆i||| >
logN
N1/4

)
= O(e−c(log N)2

), (3.9)

P
(

kmax
i=1

Li >
logN√
N

)
= O(e−c(log N)2

), (3.10)

P
(
εN (k) > logN

N1/4

)
= O(e−c(log N)2

). (3.11)

14



Proof. (3.9) From [Jia05, Lemma 3.5], we have

P
(

kmax
i=1

|||∆i||| ⩾ t
)
⩽

3kN
t

(
1 + t2

3(k + t
√
N)

)−N/2

(3.12)

for any t > 0. From our choice t = N−1/4(logN) in (3.9), this is at most

CN3/2

t

(
1 + t2

C
√
N

)−N/2

⩽ CN2
(

1 + (logN)2

CN

)−N/2

= O(e−c(log N)2
)

for some C > 0.

(3.10) From [Jia05, Lemma 3.6], we have
P
(

kmax
i=1

Li ⩾ r
)
⩽ 4ke−Nr2/16

whenever r ∈ (0, 1/4), k ⩽ (r/2)N . We take r = N−1/2(logN).

(3.11) From [Jia05, Theorem 5], we have1

P(εN (k) ⩾ rs+ 2t) ⩽ 4ke−Nr2/16 + 3kN
(

1
s
e−s2/2 + 1

t

(
1 + t2

3(k + t
√
N)

)−N/2)
(3.13)

whenever r ∈ (0, 1/4), s > 0, t > 0, and k ⩽ (r/2)N . We take, say, r = log N√
N

, s = logN , and t = N−1/4(logN).

Proof of Lemma 3.3. The L and ∆ terms follow immediately from Proposition 3.4. The w events are actually
included in the Gaussian ones: Since wa is a projection of ya, we have ∥wa∥ ⩽ ∥ya∥ and |wab| ⩽ |yab| deterministically.
So only the basic Gaussian events remain to be proven, which are routine: Of course

P
(

Nmax
a,b=1

|yab| ⩾ logN
)

⩽ N2P(|y11| ⩾ logN) ⩽ N2 exp(−(logN)2/2),

but also

P

 Nmax
a,b=1
a̸=b

|⟨ya,yb⟩| ⩾ N1/2 logN

 ⩽ 2N2P

(∑N
b=1 y1by2b

N
⩾

logN
N1/2

)
,

P
(

Nmax
a=1

∥ya∥2 ⩾ N logN
)
⩽ NP

(∑N
b=1 y

2
1b

N
⩾ logN

)
.

The two probabilities on the right-hand sides of the above display are each superpolynomially small (precisely, the
first is at most 2 exp(−(logN)2), and the second is at most 2 exp(−N logN/2)). Indeed, they describe large deviations
events for the sample averages of N independent variables (distributed as the product of two independent Gaussians
in the first case, and as χ2

1 in the second case), which fall under Cramér’s theorem, the upper bound of which is valid
at finite N . The rate function in the first case is

I(x) = 1
2

(
− 1 +

√
1 + 4x2 + log

(−1 +
√

1 + 4x2

2x2

))
⩾ x2,

which is convex, vanishes at zero, and is at least N−1(logN)2 when evaluated at x = N−1/2 logN . The rate function
in the second case is I(x) = 1

2 (x− 1 − log x), evaluated at x = logN .
1In writing Theorem 5, Jiang writes the last denominator as 3(k +

√
N) instead of 3(k + t

√
N), which suffices for his purposes. But

indeed he proves the sharper result with 3(k + t
√

N), as can be seen by comparing his proof of this result with the statement of his
Lemma 3.5.
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3.2 Proofs of the simpler bounds (3.2), (3.3), (3.4), and (3.5)

Proof of (3.2). Since

γℓjγℓq − 1
N
wℓjwℓq = wℓjwℓq

(
1

∥wℓ∥2 − 1
N

)
,

and the wi’s are orthogonal, we compute

N(σ(0,1)
ij )2 = N((M (i) −M (1,i))(M (i) −M (1,i))T )jj = N

N∑
q=1

((M (i) −M (1,i))jq)2

= N

N∑
q=1

i−1∑
ℓ=1

i−1∑
ℓ′=1

wℓjwℓqwℓ′jwℓ′q

(
1

∥wℓ∥2 − 1
N

)(
1

∥w′
ℓ∥2 − 1

N

)

= N

i−1∑
ℓ=1

w2
ℓj∥wℓ∥2

(
1

∥wℓ∥2 − 1
N

)2
.

Notice that ∣∣∣∣ 1
∥wℓ∥2 − 1

N

∣∣∣∣ = 1
N

∣∣∣∣ N

∥wℓ∥2 − 1
∣∣∣∣ = 1

N

∣∣∣∣∣
√

N

∥wℓ∥2 − 1
∣∣∣∣∣
∣∣∣∣∣
√

N

∥wℓ∥2 + 1
∣∣∣∣∣ ⩽ Lℓ(Lℓ + 2)

N
,

so that on the good event Ek,N from (3.8), we have

kmax
i=1

Nmax
j=1

(N(σ(0,1)
ij )2) ⩽ Nk(logN)2(logN)N

(
3 logN
N3/2

)2
⩽
k(logN)5

N
⩽ N−1/2,

so that
kmax

i=1

Nmax
j=1

P
(
N(σ(0,1)

ij )2Z2 ⩾
1

100

)
⩽ P(N−1/2Z2 ⩾ 1/100) + P((Ek,N )c)). (3.14)

The first term on the right-hand side is O(exp(−c
√
N)), and the second term is O(e−c(log N)2) from Lemma 3.3;

combined with the general estimate (3.7), this finishes the proof (and gives a better estimate than we need).

Proof of (3.3). We compute

N(σ(1,2)
ij )2 = N

N∑
q=1

((M (1,i) −M (2,i))jq)2 = 1
N

N∑
q=1

(
i−1∑
ℓ=1

(wℓj − yℓj)wℓq

)2

= 1
N

i−1∑
ℓ=1

i−1∑
ℓ′=1

N∑
q=1

∆ℓj∆ℓ′jwℓqwℓ′q = 1
N

i−1∑
ℓ=1

i−1∑
ℓ′=1

∆ℓj∆ℓ′j⟨wℓ,wℓ′⟩ = 1
N

i−1∑
ℓ=1

∆2
ℓj∥wℓ∥2.

On the good event Ek,N from (3.8), we have

kmax
i=1

Nmax
j=1

N(σ(1,2)
ij )2 ⩽ N−1k(N−1/4 logN)2N logN ⩽

(
k√
N

)
(logN)3.

The rest of the proof is as in (3.14).

Proof of (3.4). We compute

N(σ(2,3)
ij )2 = N

N∑
q=1

((M (2,i) −M (3,i))jk)2 = 1
N

N∑
q=1

(
i−1∑
ℓ=1

yℓj(∆ℓq − ∆(2)
ℓq )
)2

= 1
N

i−1∑
ℓ=1

i−1∑
ℓ′=1

N∑
q=1

yℓjyℓ′j(∆ℓq − ∆(2)
ℓq )(∆ℓ′q − ∆(2)

ℓ′q)

= 1
N

i−1∑
ℓ=1

i−1∑
ℓ′=1

yℓjyℓ′j

〈
∆ℓ − ∆(2)

ℓ ,∆ℓ′ − ∆(2)
ℓ′

〉
.
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Consider the good event
E(0,2)

k,N :=
{

kmax
i=1

Nmax
j=1

∣∣∣∆ij − ∆(2)
ij

∣∣∣ ⩽ 1
N1/2

}
.

From (3.2) and (3.3) we see that P ((E(0,2)
k,N )c) = OD(N−D) for any D. On E(0,2)

k,N we have

kmax
ℓ,ℓ′=1

∣∣∣〈∆ℓ − ∆(2)
ℓ ,∆ℓ′ − ∆(2)

ℓ′

〉∣∣∣ ⩽ 1,

so that, on E(0,2)
k,N ∩ Ek,N , we have

kmax
i=1

Nmax
j=1

N(σ(2,3)
ij )2 ⩽

(
k√
N

)2
(logN)2.

The rest of the proof is as in (3.14).

The proof of (3.5) relies on the following result.

Lemma 3.5. If δ > 0, k = O(N1/2−δ), and p ⩾ 1 is an integer, then

kmax
ℓ,ℓ′=1

E
[〈

∆(2)
ℓ − ∆̃ℓ,∆(2)

ℓ′ − ∆̃ℓ′

〉2p
]
⩽ Cp

(
k√
N

)4p

⩽ CpN
−4pδ.

Proof of Lemma 3.5. First we compute

〈
∆(2)

ℓ − ∆̃ℓ,∆(2)
ℓ′ − ∆̃ℓ′

〉
= 1
N2

〈
ℓ−1∑
m=1

⟨yℓ,−∆m⟩ym,

ℓ′−1∑
m′=1

⟨yℓ′ ,−∆m′⟩ym′

〉

= 1
N2

ℓ−1∑
m=1

ℓ′−1∑
m′=1

⟨yℓ,∆m⟩⟨yℓ′ ,∆m′⟩⟨ym,ym′⟩.

To estimate this, we need to bound ⟨yℓ,∆m⟩ in high moments, when m < ℓ. For any fixed p we have

E[⟨yℓ,∆m⟩2p] = E

(m−1∑
s=1

⟨ym,γs⟩⟨yℓ,γs⟩

)2p
 =

m−1∑
s1,...,s2p=1

E

[ 2p∏
a=1

(⟨ym,γsa
⟩⟨yℓ,γsa

⟩)
]

and since ℓ > m > max2p
a=1 sa, we can do the Wick theorem separately on m and ℓ. Write P2p for the set of partitions

π of {1, . . . , 2p} into p pairs, and notate π = (b1, . . . , bp) with blocks bi = (s1(bi), s2(bi)). Since ⟨γs,γs′⟩ = δss′ , we
find

E[⟨yℓ,∆m⟩2p] =
m−1∑

s1,...,s2p=1

 ∑
π=(b1,...,bp)∈P2p

p∏
j=1

δs1(bj),s2(bj)

2

=:
m−1∑

s1,...,s2p=1
Fs1,...,s2p

.

Notice that F = Fs1,...,s2p
depends only on p and on the cardinality of the set {s1, . . . , s2p}, but not on the actual

values of the si themselves. Since this cardinality takes values in {1, . . . , 2p}, there is some upper bound F ⩽ Cp

regardless of m and ℓ. Furthermore, Fs1,...,s2p vanishes unless this cardinality is at most p, i.e., it vanishes if any si

is alone. Thus E[⟨yℓ,∆m⟩2p] is at most Cp times the number of ordered tuples (s1, . . . , s2p) such that each si takes
values in {1, . . . ,m−1} and such that the set S = {s1, . . . , s2p} has cardinality at most p (forgetting the requirement
that no si be alone, to get an upper bound). We can pick such a tuple in the following way: First choose p distinct
elements of {1, . . . ,m− 1}, and fix this as an alphabet. Then select one element of this alphabet, 2p times: the first
is called s1, the second called s2, and so on. This procedure produces

(
m−1

p

)
p2p tuples, which overcounts (since, e.g.

when p = 2, the ordered tuple of all ones can be created both by the alphabet {1, 2} and by the alphabet {1, 3}), so

E[⟨yℓ,∆m⟩2p] ⩽ Cp

(
m− 1
p

)
⩽ Cpm

p.
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Standard Gaussian estimates show

E[∥ym∥2p] ⩽ CpN
p

and, for m ̸= m′,

E[⟨ym,ym′⟩2p] =
∑

π=(b1,...,bp)∈P2p

E[∥ym∥p] ⩽ CpN
p.

Thus

E
[〈

∆(2)
ℓ − ∆̃ℓ,∆(2)

ℓ′ − ∆̃ℓ′

〉2p
]

= N−4p
ℓ−1∑

m1,...,m2p=1

ℓ′−1∑
m′

1,...,m′
2p=1

E

[ 2p∏
a=1

⟨yℓ,∆ma⟩
〈
yℓ′ ,∆m′

a

〉〈
yma

,ym′
a

〉]

⩽

N−2
ℓ−1∑
m=1

ℓ′−1∑
m′=1

E[⟨yℓ,∆m⟩6p]
1

6p E[⟨yℓ′ ,∆m′⟩6p]
1

6p E[⟨ym,ym′⟩6p]
1

6p

2p

⩽

N−2

min(ℓ,ℓ′)−1∑
m,m′=1

δmm′ +
∑

m ̸=m′

E[⟨yℓ,∆m⟩6p]
1

6p E[⟨yℓ′ ,∆m′⟩6p]
1

6p E[⟨ym,ym′⟩6p]
1

6p

2p

⩽ Cp

(
N−2(kk1/2k1/2N + k2k1/2k1/2N1/2)

)2p

= Cp

(
k√
N

)4p

.

Proof of (3.5). As in the proof of (3.4), we compute

N(σ(3,4)
ij )2 = 1

N

i−1∑
ℓ=1

i−1∑
ℓ′=1

yℓjyℓ′j

〈
∆(2)

ℓ − ∆̃ℓ,∆(2)
ℓ′ − ∆̃ℓ′

〉
.

so that, for integer p ⩾ 1, using (a weaker consequence of) Lemma 3.5,

kmax
i=1

Nmax
j=1

E[(N(σ(3,4)
ij )2)p] ⩽

N−1
i−1∑

ℓ,ℓ′=1
E[|yℓj |4p]

1
4p E[|yℓ′j |4p]

1
4p E
[〈

∆(2)
ℓ − ∆̃ℓ,∆(2)

ℓ′ − ∆̃ℓ′

〉2p
] 1

2p

p

⩽ Cp

(
k2

N

)p

.

From (the analogue of) (3.7) and Markov’s inequality, we find

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆(3)
ij − ∆(4)

ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ kN

kmax
i=1

Nmax
j=1

P
(
N(σ(3,4)

ij )2Z2 ⩾
1

100

)
⩽ kN(100)pE[Z2p] kmax

i=1

Nmax
j=1

E[(N(σ(3,4)
ij )2)p] ⩽ CpkN

(
k2

N

)p

which suffices by taking p large enough.

3.3 Proof of (3.6) via graphical expansion.
The proof of (3.6) relies on the following lemma, which we prove after.

Lemma 3.6. There exist constants Cp such that, for each integer p ⩾ 1, we have

kmax
i=1

Nmax
j=1

E[(N(σ(4,∞)
ij )2)p] ⩽ Cp

(
k√
N

)p

.
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Proof of (3.6). From (the analogue of) (3.7) and Markov’s inequality, we find

P
(

kmax
i=1

Nmax
j=1

∣∣∣∆(4)
ij − ∆̃ij

∣∣∣ ⩾ 1
10N1/2

)
⩽ kN

kmax
i=1

Nmax
j=1

P
(
N(σ(4,∞)

ij )2Z2 ⩾
1

100

)
⩽ kN(100)pE[Z2p] kmax

i=1

Nmax
j=1

E[(N(σ(4,∞)
ij )2)p] ⩽ CpkN

(
k√
N

)p

,

which suffices by taking p large enough.

Proof of Lemma 3.6. We start by computing

N(σ(4,∞)
ij )2 = N

N∑
k=1

((M (4,i) − M̃ (i))jk)2 = 1
N

N∑
k=1

(
i−1∑
ℓ=1

yℓj(−∆̃ℓk)
)2

= 1
N

i−1∑
ℓ=1

i−1∑
ℓ′=1

N∑
k=1

yℓjyℓ′j∆̃ℓk∆̃ℓ′k = 1
N

i−1∑
ℓ=1

i−1∑
ℓ′=1

yℓjyℓ′j

〈
∆̃ℓ, ∆̃ℓ′

〉
and

〈
∆̃ℓ, ∆̃ℓ′

〉
= 1
N2

〈
ℓ−1∑
m=1

⟨yℓ,ym⟩ym,

ℓ′−1∑
m′=1

⟨yℓ′ ,ym′⟩ym′

〉
= 1
N2

ℓ−1∑
m=1

ℓ′−1∑
m′=1

⟨yℓ,ym⟩⟨yℓ′ ,ym′⟩⟨ym,ym′⟩,

so that

E[(N(σ(4,∞)
ij )2)p]

= N−3p
i−1∑

ℓ1,ℓ′
1,...,ℓp,ℓ′

p=1

ℓ1−1∑
m1=1

ℓ′
1−1∑

m′
1=1

· · ·
ℓp−1∑
mp=1

ℓ′
p−1∑

m′
p=1

E

[
p∏

a=1
yℓajyℓ′

aj⟨yℓa
,yma

⟩
〈
yℓ′

a
,ym′

a

〉〈
yma

,ym′
a

〉]
.

(3.15)

Notice that everything is now written in terms of the y variables, which are independent Gaussians, so in computing
this expectation via the Wick theorem, the only question is which indices coincide. Write A for an assignment of
values to these indices, formally a function from {1, . . . , 4p} to {1, . . . , i− 1}, interpreted such that, for k = 1, . . . , p,
A(2k − 1) is the value of ℓk, A(2k) is the value of ℓ′

k, A(2p+ 2k − 1) is the value of mk, and A(2p+ 2k) is the value
of m′

k. Not all functions from {1, . . . , 4p} to {1, . . . , i− 1} are valid assignments; a legal assignment is one in which
mk < ℓk and m′

k < ℓ′
k for each k, and legal assignments are the only kind that appear in (3.15). Write A for the set

of all legal assignments. Then define

yA :=
p∏

a=1
yℓajyℓ′

aj⟨yℓa ,yma⟩
〈
yℓ′

a
,ym′

a

〉〈
yma ,ym′

a

〉
,

where the indices have the values assigned to them by A, so that

E[(N(σ(4,∞)
ij )2)p] = N−3p

∑
A∈A

E[yA].

Say that a pattern P = P (A) is the knowledge of which ℓ and m variables coincide in A (formally, for each assignment
A, create a graph GA whose vertices carry the variable names “ℓ1,” “ℓ′

1,” . . . “mp,” “m′
p,” and such that two vertices

are connected in GA if A assigns them the same value; then a pattern P is an equivalence class of assignments A,
where the equivalence relation is A ∼= A′ if GA = GA′). Each assignment A belongs to exactly one pattern, and in
fact E[yA] depends only on the pattern P to which A belongs; thus we abuse notation by writing E[yP ] instead of
E[yA]. If P denotes the set of all legal patterns, and

a(P ) := #{A ∈ A : P (A) = P},
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then we can write equivalently
E[(N(σ(4,∞)

ij )2)p] = N−3p
∑

P ∈P

a(P )E[yP ]. (3.16)

Now our goal is to estimate a(P ) and |E[yP ]|. Notice that yP (technically yA, where A is a member of the equivalence
class represented by P ) is a product of some terms of the form yaj and some terms of the form ⟨ya,yb⟩. In principle
its mean could be exactly computed for each P , by doing all of the integrations, but this is more work than necessary;
on the other end of the spectrum, one could do none of the integrations, which roughly means estimating each ⟨ya,yb⟩
by N (1+δab)/2 and each yaj by one, but this is not good enough. We need to do some of the integrations, and it
turns out that it is sufficient to only do integrations of the following simple type: Whenever a ̸= b ̸= c and X is
independent of yb, we have

Eyb
[⟨ya,yb⟩⟨yb,yc⟩X] = ⟨ya,yc⟩X,
Eyb

[ybj⟨ya,yb⟩X] = yajX.
(3.17)

That is, in the estimation, we pay careful attention only to indices which appear exactly twice.
At the end, we will carry out a procedure we call a straight estimate, which we now explain. Consider expectations

of the form

E

[(
α∏

a=1
va

)(
β∏

b=1
vb

)(
γ∏

c=1
Vc

)]
(3.18)

with each va of the form yraj for some ra, each vb of the form ⟨ysb
,ytb

⟩ for some sb ̸= tb, and each Vc of the form
∥yuc

∥2 for some uc, and with α, β, γ ⩾ 0, including allowing different indices to coincide. A straight estimate, which
amounts to just a power counting, is the following:∣∣∣∣∣E

[(
α∏

a=1
va

)(
β∏

b=1
vb

)(
γ∏

c=1
Vc

)]∣∣∣∣∣
⩽

(
α∏

a=1
E[|va|α+β+γ ]

1
α+β+γ

)(
β∏

b=1
E[|vb|α+β+γ ]

1
α+β+γ

)(
γ∏

c=1
E[|Vc|α+β+γ ]

1
α+β+γ

)
⩽ Cα,β,γ(N1/2)βNγ .

In our case, α, β, and γ will take values in some finite set depending on p, so we can write maxα,β,γ Cα,β,γ as some
Cp. This means it suffices to just count how many norms and how many inner products of distinct y’s we have.

So our procedure is to use (3.17) repeatedly in a certain precise way we describe below, then apply a straight
estimate for the remaining factors. Roughly speaking, we will count how many times we can apply (3.17). Note that
each application gains a factor N−1/2 over the straight estimate. A final power counting shows that we can apply
(3.17) sufficiently many times to obtain our target bound.

We track the integrations using a graphical notation that we now introduce. The basic idea is that we are going
to define one fixed graph, which at the beginning has no colors. For each assignment A, we will obtain a graph GA

by coloring the vertices of this graph in up to k distinct colors; multiple vertices with the same color correspond to
multiple appearances in A of the same index. Then applying the rules (3.17) corresponds to “contracting” an edge,
in the sense of erasing an edge from some v to some v′ and also erasing an edge from v′ to some v′′, and drawing a
new edge from v to v′′.

The basic graph has 4p+ 1 vertices and 5p edges. We name the vertices by index names in the assignment, with
a slight abuse of notation: We have vertices “ℓ1,” “ℓ′

1,” . . ., “ℓp,” “ℓ′
p,” “m1,” “m′

1,” . . . “mp,” “m′
p,” plus one special

vertex called “ej .” Later we will assign values to these variables, but these will appear in the graph as colors. If
ℓ1 = 4, then we have a vertex called ℓ1 with the “color” 4, not a vertex called 4. The edge set consists of the cycles
ej − ℓa −ma −m′

a − ℓ′
a − ej for each a ∈ J1, pK, and we will use the term unit to refer to a vertex subset of the form

{ℓa,ma,m
′
a, ℓ

′
a} for some a ∈ J1, pK. Occasionally we will use the term abusively to denote these four vertices plus

the three edges between them; or to denote these four vertices, the three edges between them, plus the two edges
between them and ej . The p = 3 graph is shown in Figure 1 (although the basic graph “has no colors,” we draw the
ej vertex in white to remember that it is special).

20



ej

ℓ1 ℓ′
1 ℓ2 ℓ′

2 ℓ3 ℓ′
3

m1 m′
1 m2 m′

2 m3 m′
3

one unit

Figure 1: The basic graph when p = 3, before coloring, with one of the three “units” labelled.

The point of this graph is that edges correspond to inner products that are present in yA; for example, yA

contains ⟨yℓ1 ,ym1⟩ and
〈
ym1 ,ym′

1

〉
but not

〈
yℓ1 ,yℓ′

1

〉
. Scalars like yℓ1j are thought of as ⟨yℓ1 , ej⟩ where ej the jth

vector in the standard basis, and this is the point of the vertex ej ; it is special because the naive size of ⟨ya,yb⟩ is
order N (1+δab)/2 but the naive size of ⟨ya, ej⟩ is order one.

To encode assignments A in the graph, we color the vertices other than ej , recording different values by different
colors. Fix once and for all k colors, which we will sometimes number. For each assignment A, we start with
the basic graph whose p = 3 case is shown in Figure 1, then obtain a graph we call GA by coloring the vertices
according to the assignment. For example, if A assigns ℓ1 to 7, ℓ′

1 to 8, m1 to 9, and m′
1 to 9, then the vertex

ℓ1 gets the “color” 7, the vertex ℓ′
1 gets the “color” 8, and so on. For example, when p = 3, the assignment

A = {ℓ1 = 1, ℓ′
1 = 1, ℓ2 = 3, ℓ′

2 = 5, ℓ3 = 8, ℓ′
3 = 9,m1 = 2,m′

1 = 3,m2 = 4,m′
2 = 6,m3 = 7,m′

3 = 7} is drawn in
Figure 2 (choosing, for the sake of the picture, actual colors).

ej

ℓ1 ℓ′
1 ℓ2 ℓ′

2 ℓ3 ℓ′
3

m1 m′
1 m2 m′

2 m3 m′
3

Figure 2: A sample graph GA, for the case p = 3 and the assignment A = {ℓ1 = 1, ℓ′
1 = 1, ℓ2 = 3, ℓ′

2 = 5, ℓ3 = 8, ℓ′
3 =

9,m1 = 2,m′
1 = 3,m2 = 4,m′

2 = 6,m3 = 7,m′
3 = 7}. For example, the vertices ℓ1 and ℓ′

1 are both assigned the
“color” numbered 1, which is drawn in light blue for the figure, and the vertex m1 is assigned the “color” 2, which
is drawn in light cyan for the figure. This graph has exactly one monochromatic edge, namely the edge between m3
and m′

3, which are both colored pink. (This name is slightly abusive, since we do not color the edges, unlike in the
unit graphs we introduce later; “monochromatic” refers just to the colors on the vertices which the edge connects.)

This corresponds to

yA = y2
1jy3jy5jy7jy9j⟨y1,y2⟩⟨y1,y3⟩⟨y2,y3⟩⟨y3,y4⟩⟨y5,y6⟩⟨y4,y6⟩⟨y7,y8⟩⟨y9,y8⟩∥y8∥2. (3.19)

(If A′ also has pattern P , then GA′ will be related to GA just by replacing the colors – for example, the pink
vertices in Figure 2 could instead be colored brown.)
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One of the main enemies in our counting is the presence of monochromatic edges, meaning edges connecting
vertices of the same color, like the edge between m3 and m′

3 in Figure 2, since they correspond to norms like ∥y7∥2

which are large, of order N . It will be very important for us that only p of the edges can be monochromatic, namely
those between ma and m′

a for a = 1, . . . , p. The edges between ℓa and ma, or between ℓ′
a and m′

a, can never be
monochromatic, since in (3.15), we always have ma < ℓa and m′

a < ℓ′
a.

It will be useful to keep track of which colors are shared across units, which we will do using a second auxiliary
graph, that we will call the unit graph and denote by UA. This graph has just p vertices, each vertex representing
a unit. The vertices have no color, but if two units each contain a vertex of a certain color, then we place an edge
of that color between them. Two vertices can be connected by multiple edges (if each has a red vertex and a blue
vertex, say), but only of distinct colors (if two units each have two red vertices, we put one red edge between them,
not two). For example, Figure 3 shows one example graph GA and the corresponding unit graph UA when p = 4.

ej

ℓ1 ℓ′
1 ℓ2 ℓ′

2 ℓ3 ℓ′
3 ℓ4 ℓ′

4

m1 m′
1 m2 m′

2 m3 m′
3 m4 m′

4

GA

UA

Figure 3: A p = 4 sample graph GA and the corresponding unit graph UA. Notice that GA has colored vertices and
colorless edges, while UA has colorless vertices and colored edges. The unit graph has a light blue edge between the
first and second vertices because m′

1 and ℓ2 are both light blue, and so on. Notice also that, although the first and
third units each have two orange vertices, we only put one orange edge, not two, between the first and third vertices
in the unit graph.

The unit graph will eventually tell us how many integrations we will do, i.e., in which units we will apply (3.17),
in the following way: Say that a vertex v in the unit graph is monochromatic if all edges touching it have the same
color, otherwise polychromatic. By convention, we take isolated vertices to be monochromatic. In the unit graph in
Figure 3, the third and fourth vertices are monochromatic.

Suppose the number of polychromatic vertices in UA is q ∈ {0, 1, . . . , p}. For j = 2, 3, 4, let npc
j (respectively,

nmc
j ) be the number of polychromatic (respectively, monochromatic) vertices in UA whose corresponding units in GA

have exactly j distinct colors. For example, in Figure 3, we have q = 2, npc
2 = 0, npc

3 = 1, npc
4 = 1, nmc

2 = 1, nmc
3 = 0,

nmc
4 = 1. Notice that q, the npc

j ’s, and the nmc
j ’s depend only on the pattern, not on the assignment. Notice also

that
npc

2 + npc
3 + npc

4 = q, nmc
2 + nmc

3 + nmc
4 = p− q.

We then make the following claims:

• Claim 1: For each p, there exists Cp with

|E[yP ]| ⩽ Cp(N2)npc
2 +npc

3 (N3/2)npc
4 (N2)nmc

2 (N3/2)nmc
3 Nnmc

4 . (3.20)
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• Claim 2:
a(P ) ⩽ k2npc

2 +3npc
3 +4npc

4 −q+2nmc
2 +3nmc

3 +4nmc
4 . (3.21)

Assume these claims for a moment; then since

2npc
2 + 3npc

3 + 4npc
4 − q + 2nmc

2 + 3nmc
3 + 4nmc

4 ⩾ 2(npc
2 + npc

3 + npc
4 ) − q + 2(nmc

2 + nmc
3 + nmc

4 ) = q + 2(p− q) ⩾ p

and

2npc
2 + 3npc

3 + 4npc
4 − q + 2nmc

2 + 3nmc
3 + 4nmc

4
2 + 2(npc

2 + npc
3 + nmc

2 ) + 3
2(npc

4 + nmc
3 ) + nmc

4

= 3npc
2 + 7

2n
pc
3 + 7

2n
pc
4 − q

2 + 3(nmc
2 + nmc

3 + nmc
4 ) ⩽ 3q + 3(p− q) = 3p,

we have
sup

P ∈P
N−3pa(P )|E[yP ]| ⩽ Cp

(
k√
N

)p

.

We plug this into (3.16); since the number of legal patterns (i.e., the cardinality of the set P) depends on p but not
on N , this completes the proof of Lemma 3.6, modulo the claims above.

We start with Claim 1. Notice that E[yP ] is of the form (3.18), and that applying the integration rules (3.17) to
an equation of the form (3.18) produces another equation of the form (3.18). In fact, we will start with E[yP ], apply
(3.17) some number of times, and eventually take the straight estimate on what remains.

Since the straight estimate is just power counting, we can consider it one unit at a time. The straight estimate
for any unit is at most CpN

2, since there is at most one monochromatic edge (namely, the one between the m’s),
which has size N , and two bichromatic edges, which each have size

√
N . The straight estimate for a unit with four

distinct colors is N3/2, since there cannot be any monochromatic edge. From (3.20), we see that we are taking the
straight estimate for all units corresponding to polychromatic vertices in UA, and for all units with two distinct colors
corresponding to a monochromatic vertex in UA. We treat the other units as follows:

• If the unit has exactly three distinct colors and corresponds to a monochromatic vertex in UA, then there are
two distinct colors that appear in the unit exactly one time (and another that appears twice); since at most
one of these also appears in other units, at least one of these only appears in this unit. Suppose it is the color b;
then E[yP ] either has the form E[⟨ya,yb⟩⟨yb,yc⟩X] where a, b, and c are distinct and X is independent of yb,
or has the form E[ybj⟨ya,yb⟩X] where a and b are distinct and X is independent of yb. Either way, we apply
(3.17) to reduce by one the count of inner products of distinct y’s, while leaving the counts of norm-squares
unchanged. Then the straight estimate on the result will be at most N3/2, which is exactly what we want for
(3.20).

• If the unit has exactly four distinct colors and corresponds to a monochromatic vertex in UA, then there are
two distinct colors that appear in the unit exactly one time, and appear in no other unit. We integrate each of
these as in the case of three distinct colors; each gains a factor of

√
N , so the straight estimate on the result is

N , which is exactly what we want for (3.20).

This finishes the proof of Claim 1 (3.20).
Now we prove Claim 2. Without the factor of −q, (3.21) would be trivial, and in fact usually an overcount: We

just choose two colors (k2) for the units with two colors, three colors (k3) for the units with three colors, and four
colors (k4) for the units with four colors, to obtain

a(P ) ⩽ k2npc
2 +3npc

3 +4npc
4 +2nmc

2 +3nmc
3 +4nmc

4 , (3.22)

which overcounts because it does not impose the requirement in some patterns that colors overlap between units. To
account for this, we introduce a new auxiliary graph, called the path graph PA, which is obtained by removing some
edges from the unit graph by the following procedure:

Fix a color appearing in UA, say blue, and notice that the “blue subgraph” of UA consisting of all blue edges and
incident vertices is the complete graph on its vertex set Vb, by definition. Remove edges as necessary until the blue
subgraph is just a single path spanning Vb. Repeat for every color that appears in UA.
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This unit graph ... ... could lead to this path graph ... ... or to this path graph.

Figure 4: An example of the multiple path graphs that can be obtained from a given unit graph. The middle and
the right graphs have no extraneous edges, so if they were themselves unit graphs, they would be the same as their
corresponding path graphs.

Notice that the path graph can be the same as the unit graph, if no edges needed removing. One example is in
Figure 4.

It is certainly not unique (see Figure 4), but it has the good property, by construction, that its edge set can
be partitioned into paths of different colors: exactly one blue path, exactly one red path, and so on. It is easy to
see that each edge of the path graph saves one color with respect to the count that ignores inter-unit connections,
meaning that if PA has r edges, then

a(P ) ⩽ k2npc
2 +3npc

3 +4npc
4 −r+2nmc

2 +3nmc
3 +4nmc

4 . (3.23)

However, if v is polychromatic in UA, then it is clearly also polychromatic in PA, hence has at least two incident
edges in PA. Thus PA has q vertices with at least two incident edges; hence r ⩾ q, which means that (3.23) implies
(3.21) and finishes the proof of Lemma 3.6.

3.4 Proof of Proposition 3.7.
The goal of this subsection is to prove the following:

Proposition 3.7. If
k = O(N1/2−δ),

then for every fixed D, ε > 0 there exists CD,ε with

P

(
Nmax

j=1

∣∣∣∣∣
k∑

i=1
ai∆̃ijyij

∣∣∣∣∣ > ε

)
⩽ CD,εN

−D.

Proof. We start with Markov’s inequality

P

(
Nmax

j=1

∣∣∣∣∣
k∑

i=1
ai∆̃ijyij

∣∣∣∣∣ > ε

)
⩽ Nε−p Nmax

j=1
E

[∣∣∣∣∣
k∑

i=1
ai∆̃ijyij

∣∣∣∣∣
p]
,

and finish by applying Lemma 3.8 below for some large p.

Lemma 3.8. If p ⩾ 1 is an integer and a is as in (2.9), then

Nmax
j=1

E

[(
k∑

i=1
ai∆̃ijyij

)p]
⩽ Cpa

p

(
k√
N

)p

.
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Proof. This is essentially an easier analogue of the proof of Lemma 3.6, so we skip the details in some steps. We
expand

E

[(
k∑

i=1
ai∆̃ijyij

)p]
= N−p

k∑
i1,...,ip=1

i1−1∑
m1=1

i2−1∑
m2=1

· · ·
ip−1∑

mp=1

(
p∏

b=1
aib

)
E

[
p∏

b=1
yibjymbj⟨yib

,ymb
⟩

]
Inside the expectation, the only question is which indices coincide, so we write A for an assignment of values to these
indices; P for the associated pattern, i.e., the knowledge of which i and m variables coincide in A; A for the set of
all legal assignments; and P for the set of all legal patterns. Write also

aA :=
p∏

b=1
aib
,

yA :=
p∏

b=1
yibjymbj⟨yib

,ymb
⟩.

Then

E

[(
k∑

i=1
ai∆̃ijyij

)p]
= N−p

∑
A∈A

aAE[yA].

As before, E[yA] only depends on the pattern of A, but now aA actually depends on A itself; however, since
maxk

i=1|ai| ⩽ a, we have maxA∈A |aA| ⩽ ap, so that∣∣∣∣∣E
[(

k∑
i=1

ai∆̃ijyij

)p]∣∣∣∣∣ ⩽ apN−p
∑

A∈A

|E[yA]| = apN−p
∑

P ∈P

a(P )|E[yP ]| (3.24)

where a(P ) is the number of assignments with pattern P . We will again use graphs GA, but the basic graph now has
2p+ 1 vertices and 3p edges: Vertices named “i1,” ..., “ip,” “m1,” ..., “mp,” plus one special vertex called “ej ,” with
edges along the cycle ej − ib −mb − ej for each b = 1, . . . , p. A sample colored graph with p = 4 is given in Figure 5,
along with a pictorial definition of unit, consisting of only two vertices this time, and the associated unit graph UA.

ej

i1 i2 i3 i4

m1 m2 m3 m4

one unit

GA

UA

Figure 5: A p = 4 sample graph GA and associated unit graph UA.
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Write q for the number of polychromatic vertices in UA. All units have exactly two distinct colors, so there is no
more need to separate out q = npc

2 +npc
3 +npc

4 ; we distinguish only polychromatic from monochromatic vertices. We
make the following claims:

• Claim 1: For each p, there exists Cp with

|E[yP ]| ⩽ Cp(N1/2)q (3.25)

• Claim 2:
a(P ) ⩽ k2p−q. (3.26)

Assuming these claims, we find

sup
P ∈P

N−pa(P )|E[yP ]| ⩽ Cp

(
k√
N

)p

which, in light of (3.24), finishes the proof.
Now we prove Claim 1. Here the straight estimate for any unit is

√
N , and this is what we take for all the

units corresponding to polychromatic vertices in UA. In the units corresponding to monochromatic vertices in UA,
we integrate: If the vertex corresponding a unit is only incident to edges of a single color in UA, then there is one
color that appears in that unit but in no other unit; we apply (3.17) on this color to get rid of the inner product
for this unit, so that the straight-estimate size of the result is Cp. If the vertex corresponding to a unit is isolated
in UA, then each of its colors appears in that unit but in no other unit; then we apply (3.17) as above, so that the
straight-estimate size of the result is Cp. This proves (3.25).

The proof of Claim 2 here is a near-verbatim copy of the analogous argument in the proof of Lemma 3.6: The
estimate k2p would be trivial and an overcount, so we again take a path graph PA of the unit graph UA, each edge
of which genuinely reduces the entropy in colors, and which has at least q edges.

3.5 Proof of Proposition 2.11

Proof of Proposition 2.11. We give the proof of (2.10) (the version with absolute values), the proof of (2.11) (the
version without absolute values) being similar. Whenever (Aj)N

j=1 and (Bj)N
j=1 are deterministic real numbers we

have ∣∣∣∣ Nmax
j=1

|Aj +Bj | − Nmax
j=1

|Aj |
∣∣∣∣ ⩽ Nmax

j=1
|Bj |.

In particular∣∣∣∣∣ Nmax
j=1

∣∣∣∣∣
k∑

i=1
ai(

√
Nγij)2

∣∣∣∣∣− Nmax
j=1

∣∣∣∣∣
k∑

i=1
aiy

2
ij

∣∣∣∣∣
∣∣∣∣∣ ⩽ Nmax

j=1

∣∣∣∣∣2
k∑

i=1
ai(

√
Nγij − yij)yij

∣∣∣∣∣+ Nmax
j=1

∣∣∣∣∣
k∑

i=1
ai(

√
Nγij − yij)2

∣∣∣∣∣
⩽

Nmax
j=1

∣∣∣∣∣2
k∑

i=1
ai(

√
Nγij − yij)yij

∣∣∣∣∣+ akεN (k)2.

(3.27)

For any δ > 0, (3.11) gives limN→∞ P(akεN (k)2 > δ) = 0, which handles the second term on the right-hand side.
The first term on the right-hand side requires more work. It is naively bounded by 2aεN (k) maxN

j=1
∑k

i=1|yij |, but
this is essentially order kN−1/4 from (3.11), so we need something more sophisticated to take k almost order N1/2

as desired. The idea will be to replace
√
Nγij − yij with ∆̃ij , up to small error; these two quantities have the same

naive size, but the gain is that for ∆̃ij one can apply Proposition 3.7 (we do not know how to prove the analogue of
Proposition 3.7 with ∆̃ij replaced with

√
Nγij − yij).

Since
√
Nγij − yij = −∆ij + (yij − ∆ij)

(√
N

∥wi∥2 − 1
)
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(even when i = 1), we have∣∣∣∣∣
k∑

i=1
ai(

√
Nγij − yij)yij

∣∣∣∣∣ ⩽
∣∣∣∣∣

k∑
i=1

ai∆ijyij

∣∣∣∣∣+ ak
(

kmax
i=1

Li

)(
kmax

i=1
|||yi|||

)[(
kmax

i=1
|||yi|||

)
+
(

kmax
i=1

|||∆i|||
)]

A union bound and standard Gaussian tail estimates give

P
(

Nmax
i=1

|||yi||| ⩾ s
)
⩽

N2

s
√

2π
e−s2/2, (3.28)

which tends to zero if we take, say, s = logN . For any δ > 0, by our choice of k and Proposition 3.4, we thus have

P
(
ak
(

kmax
i=1

Li

)(
Nmax

i=1
|||yi|||

)[(
Nmax

i=1
|||∆i|||

)
+
(

Nmax
i=1

|||yi|||
)]

> δ
)

⩽ P
(

kmax
i=1

Li >
logN√
N

)
+ P

(
Nmax

i=1
|||yi||| ⩾ logN

)
+ P

(
kmax

i=1
|||∆i||| >

logN
N1/4

)
→ 0.

Furthermore, we have ∣∣∣∣∣
k∑

i=1
ai∆ijyij

∣∣∣∣∣ ⩽
∣∣∣∣∣

k∑
i=1

ai∆̃ijyij

∣∣∣∣∣+
∣∣∣∣∣

k∑
i=1

ai(∆ij − ∆̃ij)yij

∣∣∣∣∣.
If

EN :=
{

kmax
i=1

Nmax
j=1

∣∣∣∆ij − ∆̃ij

∣∣∣ ⩽ 1
N1/2

}
,

then

P

(
Nmax

j=1

∣∣∣∣∣
k∑

i=1
ai(∆ij − ∆̃ij)yij

∣∣∣∣∣ ⩾ δ

)
⩽ P(akN−1/2 kmax

i=1
|||yi||| > δ) + P(Ec

N ).

The first term on the right-hand side tends to zero for any δ > 0 by (3.28), and the second term tends to zero by
Proposition 3.1.

Finally, an application of Proposition 3.7 finishes the proof.
Remark 3.9. As mentioned above, adapting arguments of Jiang [Jia05] gives an easier proof of Theorem 2.1 in
the restricted case when kN = O(N1/3−δ), which we now sketch, ignoring things like log factors and “with high
probability.”

It suffices to prove the analogue of Proposition 2.11 with kN = O(N1/3−δ). As explained just following (3.27),
the difficult task is to show

Nmax
j=1

∣∣∣∣∣2
k∑

i=1
ai(

√
Nγij − yij)yij

∣∣∣∣∣ → 0 in probability.

The easy route is to move the absolute value inside, ignoring cancellations. This turns out to work for k = O(N1/3−δ),
as we are currently explaining, but to get up to k = O(N1/2−δ) one needs to take the cancellations into account; in
fact, this is the main novelty of Section 3. Taking the absolute values inside, one bounds this by

εN (k) Nmax
i=1

k∑
j=1

|yij | ≲ kεN (k).

We claim that Jiang’s work essentially shows

εN (k) ≲
√
k

N
. (3.29)

Assuming this for a moment, we find ourselves wanting k
√

k
N to tend to zero, which leads us to a threshold k ≪ N1/3.

Using our (3.13), which is directly from [Jia05], the estimate (3.29) is easy to check for k ≪ N1/2. The choices
r = log N√

N
and s = logN take care of the r and s terms; if t =

√
k
N then (1 + t2

3(k+t
√

N) )−N/2 is order one, and by
adding some log factors one completes the proof.

27



4 Gaussian Computations: Fixed Rank

The punchline of Section 3 is that, in order to compute certain extremal statistics related to Haar orthogonal entries,
it suffices to compute the same extremal statistics with the Haar entries replaced by rescaled independent Gaussians.
These Gaussian calculations will be done slightly differently depending on the signature structure of A, and by
orthogonal invariance we may assume that A is already diagonal. We thus start our proof of Theorem 2.6 by making
Gaussian computations in the following three lemmas, which handle, respectively, the case where all eigenvalues of
A are positive; the case where some are positive and some are negative; and the case where all are negative.

Lemma 4.1. Fix k ∈ N and real numbers a1, . . . , ak, which are all positive, and write AN = diag(a1, . . . , ak, 0, . . . , 0).
With the same constants defined in (2.2), (2.3), and (2.4), and with Λ a Gumbel-distributed random variable, we
have

1
2a

Nmax
i=1

⟨yi, AN yi⟩ − logN +
(

1 − m

2

)
log logN + cm(a1, . . . , ak) N→∞→ Λ in distribution.

Proof. Although the cases of different multiplicity m (the number of ai’s equaling the largest value, a) could be
treated simultaneously, for pedagogical reasons we treat first the case m = k, then the case m = 1, then the case of
intermediate m.

The case m = k, i.e. a1 = · · · = ak = a, is easy; the result is then equivalent to the maximal fluctuations of χ2
k

variables, i.e., to the statement 1
2 maxN

i=1{Xi} − logN + (1 −k/2) log logN + log Γ(k/2) → Λ where the Xi’s are i.i.d.
χ2

k’s, and this is a very classical result (see, e.g., [EKM97, Section 3.4]).
We now assume m = 1, i.e., there is a unique largest ai, which we assume without loss of generality to be

the last one ak. Momentarily writing yj = yj1, we first need large-t asymptotics for P(
∑k

i=1 aiy
2
i ⩾ t). Write

Et = {(z1, . . . , zk) ∈ Rk :
∑

j ajz
2
j ⩽ t} for the relevant ellipsoid and its interior; then this probability is of course

the integral of Gaussian measure over Ec
t , which we estimate by working k-dimensional hyperspherical coordinates

(r, φ1, . . . , φk−1), with φj = arccot zj√
z2

k
+z2

k−1+···+z2
j+1

for j = 1, . . . , k − 2 and φk−1 = 2 arccot zk−1+
√

z2
k

+z2
k−1

zk
. In

these coordinates, we have

P

(
k∑

i=1
aiy

2
i ⩾ t

)
= 1

(2π)k/2

∫
Sφ

(∫ ∞

rt(φ⃗)
e− r2

2 rk−1 dr
)

sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗

= t
k
2

(2π)k/2

∫
Sφ

(∫ ∞

1
e−t u2

2f(φ⃗)uk−1 du
)
f(φ⃗)− k

2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗

= 2t k
2

(2π)k/2

∫
[0,π]k−1

(∫ ∞

1
e−t u2

2f(φ⃗)uk−1 du
)
f(φ⃗)− k

2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗

(4.1)

where dφ⃗ =
∏k−1

j=1 dφj , where Sφ = {(φ1, . . . , φk−1) : 0 ⩽ φj ⩽ π for j = 1, . . . , k − 2, and 0 ⩽ φk−1 ⩽ 2π}, and
where

rt(φ⃗) = rt(φ1, . . . , φk−1) =
√

t

f(φ⃗) ,

f(φ⃗) = a1 cos2(φ1) + a2 sin2(φ1) cos2(φ2) + a3 sin2(φ1) sin2(φ2) cos2(φ3)
+ · · · + ak−1 sin2(φ1) · · · sin2(φk−2) cos2(φk−1) + ak sin2(φ1) · · · sin2(φk−2) sin2(φk−1).

(The last equality in (4.1) holds since f(φ⃗) is π-periodic in φk−1, which does not appear anywhere else, i.e.,∫
[0,π]k−2×[0,π] =

∫
[0,π]k−2×[π,2π].)

The right-hand side of (4.1) is now amenable to the Laplace method. The integral in u is slightly unusual, since
the exponential is maximized at the endpoint u = 1; this variant on the Laplace method gives, for any φ⃗ with
f(φ⃗) ̸= 0 (i.e., Lebesgue-a.e. φ⃗), ∫ ∞

1
e−t u2

2f(φ⃗)uk−1 du ∼ f(φ⃗)t−1e− t
2f(φ⃗) ,
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which leaves us with an integral of the form ∫
[0,π]k−1

etg(φ⃗)h(φ⃗) dφ⃗,

with g(φ⃗) = − 1
2f(φ⃗) and h(φ⃗) = f(φ⃗)1− k

2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2). Because of how we ordered the ai’s,
the function g takes a unique maximum on [0, π]k−1 at φ⃗∗ = (π/2, . . . , π/2), where it takes the value − 1

2ak
, and

where it has Hessian ∇2g(φ⃗)
∣∣
φ⃗=φ⃗∗ = 1

a2
k

diag(a1 − ak, a2 − ak, . . . , ak−1 − ak). Since h(φ⃗∗) = f(φ⃗∗)1− k
2 = a

1− k
2

k , we
obtain

P

(
k∑

i=1
aiy

2
i ⩾ t

)
∼ 2t k

2

(2π)k/2
1
t

(
2π
t

) k−1
2

a
1− k

2
k

1√(
1

a2
k

)k−1∏k−1
j=1 (ak − aj)

e
− t

2ak

=
√

2
π

a
k/2
k√∏k−1

j=1 (ak − aj)
t−

1
2 e

− t
2ak .

Now we will use the following classical result in extreme value theory (see, e.g., [EKM97, Proposition 3.3.28]):
Suppose that F and G are distribution functions with infinite right endpoint, i.e. max(F (x), G(x)) < 1 for every x,
such that for some sequences (cN )∞

N=1, (dN )∞
N=1 with cN > 0 we have

lim
N→∞

FN (cNx+ dN ) = Λ(x). (4.2)

Then
lim

N→∞
GN (cNx+ dN ) = Λ(x+ b) (4.3)

if and only if
lim

x→+∞

1 − F (x)
1 −G(x) = eb.

We apply this with G the distribution function of
∑k

i=1 aiy
2
i and F the distribution function of ak times a χ2

1 variable,
i.e.,

F (x) =
∫ √

x
ak

−
√

x
ak

e− y2
2

√
2π

dy which has 1 − F (x) ∼
√

2ak

π
x−1/2e

− x
2ak .

Then

lim
x→+∞

1 − F (x)
1 −G(x) =

√√√√k−1∏
j=1

(
1 − aj

ak

)
and since (4.2) holds with cN = 2ak and dN = 2ak(logN − 1

2 log logN − 1
2 log π) (see, e.g., [EKM97, Section 3.4]),

we obtain

P

 Nmax
j=1

{
k∑

i=1
aiy

2
ij

}
⩽ cN

x− 1
2 log

k−1∏
j=1

(
1 − aj

ak

)+ dN

 → Λ(x)

which is what we want.
Finally we handle the case of 1 < m < k, and without loss of generality we assume the ai’s are ordered as

a1 ⩽ · · · ⩽ ak−m < ak−m+1 = · · · = ak = a. Notice that in this case

f(φ⃗) = a1 cos2(φ1) + a2 sin2(φ1) cos2(φ2) + · · · + ak−m sin2(φ1) · · · cos2(φk−m) + a sin2(φ1) sin2(φ2) · · · sin2(φk−m)

i.e., f(φ⃗) actually does not depend on φk−m+1, . . . , φk−1. Thus we can integrate these out first in (4.1), and we pick
up a factor∫

[0,π]m−1
sinm−2(φk−m+1) · · · sin(φk−2)

k−1∏
j=k−m+1

dφj =
m−2∏
j=0

[∫ π

0
sinj(x) dx

]
=

m−2∏
j=0

√
πΓ
( 1+j

2
)

Γ
(
1 + j

2
) = π

m−1
2

Γ
( 1

2
)

Γ
(

m
2
)
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so that, writing φ = (φ1, . . . , φk−m) and dφ =
∏k−m

j=1 dφj , and then using the Laplace method on the remaining
k −m variables just as above, we find

P

(
k∑

i=1
aiy

2
i ⩾ t

)
= 2t k

2

(2π)k/2
π

m
2

Γ
(

m
2
) ∫

[0,π]k−m

(∫ ∞

1
e

−t u2
2f(φ)uk−1 du

)
f(φ)− k

2 sink−2(φ1) sink−3(φ2) · · · sinm−1(φk−m) dφ

∼ 2t k
2

t(2π)k/2
π

m
2

Γ
(

m
2
)(2π

t

) k−m
2

a1− k
2

1√( 1
a2

)k−m∏k−m
j=1 (a− aj)

e− t
2a = 21− m

2

Γ
(

m
2
) a1+ k

2 −m√∏k−m
j=1 (a− aj)

t
m
2 −1e− t

2a .

We use the same tail-equivalence result from extreme value theory, still with G the distribution function of
∑k

i=1 aiy
2
i ,

but now with F the distribution function of a times a χ2
m variable, i.e.,

F (x) =
γ
(

m
2 ,

x
2a

)
Γ
(

m
2
) which has 1 − F (x) ∼ (2a)1− m

2

Γ
(

m
2
) t

m
2 −1e− t

2a

which is known to satisfy (4.2) with cN = 2a and dN = 2a(logN + ( m
2 − 1) log logN − log Γ( m

2 )) (see, e.g., [EKM97,
Section 3.4]). We obtain

P

 Nmax
j=1

{
k∑

i=1
aiy

2
ij

}
⩽ cN

x− 1
2 log

k−m∏
j=1

(
1 − aj

a

)+ dN

 → Λ(x),

which is what we wanted.

Lemma 4.2. Fix k ∈ N and nonzero real numbers a1, . . . , ak, at least one of which is positive, and write AN =
diag(a1, . . . , ak, 0, . . . , 0). With the same constants defined in (2.2), (2.3), and (2.4), and with Λ a Gumbel-distributed
random variable, we have

1
2a

Nmax
i=1

⟨yi, AN yi⟩ − logN +
(

1 − m

2

)
log logN + cm(a1, . . . , ak) N→∞→ Λ in distribution

and

1
2a

Nmax
i=1

|⟨yi, AN yi⟩| − logN +
(

1 − max(m+,m−)
2

)
log logN + c∗

m+,m−
(a1, . . . , ak) N→∞→ Λ in distribution.

Proof. As before, we split the proof into cases for pedagogical reasons. In the first half we treat the case without
absolute values (when we assume without loss of generality the ordering a1 ⩽ · · · ⩽ ak), treating first the case m = 1
and then the case m > 1. In the second half we treat the case with absolute values, when we assume without loss of
generality (up to flipping the signs of all the ai’s) the ordering

ak = ak−1 = · · · = ak−m++1︸ ︷︷ ︸
m+ many

= a, ak−m+ = · · · = ak−m+1︸ ︷︷ ︸
m− many

= −a, a > max(0,max(|a1|, . . . , |ak−m|)).

Here we treat first the case when m∗ := m+ +m− = 1, then the case m∗ > 1.
The case without absolute values when m = 1 is very similar to the case when all ai’s are positive; the difference

here is that the shape {(z1, . . . , zk) ∈ Rk :
∑

j ajz
2
j ⩽ t} is no longer an ellipsoid, but rather a type of conic section.

Its complement can be parametrized in our k-dimensional hyperspherical coordinates as{
(r, φ1, . . . , φk−1) : f(φ⃗) > 0 and r >

√
t/f(φ⃗)

}
.

(This is also true in the case when all ai’s are positive, but there the condition {f(φ⃗) > 0} is satisfied for every φ⃗,
which is no longer true when some ai’s are negative.) Then

P

(
k∑

i=1
aiy

2
i ⩾ t

)
= 2t k

2

(2π)k/2

∫
Gφ⃗

(∫ ∞

1
e−t u2

2f(φ⃗)uk−1 du
)
f(φ⃗)− k

2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗
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using the crucial set Gφ⃗ = {φ1, . . . , φk−1 ∈ [0, π]k−1 : f(φ⃗) > 0}. But, ordering a1 ⩽ . . . ⩽ ak without loss
of generality as above, notice that this set is open and contains φ⃗∗ = (π/2, . . . , π/2); hence the Laplace method,
expanding in a small neighborhood about this point, works in the same way as before.

Next we consider the case without absolute values but with m > 1. We still have the crucial property that f(φ⃗)
does not depend on φk−m+1, . . . , φk−1, so we can write f(φ⃗) = f(φ), naturally define Gφ, and then note that Gφ⃗ has
the product structure Gφ⃗ = Gφ × [0, π]m−1; hence we can integrate out φk−m+1, . . . , φk−1 cleanly and then proceed
in the same way as before.

Next we consider the case with absolute values and m∗ = 1. Up to flipping the sign of every ai, we can assume
that m+ = 1 and m− = 0. Here the relevant sets are{

(z1, . . . , zk) ∈ Rk :
∣∣∣∣∣

k∑
i=1

aiz
2
i

∣∣∣∣∣ > t

}
= {(r, φ1, . . . , φk−1) : |f(φ⃗)| > 0 and r >

√
t/|f(φ⃗)|}.

so that

P

(∣∣∣∣∣
k∑

i=1
aiy

2
i

∣∣∣∣∣ ⩾ t

)
= 2t k

2

(2π)k/2

∫
|Gφ⃗|

(∫ ∞

1
e−t u2

2|f(φ⃗)|uk−1 du
)

|f(φ⃗)|−
k
2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗

where |Gφ⃗| = {φ1, . . . , φk−1 ∈ [0, π]k−1 : |f(φ⃗)| > 0}, which still contains the crucial point φ⃗∗ = (π/2, . . . , π/2) at
which the exponential argument −1

2|f(φ⃗)| is uniquely maximized (notice this is still the maximum since we assumed ak

also had the largest absolute value). Furthermore, the function f is positive in a neighborhood of φ⃗∗; hence for the
purpose of the Laplace method we can drop the absolute values, and obtain the same asymptotics as before.

Finally we consider the case of absolute values and m∗ > 1, i.e. when there are multiple largest |ai|’s, with
maximal value labelled a∗, of which there are m+ many positive ones and m− many negative ones. We handle this
by writing

P

(∣∣∣∣∣
k∑

i=1
aiy

2
i

∣∣∣∣∣ ⩾ t

)
= P

(
k∑

i=1
aiy

2
i ⩾ t

)
+ P

(
k∑

i=1
(−ai)y2

i ⩾ t

)
.

Earlier arguments show that the terms on the right-hand side behave asymptotically, respectively, like c+t
m+

2 −1e− t
2a∗

and c−t
m−

2 −1e− t
2a∗ for some constants c+ and c−. Thus the asymptotics of the sum are dominated by term corre-

sponding to max(m+,m−). When m+ = m−, the terms have equal size and the constants add.

Lemma 4.3. Suppose a1, . . . , ak < 0 are fixed, write AN = diag(a1, . . . , ak, 0, . . . , 0), and write Ψk/2 for a k
2 -

Weilbull-distributed random variable (i.e. with distribution function Ψk/2(x) = min(exp(−(−x)k/2), 1)). Then with

γk = 1
2

(
2

kΓ(k/2)

) 2
k

we have
γkN

2/k(∏k
j=1|aj |

) 1
k

Nmax
i=1

⟨yi, AN yi⟩
N→∞→ Ψk/2 in distribution.

Proof. In the case a1 = · · · = ak = a, we note that whenever x < 0 we have

P

(
γkN

2/k

(−a)
Nmax

j=1

{
a

k∑
i=1

y2
ij

}
⩽ x

)
= P

(
k∑

i=1
y2

i1 ⩾ − x

γkN2/k

)N

→ exp(−(−x)k/2).

When the ai’s are not all the same, we will use the classic result (see, e.g., [EKM97, Proposition 3.3.14]) that the
domain of attraction of Ψk/2 is closed under tail-equivalence; precisely, if F and G are distributions with right
endpoints at zero and there exists a positive sequence (cN )∞

N=1 with

lim
N→∞

FN (cNx) = Ψk/2(x), x < 0,
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then
lim

N→∞
GN
(
b2/kcNx

)
= Ψk/2(x), x < 0, (4.4)

if and only if
lim
x↑0

1 − F (x)
1 −G(x) = b. (4.5)

We use this with F (x) = exp
(

−(−x)
k
2
)

and cN = 1
N2/k , which has limx↑0

1−F (x)
(−x)k/2 = 1, and with G the distribution

function of
∑k

i=1 aiZ
2
i , where the Zi’s are independent Gaussians. That is, for x < 0 we have

1 −G(x) = 2(−x) k
2

(2π)k/2

∫
[0,π]k−1

(∫ 1

0
ex u2

2(−f(φ⃗))uk−1 du
)

(−f(φ⃗))− k
2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗

with the notation f(φ⃗) from before, and then dominated convergence gives (4.5) with

b =
(

2
(2π)k/2

∫
[0,π]k−1

(∫ 1

0
uk−1 du

)
(−f(φ⃗))− k

2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗
)−1

=
(

2
k(2π)k/2

∫
[0,π]k−1

(−f(φ⃗))− k
2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗

)−1

= γ
−k/2
k

√√√√ k∏
j=1

|aj |,

where the last equality is Lemma 4.4. Then (4.4) gives the result.

Lemma 4.4. Fix k ∈ N and a1, . . . , ak > 0. If we let

f(φ⃗) = a1 cos2(φ1) + a2 sin2(φ1) cos2(φ2) + a3 sin2(φ1) sin2(φ2) cos2(φ3)
+ · · · + ak−1 sin2(φ1) · · · sin2(φk−2) cos2(φk−1) + ak sin2(φ1) · · · sin2(φk−2) sin2(φk−1),

then ∫
[0,π]k−1

f(φ⃗)− k
2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗ = πk/2

Γ(k/2)
1√∏k
j=1 aj

.

Proof. Consider the axis-aligned ellipsoid E = {(z1, . . . , zk) ∈ Rk : a1z
2
1 + · · · + akz

2
k ⩽ 1}. On the one hand, we

know that its volume is 1√∏k

j=1
aj

times the volume of the n-dimensional unit sphere, i.e.,

Vol(E) = πk/2

Γ(k/2 + 1)
1√∏k
j=1 aj

= 2
k

πk/2

Γ(k/2)
1√∏k
j=1 aj

.

On the other hand, we can find the volume of E in hyperspherical coordinates (r, φ1, . . . , φn−1); it is described by
{(r, φ⃗) : 0 ⩽ r ⩽ rmax(φ⃗)} for some function rmax(φ⃗) which we now compute. Since one changes variables back as
z1 = r cos(φ1), z2 = r sin(φ1) cos(φ2), . . . , zk = r sin(φ1) · · · sin(φk), we have

1 = a1rmax(φ⃗)2 cos2(φ1) + a2rmax(φ⃗)2 sin2(φ1) cos2(φ2) + · · · + akrmax(φ⃗)2 sin2(φ1) · · · sin2(φk) = rmax(φ⃗)2f(φ⃗),

so that

Vol(E) =
∫

Sφ

∫ rmax(φ⃗)

0
rk−1 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dr dφ⃗

= 2
k

∫
[0,π]k−1

f(φ⃗)− k
2 sink−2(φ1) sink−3(φ2) · · · sin(φk−2) dφ⃗

and now we match terms.

Proof of Theorem 2.6. This follows immediately from Theorem 2.1, Lemmas 4.1 and 4.2 (which give (2.5) and (2.6)),
and Lemma 4.3 (which gives (2.7)).
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5 Gaussian Computations: Diverging Rank

The goal of this section is to make Gaussian computations in a representative case of diverging rank.

Lemma 5.1. Fix 0 < α < 1, and let (kN )∞
N=1 be any integer sequence such that, for some ε > 0,

|kN −Nα| ⩽ N
α
2 −ε. (5.1)

If we define
AN = diag(1, . . . , 1, 0, . . . , 0), rank(AN ) = kN ,

then (recalling that (yi)N
i=1 are i.i.d. standard Gaussian vectors)(√

logN
Nα/2

)
Nmax

i=1
⟨yi, AN yi⟩ −Nα/2

√
logN − 2 logN + log logN

2 + log(4π)
2

N→∞→ Λ in distribution. (5.2)

Proof. We will need the lower and upper incomplete gamma functions, respectively γ(·, ·) and Γ(·, ·). They can be
defined for complex arguments, but for us it suffices to consider nonnegative real arguments and the definitions

γ(s, x) =
∫ x

0
ts−1e−t dt, Γ(s, x) =

∫ ∞

x

ts−1e−t dt.

With the positive sequences (pN )∞
N=1, (qN )∞

N=1 defined by

pN = pN,α := Nα/2
√

logN
, (5.3)

qN = qN,α := Nα + 2Nα/2
(√

logN − log(4π logN)
4
√

logN

)
, (5.4)

notice that (5.2) is equivalent to

maxN
i=1⟨yi, AN yi⟩ − qN

pN

N→∞→ Λ in distribution,

i.e., to showing that for every real x we have

exp(−e−x) = lim
N→∞

P
(

Nmax
i=1

⟨yi, AN yi⟩ ⩽ pNx+ qN

)
= lim

N→∞
P(⟨y1, AN y1⟩ ⩽ pNx+ qN )N

= lim
N→∞

(
1 −

Γ
(

kN

2 ,
pN x+qN

2
)

Γ
(

kN

2
) )N

,

where the last equality is an elementary calculation. Writing

n = nN := kN

2 ,

aN (x) = aN,α(x) :=
Γ
(
n, pN x+qN

2
)

Γ(n)

and Taylor-expanding log(1 − x) ≈ −x, we find that it suffices to show

lim
N→∞

NaN (x) = e−x (5.5)

for arbitrary x, an analysis exercise that takes up the remainder of the proof.
We will use the following estimate, due to Wimp, published in [BG07, Proposition 3]: Uniformly for t ⩾ 1, with

en(x) :=
n∑

m=0

xn

n! ,

µ(t) :=
√
t− log(t) − 1,
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we have
en(nt)
ent

= 1√
2
µ(t)t
t− 1 erfc(

√
nµ(t))

(
1 + On→+∞

(
1√
n

))
. (5.6)

(Notice that limt↓1
µ(t)
t−1 = 1√

2 , so there is no singularity at t = 1.)
On the other hand, one can show that

ten−1(nt)
en(nt) = 1 + On→+∞

(
1√
n

)
, uniformly in t ⩾ 1.

Indeed, the left-hand side is, for each n, a non-decreasing function of t ⩾ 1, bounded above by one, whose value at
t = 1 is 1 + O(1/

√
n). Since Γ(n,nt)

Γ(n) = e−nten−1(nt), these two estimates give

Γ(n, nt)
Γ(n) = 1√

2
µ(t)
t− 1 erfc(

√
nµ(t))

(
1 + On→+∞

(
1√
n

))
, uniformly in t ⩾ 1. (5.7)

We use this with

t = tn(x) = tN (x) := pNx+ qN

kN
=
(
Nα

kN

)(
1 + 2N−α/2

(√
logN − log(4πe−2x logN)

4
√

logN

))
.

As above, we find limn→∞
µ(tn(x))
tn(x)−1 = 1√

2 . Thus to show (5.5) it suffices to show

lim
N→∞

N erfc(
√
n
(

tn(x)−1√
2

)
)

2 = e−x, (5.8)

lim
N→∞

erfc(
√
nµ(tn(x)))

erfc(
√
n
(

tn(x)−1√
2

)
)

= 1. (5.9)

To show these, we first observe the following elementary-calculus consequence of (5.1). For some c, C > 0, and for
N large enough depending on x, we have

cN−α/2
√

logN ⩽ tn(x) − 1 ⩽ CN−α/2
√

logN. (5.10)

This implies both limN→∞
√
n(tn(x) − 1) = +∞, thus by Taylor expansion limN→∞

√
nµ(tn(x)) = +∞, as well as

limN→∞ n(tn(x) − 1)3 = 0. Applying these with the asymptotics limx→+∞ erfc(x) exp(x2)x
√
π = 1 and the Taylor

expansion

lim
s↓1

(s−1)2

2 − µ(s)2

(s−1)3

3

= 1,

we can check (5.9) as

lim
N→∞

erfc(
√
nµ(tn(x)))

erfc(
√
n
(

tn(x)−1√
2

)
)

= lim
N→∞

exp
[
n

(
(tn(x) − 1)2

2 − µ(tn(x))2
)] tn(x)−1√

2
µ(tn(x)) = 1.

To check (5.8), we will need the quantities (recall that kN = 2n)

rn(x) :=

√
Nα

2
2

(
2N−α/2

(√
logN − log(4πe−2x logN)

4
√

logN

))
=
√

logN − log(4πe−2x logN)
4
√

logN
,

sn(x) :=
√
n

2 (tn(x) − 1) =
√
n

2

(
Nα

kN
(1 + 2N−α/2rn(x)) − 1

)
= rn(x) + O(N−ε),

where the last estimate follows from (5.1). These therefore satisfy

lim
N→∞

(rn(x)2 − sn(x)2) = 0,
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so we can verify (5.8) as

lim
N→∞

N

2 erfc
[√

n

(
tn(x) − 1√

2

)]
= lim

N→∞

N

2
√
π

exp(−sn(x)2)
sn(x) = lim

N→∞

N

2
√
π

exp(−rn(x)2)
rn(x) = e−x,

where the last computation is elementary. This finishes the proof of (5.5) and thus Lemma 5.1.

Proof of Theorem 2.9. This follows immediately from Theorem 2.1 and Lemma 5.1, which give (2.8).
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