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1 Introduction: Scientific Context of the Conducted Research

Optical frequency combs are perfectly periodic waveforms of light whose optical spectra consists
of a large number of modes with an equal frequency spacing between them – akin to the teeth of
an extremely precise comb. Precision been has ever since at the heart of optical frequency combs
and it is the main driving force behind their development [1]. Presently, optical frequency combs
remain as one of the keystones of optics and have an enormous influence on modern society
with uses ranging from fundamental science and astrophysics to precise ranging, communication,
frequency metrology, and spectroscopy [2–4]. The latter is the main motivator behind this project.

Spectroscopic applications often utilize coherent light sources especially in the mid-infrared
spectral region, as many molecules have their roto-vibrational transitions exactly there and no other
spectral region provides the same sensitivity and selectivity for probing various chemical traces.
With this in mind, it is clear why the generation of broadband optical combs in the mid-infrared rep-
resents a highly-coveted goal. Traditional state-of-the-art solutions for the mid-infrared photonics
often rely on expensive and bulky components with dimensions on the scale of an optical table. An
alternative that is gaining progressively more attention is the use of semiconductor laser platforms
which allow measurements of molecular fingerprints within a millisecond acquisition time freed of
the need for any movable parts, thus enabling a higher level of miniaturization and integration.

Quantum cascade laser (QCL) [5] represents the dominant semiconductor laser source in the
mid-infrared region with output powers that exceed the Watt level at room temperature conditions.
In contrast to most semiconductor lasers, which utilize interband optical transitions and the recom-
bination of electrons and holes to emit photons, QCLs are intersubband unipolar devices. The
carrier population inversion that provides the necessary optical gain is achieved within the conduc-
tion band and the photon emission occurs via cascading of electrons through periodic potentials in
the active region of the laser that comprise large number of different thin semiconductor layers [6].
The intersubband nature of the optical gain bestows QCLs with some unique properties. First of
all, the transition wavelegth can be tailored almost at will purely through a change of the confin-
ing potential by modifying the semiconductor layers thicknesses and material composition. This
is a highly desirable characteristic compared to the case of interband lasers, where the transition
wavelength is restricted to the value of the energy bandgap of the utilized semiconductor material.
Secondly, intersubband carrier transitions are dominated by intersubband scattering, which hap-
pens on the subpicosend time scale. This yields ultrafast gain recovery times of QCLs, compared
to the gain recovery times of other semiconductor lasers that lie in the nanosecond range. The
ultrafast gain dynamics is responsible for a giant resonant third-order optical nonlinearity [7] that
these lasers posses, which can exceed the bulk crystalline nonlinearity of the constituent materials
by several orders of magnitude – thus putting QCLs upfront as an ideal test bed for the investigation
of nonlinear optics phenomena.

Yet another highly attractive characteristic of QCLs is that they are able to form free-running op-
tical frequency combs without the need of any additional optical components [8], which enabled the
first realization of a compact and electrically-driven frequency-comb platform in the mid-infrared.
This unique and mesmerising ability to spontaneously emit stable frequency comb waveforms is
greatly owed exactly to the giant resonant third-order nonlinearity of QCLs [7, 9]. In the following
few years, research on self-starting frequency combs in semiconductor lasers and especially in
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QCLs has boomed, with reports on frequency-modulated combs in Fabry-Perot laser cavities [9–
11], actively mode-locked combs that emit short pulses [12], and also self-starting combs in a ring
resonator [13]. With the potential applications serving as a powerful driving force, the research
about novel ways how to form broadband mid-infrared combs in QCLs remains intense.

Figure 1: Possible semiconductor laser geometries. a) In a Fabry-Perot resonator, the electrical field prop-
agates in both directions due to reflections at the cavity facets, as is illustrated by the counter-propagating
field components E±. b) In an ideal ring laser resonator, the field is unidirectional and is propagating either
in a clockwise or counterclockwise direction.

1.1 Choice of the laser geometry

Out of the two possible laser resonator geometries, the Fabry-Perot and the ring resonator, we
have identified the latter as being highly attractive for investigating novel frequency comb physics
early within the execution of the workplan of this project. The motivation behind this is manifold.
First of all, the underlying phys

E(z, t) =
1

2
[E+(z, t)e

i(ω0t−k0z) + E−(z, t)e
i(ω0t+k0z) + c.c.],

nul(z, t) = σ+(t)e
i(ω0t−k0z) + σ−(t)e

i(ω0t+k0z),

nl(z, t) = nl0(t) + nl2(t)e
−2ik0z + n∗

l2(t)e
2ik0z,

nu(z, t) = nu0(t) + nu2(t)e
−2ik0z + n∗

u2(t)e
2ik0z.

(1)

ical mechanism behind the multimode emission – a prerequisite of frequency comb operation –
is fundamentally different in Fabry-Perot and ring lasers. In the former, the multimode optical
spectrum stems from the fact that the laser field inside the cavity propagates in both directions due
to the reflection at the cavity facets, as is seen in Fig. 1a). Due to this bidirectionally, a standing
wave pattern of the intensity is formed inside the laser cavity, where the intensity is weaker at the
nodes and stronger at the anti-nodes. Consequently, due to gain saturation, the carrier population
inversion is almost bleached out by the higher number of photons at the anti-nodes, and conversely,
almost left untouched at the position of the nodes. A different laser cavity longitudinal mode might
produce a standing wave pattern which has a better spatial overlap with the untapped excess of
optical gain at the nodes, which means that it would get amplified and start to lase as well. This
phenomenon is known as spatial hole burning and is the main reason behind multimode laser
emission in Fabry-Perot resonators [9].
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In a ring laser cavity, where there are no intracavity points of reflection that break the rotational
symmetry, the laser field is unidirectional and it propagates in either clockwise or counterclockwise
direction [14], as is seen in Fig. 1b). This means that the spatial hole burning is nonexistent in a
ring resonator and the multimode laser emission, which is experimentally observed [13, 15], needs
to be accounted for in a different way. This still largely represents uncharted territory and it is the
main reason why we have opted to investigate ring QCLs at the beginning of this project. As will be
seen in description of the theoretical framework, the nuanced interplay of dispersive and nonlinear
effects in a ring laser enables not only a variety of intensity waveforms and multimode emission,
but also stable frequency comb emission.

The spatial hole burning, caused by a strong single mode that propagates inside the Fabry-
Perot laser cavity, provides a Lorentzian-shaped optical gain for the other other longitudinal modes,
thus allowing them to overcome the lasing threshold [16]. Its presence in Fabry-Perot cavities
overpowers any kind of additional parametric gain that originates from the interplay between the
dispersion and nonlinearity, thus preventing us to explore the rich nonlinear dynamics that can lead
to novel frequency comb physics. In order to mitigate this effect, our resonator of choice remained
to be the ring resonator for the entirety of the project.

2 Task 1 – Theoretical model and numerical simulations

Within the Task 1 of this project, we have successfully developed a sophisticated theoretical model
of a semiconductor laser and applied it to a ring QCL. Within this section, we begin with the stan-
dard theoretical considerations of the current state-of-art description, and then significantly expand
it in order to include several physical phenomenons that are crucial for frequency comb dynamics.
Some of the considerations have been published as sections of my doctoral thesis after the end of
this research project [17].

2.1 Maxwell-Bloch system of equations

The interaction between the electromagnetic radiation and matter is conveniently described with
the optical complex susceptibility, which is defined through a density-matrix formalism χ [18]. the
resulting set of equations, which are often referred to as the Maxwell-Bloch equations, represent
the state-of-the art in modeling the coherent spatio-temporal evolution of light inside any medium
– including the laser cavity and active region.

The laser model is based on a system consisting of three levels, as is depictd on Fig. 2. The
lasing transition occurs between the upper and lower laser level, here denoted with u and l, re-
spectively. An additional ground level g describes the depopulation of the other two levels through
various scattering channels. dephasing

The Hamiltonian of the system can be represented as Ĥ = Ĥ0 + Ĥ
′
, where the interaction

between the two levels and the electric field is described with Ĥ
′
= −µ̂E(t), where µ̂ is the dipole

moment operator. The unperturbed Hamiltonian Ĥ0 is defined as

Ĥ0 =

[
Wl 0

0 Wu

]
=

[
ℏωl 0

0 ℏωu

]
, (2)
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Figure 2: Laser system modeled as an open two-level system described with the Bloch equations. The
upper and the lower lasing level are denoted with u and l, and g represents the ground level. Nonradiative
transition lifetimes from level i to level j are denoted with Tji. The optical transition linewidth is given with
2γ = 2/T2, where T2 is the dephasing time which describes the decay of the transition coherence. The
current J represents the pumping rate of the carriers to the upper level, and Jt models the thermal excitation
of carriers to the lower lasing level. the currents are normalized to the elementary charge.

where Wu,l = ℏωu,l are the energies of the corresponding states u, l. The perturbation Hamiltonian
Ĥ

′
is given with

Ĥ
′
=

[
0 −µluE

−µulE 0

]
(3)

where the diagonal elements of the dipole moment operator1 µ̂ are zero due to the symmetry
considerations, assuming that the wavefunctions assigned to the states u and l have a definite
parity. Furthermore, we will consider that the dipole matrix element of the lasing transition fulfills
µul = µlu = µ.

The time evolution of the density matrix ρ̂ is governed by the von Neumann equation, which we
now write for the time flow in direction ∝ exp(+iωt)

dρ̂

dt
=

i

ℏ
[Ĥ, ρ̂] = i

[
ωl −µE

ℏ
−µE

ℏ ωu

][
ρll ρlu

ρul ρuu

]
− i

[
ρll ρlu

ρul ρuu

][
ωl −µE

ℏ
−µE

ℏ ωu

]

= i

[
−µE

ℏ (ρul − ρlu) −ρlu(ωu − ωl)− µE
ℏ (ρuu − ρll)

ρlu(ωu − ωl) +
µE
ℏ (ρuu − ρll)

µE
ℏ (ρul − ρlu)

]
,

(4)

while bearing in mind that ρlu = ρ∗ul is valid. In order to simplify the notation, the resonant transition
frequency ω0 is introduced as ω0 = ωu−ωl. Additional renormalization of the variables is considered
in order to give them an appropriate physical meaning. Since the diagonal elements ρll,uu represent

1The dipole moment operator is found as µ̂ = −ex̂, where x the Cartesian axis in the growth direction in case of the
QCL. Later, the z-axis is reserved for the direction of light propagation.
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occupation probabilities of the levels, we obtain equations for the surface densities nl and nu of the
levels by multiplying ρll,uu with the total sheet carrier density ntot. In the same way, the off-diagonal
element is renormalized to nul = ρulntot.

Relaxation processes that lead to the decay of the level populations or the decay of the coher-
ence between the levels are added conveniently to the von Neumann equation in a phenomeno-
logical way via decay rates described with the lifetimes as is explained in Fig. 1. The coherence
lifetime is defined as T2 = 1/γ, where γ is the dephasing rate, and nonradiative transition lifetimes
between the levels are added. Additionally, the spatial diffusion of carriers is phenomenologically
introduced via the diffusion coefficient D. The pumping current J to the upper level models the car-
rier injection to achieve population inversion. The thermal excitation of the lower level is modeled
with a current Jt to describe the thermal equilibrium population. Both currents are normalized to
the elementary charge J → J/e. The set of equations, known as the Bloch equations, is obtained

∂nl

∂t
= Jt +

nu

Tlu
− nl

Tgl
+ 2

µE

ℏ
Im(nul) +D

∂2nl

∂z2
,

∂nu

∂t
= J − nu

( 1

Tlu
+

1

Tgu

)
− 2

µE

ℏ
Im(nul) +D

∂2nu

∂z2
,

∂nul

∂t
=

(
iω0 −

1

T2

)
nul + i

µE

ℏ
(nu − nl),

(5)

where Tji represents a nonradiative transition lifetime from level i to level j.
The induced macroscopic polarization P , which defines also the optical susceptibility χ, is found

to be

P =
ntot

Lp
tr(ρ̂µ̂) =

µ

Lp
(nul + n∗

ul). (6)

Here, Lp is the appropriate dimension of the lasing structure so that ntot/Lp gives the density of
carriers. In the case of a QCL, Lp is the period length. The one-dimensional wave equation derived
from the Maxwell equations is

∂2E(z, t)

∂z2
− n2

r

c2
∂2E(z, t)

∂t2
=

1

ε0c2
∂2P (z, t)

∂t2
, (7)

where nr is the refractive index of the bulk material, with a strictly real value nr ∈ R. Combining
the previous two equations results in

∂2E

∂z2
− n2

r

c2
∂2E

∂t2
=

Γµ

ε0c2Lp

∂2

∂t2
(nul + n∗

ul), (8)

where Γ is the confinement factor that describes what portion of the laser light found within the
laser cavity. Equation (8) together with (5) constitutes the state-of-the-art Maxwell-Bloch system of
equations.

We can make now the so-called slowly varying envelope approximation and write the ansatz
that separates the physical values into a fast-oscilationg carrier wave and a slowly-varying envelope
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function

E(z, t) → 1

2
[E(z, t)ei(ω0t−k0z) + c.c.],

nul(z, t) → σ(t)ei(ω0t−k0z),

nl(z, t) → nl0(t),

nu(z, t) → nu0(t),

(9)

while bearing in mind the ring resonator geometry and assuming that the electric field is unidi-
rectional. In the equation above, the carrier frequency has the wavenumber k0 = n(ω0)ω0/c.
Substitution of relations (9) into the optical Bloch equations (5) and the wave equation (8) yields
the equations for the envelope functions. In the derivation, the rotating-wave approximation is of-
ten used, where only the slowly rotating terms, proportional to ∝ exp(iω0t), are kept. Additionally,
the absorption coefficient αw is added to the wave equations in order to describe the waveguide
losses. We obtain

∂nl0

∂t
= Jt +

nu0

Tlu
− nl0

Tgl
− µ

ℏ
Im(Eσ∗), (10)

∂nu0

∂t
= J −

( 1

Tlu
+

1

Tgu

)
nu0 +

µ

ℏ
Im(Eσ∗), (11)

∂σ

∂t
= − σ

T2
+ i

µ

2ℏ
E(nu0 − nl0), (12)(nr

c

∂

∂t
+

∂

∂z

)
E = −i

Γµω0

nrε0cLp
σ + iβ|E|2E + i

k
′′

2

∂2E

∂t2
− αw

2
E. (13)

In the wave equation (13), we have additionally included the absorption coefficient αw in order to
describe the waveguide losses, the bulk crystalline Kerr nonlinearity modeled as a phase variation
through the Kerr coefficient β, and a finite group velocity dispersion (GVD), proportional to the
coefficient k

′′
. The latter describes only the GVD contribution from the waveguide (the dispersion

from the gain is captured within the polarization variable σ). In actual physical laser systems,
the presence of nonvanishing GVD has a profound impact on the intermodal interaction and itis
absolutely necessary to include it correctly in the model [9, 19].

2.2 Inclusion of the linewidth enhancement factor (LEF)

Semiconductor lasers are set apart from other laser types by numerous unique traits, most of which
are attributed to the unique asymmetric shape of the gain spectrum. This has a profound impact on
the laser dynamics as well as frequency comb formation, and is most succinctly and successfully
encompassed with the so-called linewidth enhancement factor (LEF) [20].

Following the Kramers–Kronig relations, an asymmetric gain shape results in a dispersion curve
of the refractive index that has a non-zero value at the gain peak [21]. As a consequence, a
remarkable property of semiconductor lasers is that both the refractive index and the optical gain
change simultaneously with the varying carrier population. This property was quantified with the
linewidth enhancement factor (LEF), also called the α-factor, defined by Charles Henry as the ratio
of changes of the modal index and gain [20], which are proportional to the real and imaginary part
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of the optical susceptibility (LEF) [20]

α(ω) = −∂χR(ω)/∂N

∂χI(ω)/∂N
. (14)

Many unique properties of semiconductor lasers can be traced back to the non-zero value of this
factor at the gain peak. The LEF was first introduced in the 1980s to describe the broadening of
the semiconductor laser linewidth beyond the fundamental Schawlow–Townes limit. Furthermore,
the LEF determines the dynamics of semiconductor lasers, as it describes the coupling between
the amplitude and the phase of the optical field [22]. In lasers with fast gain recovery times, the
LEF was recently connected to the onset of a giant Kerr nonlinearity [7] and frequency modulated
combs [9]. It was shown that the light amplitude–phase coupling, quantified by the LEF, can lead to
a low-threshold multimode instability and frequency comb formation [13]. Appropriate values of the
LEF were predicted to result in the emission of solitons in active media [23]. Precise knowledge
of the LEF represents a key point in understanding many astonishing features of semiconductor
lasers and subsequently controlling them – making it absolutely crucial to include it properly in
the theoretical cavity model in order to study the spatio-temporal evolution of the laser field [24].
This was conducted within the scope of this project and subsequently published in my doctoral
dissertation [17].

In order to obtain the expression for the complex optical susceptibility, one starts from the
Fourier transform of the differential equation (5) for the off-diagonal density matrix element nul

nul(ω) =
µ

ℏ
nu − nl

ω − ω0 − iγ
E(ω), (15)

and combine it with the relation P = ε0χ = µnul/Lp, which yields

χ(ω) =
µ2

ε0ℏLp

nu − nl

ω − ω0 − iγ
. (16)

The susceptibility described above defines the optical gain as g = −ωχI/nrc, which has a sym-
metric Lorentzian shape characteristic to a transition between atomic levels. The inclusion of gain
asymmetry via the LEF can be done in the following way [17]

χ(ω) =
µ2(Nu −Nl)

ε0ℏ
(1 + iα̃)2

ω − ω0 − iγ
, (17)

where α̃ stands for the value of the LEF at the position of the gain peak given by ωp = ω0 + α̃/T2.
Remarkably, inclusion of the LEF at the gain peak α̃ allows to encapsulate the entire spectral

behavior of the complex optical susceptibility χ. This can be seen in Fig. 3 for three values of
α̃ = 0, 0.5, and 1. The bottom row of the figure furthermore shows the spectrally resolved α(ω).
The case of a symmetric Lorentzian gain profile corresponds to α̃ = 0. Due to Kramers-Kronig
relations, the zero-crossing of the real part of the susceptibility is at the gain peak χR(ωp) = 0,
which yields α(ωp) = 0. Since the lasing wavelength is in the vicinity of the gain peak, carrier
induced gain changes will not affect the refractive index that the laser feels in this case. As a result,
the amplitude and the phase of the electric field are not coupled and this reflects the situation in
solid-state and gas lasers, where the value of LEF is zero. However, if the lasing frequency would
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a) b) c)

Figure 3: Real χR and imaginary χI part of the susceptibility, along with the calculated LEF. The suscepti-
bility is defined with equation (17) and is calculated for three values of the LEF at the gain peak: a) α̃ = 0,
b) α̃ = 0.5, and c) α̃ = 1. The profile of χI becomes more asymmetric with the increasing α̃ and values
of χR at the gain peak become non-zero and significant. Vertical dashed lines represent the position of the
gain peak. Change in the carrier population induces variation of both the χR and χI (blue dotted lines). For
symmetric gainshapes (α̃ = 0), χR remains zero at the gain peak. On the other hand, changes of χR at the
gain peak progressively grow for increasing gain asymmetry (growing α̃). In addition to that, the gainwidth
broadens for larger α̃. T2 is set to 100 fs.

hypothetically be strongly shifted from the gain peak, a strong amplitude-phase coupling would
appear, which is reflected by nonzero values of α when detuned from ωp in Fig. 3a). The sign of
the LEF determines the sign of the gain induced change of the refractive index, and it depends on
the direction of the detuning.

A nonzero value of α̃ yields an asymmetric shape of the gain, with the increasing asymmetry
for larger α̃ (Figs. 3b) and c)). One impact of this dependence reflects in the increasing gainwidth.
Furthermore, the zero-crossing of χR becomes greatly detuned from ωp. As a result, the refrac-
tive index at the lasing wavelength changes with the varying optical gain, which induces strong
amplitude-phase coupling. For increasing gain asymmetry (growing α̃), the change of χR at the
gain peak increases as well. This is additionally indicated with the larger values of α(ω). To ensure
consistency, one can easily check that α(ωp) = α̃ in the bottom row on Fig. 3.

Although growing values of α̃ correspond to the progressively more asymmetric gainshapes,
the differences among the gain values are not that large within a narrow range around ωp where the
laser operates. Far larger impact on the multimode dynamics comes from the value of χR which
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becomes greatly shifted from zero.
We can now include the LEF, and the amplitude-phase coupling it describes, also in the time

domain by altering the Maxwell-Bloch equations (10)-(13). Starting from the susceptibility that
includes α̃ in equation (17), we arrive at the modified equation for nul in the time domain [17]

∂nul

∂t
=

(
iω0 −

1

T2

)
nul + i

µE

ℏ
(1 + iα̃)2(nu − nl). (18)

The LEF affects only the equation for the off-diagonal matrix element, which determines the po-
larization. The rest of the Bloch equations (5) and the wave equation (8) remain unchanged. Fol-
lowing a procedure similar to the one described earlier, we can apply the slowly varying envelope
approximation and obtain the modified equation for σ

∂σ

∂t
= −1 + iα̃

T2
σ + i

µ

2ℏ
(1 + iα̃)2E(nu0 − nl0). (19)

Equation (19) together with the equations (10)-(13) represents the state-of-the-art Maxwell-
Bloch equations which include the impact of a non-zero LEF at the gain peak. They represent an
excellent quantitative tool to determine the spatio-temporal evolution of the laser field inside the
cavity. However, the full system of Maxwell-Bloch equations is not helpful at gaining any kind of
intuitive insight into the governing physics, as a change of one parameter influences the whole
system of coupled differential equations. Furthermore, the numerical implementation of such a
system can be quite demanding – both for the numerical stability and the costs in terms of the exe-
cution time. For this reason, we seek to simplify the governing system of equations by eliminating
every variable except the complex electric field envelope E and obtain single master equation that
explains the laser dynamics.

2.3 Master equation

In order to derive a master equation [17], we can replace the carrier inversion nu − nl by one term
denoted with n0, which is done formally by neglecting the population of the lower level. We can
then turn to the polarization σ in the equation (19) and apply the Fourier transform. Bearing in mind
that σ is the slowly varying envelope, and that the carrier frequency is ωp, we have F

(
∂m/∂tm

)
=(

i(ω − ωp)
)m, and (19) transforms to

σ = i
µT2

2ℏ
(1 + iα̃)2

1

1 + i(ω − ω0)T2
F(En0). (20)

In order to eliminate the differential equation for σ, a transfer function h(ω) = i(1 + i(ω − ω0))
−1 is

introduced and approximated with a Taylor series around the gain peak frequency ωp = ω0 + α̃/T2.
Terms up to the second order are kept

h(ω) = h(ωp) + h
′ |ω=ωp(ω − ωp) +

1

2
h

′′ |ω=ωp(ω − ωp)
2

=
i

1 + iα̃
+

T2

(1 + iα̃)2
(ω − ωp)− i

T 2
2

(1 + iα̃)3
(ω − ωp)

2.
(21)
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Bearing in mind that σ(ω) = µT2h(ω)F(En0)/(2ℏ), equation (20) transforms to

σ = i
µT2

2ℏ
(1 + iα̃)

[
1− iT̃2(ω − ωp)− T̃ 2

2 (ω − ωp)
2
]
F(En0), (22)

where

T̃2 =
T2

1 + iα̃
(23)

was introduced for conciseness. As the next step, the inverse Fourier transform of (22) can be
applied, yielding the expression of the coherence term σ

σ = i
µT2

2ℏ
n0(1 + iα̃)

[
E − T̃2

∂E

∂t
+ T̃ 2

2

∂2E

∂t2

]
. (24)

In the case when the gain recovery time is much smaller than the cavity roundtrip time – as is
the case for a QCL – the differential equation for the carrier population can be eliminated as well.
The lifetime T1 is introduced as

T1 =
( 1

Tlu
+

1

Tgu

)−1

, (25)

and we can write the differential equation for the population n0 as

∂n0

∂t
= J − n0

T1
+

µ

ℏ
Im(Eσ∗). (26)

Subsequently, adiabatic elimination of σ from equation (19)

σ = i
µT2

2ℏ
En0(1 + iα̃), (27)

which corresponds to the zeroth order in the Taylor series (21), is replaced in the equation for the
population n0 (26)

∂n0

∂t
= J − n0

T1
− µ2T2

2ℏ2
n0|E|2 = J − n0

T1

(
1 +

|E|
Is

)
, (28)

The value of n0 is real and does not have a direct impact on the phases of the field envelope.
Hence, we expect that calculating the adiabatic approximation by setting the time derivatives to
zero in the equation (28) would be sufficient [9]. We obtain

n0 =
T1J

1 + |E|2
Is

. (29)

It is now possible to substitute the expression (29) for the population n0 into the definition of the
coherence term σ, given with the relation (24) to obtain

σ = i
µT1T2J

2ℏ
(
1 + |E|2

Is

)(1 + iα̃)
[
E − T̃2

∂E

∂t
+ T̃ 2

2

∂2E

∂t2

]
. (30)
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Finally, inserting equation (30) into the wave equation (13) results in a single laser master equation

nr

c

∂E

∂t
+

∂E

∂z
=

g(I)

2
(1 + iα̃)

[
E − T̃2

∂E

∂t
+ T̃ 2

2

∂2E

∂t2

]
− αw

2
E + iβ|E|2E + i

k
′′

2

∂2E

∂t2
,

(31)

where the saturated gain g(I) in the units of 1/m is introduced as

g(I) =
g0

1 + |E|2
Is

=
g0

1 + I
Is

, (32)

and the unsaturated gain coefficient g0 is defined as

g0 =
Γµ2ω0T1T2J

ℏnrcε0Lp
. (33)

In this way, the full system of coupled differential Maxwell-Bloch equations is reduced down to a
single master equation. It provides an excellent quantitative tool for a laser which possesses fast
gain dynamics. However, even if that is not the case, equation (31) is still useful as a qualitative
tool to gain insight into the underlying physics. Furthermore, the crucial impact of a non-zero LEF
is successfully encapsulated, thus allowing to continue with the investigation.

2.4 Complex Ginzburg-Landau theory of ring QCLs

In order to form an optical frequency comb, mechanisms that trigger lasing modes at different
frequencies, and mutually lock their amplitudes and phases, need to be present inside the cavity.
This is achieved in various ways depending on the platform for frequency comb generation.

In stark contrast to the Fabry-Perot lasers where the multimode regime is enabled by the spatial
hole burning, a ring resonator possesses rotational symmetry (Fig. 1b)) and lacks any reflection
points which could couple the opposite-propagating components of the field. This results in unidi-
rectional operation, where either the clockwise or counterclockwise field component lases. Due to
unidirectional lasing, the effect of spatial hole burning is not present inside the cavity and the laser
is expected to operate in single-mode emission. Surprisingly, a transition to multimode operation
was observed in mid-infrared and THz QCLs at an injection level only fractionally higher than the
lasing threshold [13, 15, 25, 26]. Moreover, the coherence of the state is manifested by its narrow
beatnote, which indicates its frequency comb nature. A notable feature of the instability is that
as the current in the device is increased, the laser can revert back to single-mode operation – a
feature not observed in regular Fabry-Perot lasers.

The exact mechanisms that lead to multimode operation and potential formation of frequency
combs were shown to originate from a wave instability [13] – a process that is known from hy-
drodynamics [27] and represents a mechanism by which a small disturbance in a wave grows in
amplitude owing to nonlinear interactions. The instability condition is set into the framework of the
famous complex Ginzburg-Landau formalism [28], where the low-threshold instability occurs due
to the phase turbulence – a phenomenon that was previously not connected to photonics in any
way.
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We will obtain the complex Ginzburg-Landau equation (CGLE) starting from the derived master
equation (31). The procedure is published in my doctoral thesis [17], and is similar to the one pub-
lished in Ref. [13]. In the first step, the term T̃2∂E/∂t in the large parenthesis of the right hand side
of equation (31) is neglected. This is justified, as its main effect is to introduce a constant shift of the
value of the refractive index nr. Additionally, one needs to bear in mind that the master equation is
derived from the Maxwell-Bloch equations that utilize the rotating wave approximation. Therefore,
substituting the second time derivative ∂2/∂t2 with the second spatial derivative (c/nr)

2∂2/∂z2 is
an excellent approximation. Moreover, the system is switched to a frame of reference that moves
together with the propagating field by applying coordinate transformations z → z − c

nr
t and t → t.

Equation (31) then transforms to

nr

c

∂E

∂t
=

g(I)

2
(1 + iα̃)

(
E + T̃ 2

2

c2

n2
r

∂2E

∂z2

)
− αw

2
E + iβ|E|2E + i

k
′′

2

c2

n2
r

∂2E

∂z2
.

(34)

It is now of use to write the first order Taylor expansion of the saturated gain g(I) around the
stationary intensity I0 = Is(

g0
αw

− 1) in the form of

g(I) =
g0

1 + I
Is

≈ g(I0) +
∂g(I)

∂I

∣∣
I=I0

(I − I0) ≈ g1 − g2
I

Is
. (35)

The coefficients g1 and g2 are found to be

g1 =
αw

g0
(2g0 − αw), g2 =

α2
w

g0
. (36)

Close to the lasing threshold g0 ≈ αw, it holds g1 ≈ g2 ≈ g0.
Combining relations (34), (35) and (36) yields

nr

c

∂E

∂t
=

(g1
2

− g2
2

|E|2

Is

)
(1 + iα̃)

(
E + T̃ 2

2

c2

n2
r

∂2E

∂z2

)
− αw

2
E + iβ|E|2E + i

k
′′

2

c2

n2
r

∂2E

∂z2
.

(37)

New functions a1, a2, a3, and a4 are furthermore introduced for simplicity( 1

1 + iα̃

)2
= a1 + ia2

a1 =
1− α̃2

(1 + α̃2)2

a2 = − 2α̃

(1 + α̃2)2

a3 = a1 − α̃a2 =
1

1 + α̃2

a4 = a2 + α̃a1 = − α̃

1 + α̃2
.

(38)
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We can then write

(1 + iα̃)
[
1 +

( 1

1 + iα̃

)2]
= 1 + iα̃+ a3 + ia4. (39)

Combining relations (37), (38), and (39) yields

nr

c

∂E

∂t
=

(g1
2

− g2
2

|E|2

Is

)[
1 + iα̃+ (a3 + ia4)T

2
2

c2

n2
r

∂2

∂z2

]
E

− αw

2
E + iβ|E|2E + i

k
′′

2

c2

n2
r

∂2E

∂z2
.

(40)

Reordering the terms in the equation above and neglecting the term proportional to ∼ |E|2∂2E/∂z2

results in equation

∂E

∂t
= (η + iωs)E + (dR + idI)

∂2E

∂z2
− (nR + inI)|E|2E, (41)

where the following functions have been introduced

η =
g1 − αw

2

c

nr
, ωs =

g1α̃

2

c

nr
,

dR =
g1T

2
2

2(1 + α̃2)

c3

n3
r

, dI =
(k′′

2
− α̃g1T

2
2

2(1 + α̃2)

) c3

n3
r

nR =
g2
2Is

c

nr
, nI = −

(
β − α̃g2

2Is

) c

nr
.

(42)

Here, the laser net gain is described with the coefficient η, and ωs represents the frequency shift
due to the gain asymmetry quantified by α̃ (LEF at the gain peak). The complex diffusion coef-
ficient, given with dR + idI , dampens variations of the field E. Its complex value can be easily
understood as it will work towards smoothing any spatial gradient of both the amplitude and phase.
Physically, it emerges from the curvature of the gain (due to its finite bandwidth), asymmetric gain-
shape, and the GVD. Lastly, the nonlinearity is described with nR + inI . The real part nR arises
from the gain saturation in the laser and dampens the amplitude fluctuations. The imaginary part
nI describes the phase modulation and it is due to the Kerr nonlinearity and a finite LEF.

Equation (42) can be written in a more elegant way. To do so, time, spatial variable, and the
field need to be rescaled

t → t

η
,

z →
(dR

η

)1/2
z

E →
( η

nR

)1/2
eiωst/ηE.

(43)

Moreover, dispersion and nonlinearity parameters are introduced as cD and cNL in the following
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way

cD = −α̃+ k
′′ g0(1 + α̃2)

αw(2g0 − αw)T 2
2

,

cNL = α̃− β
2Isg0
α2
w

.

(44)

From the previous relation, it is clear how the GVD influences cD and the Kerr nonlinearity in-
fluences cNL, while the LEF influences both of them. Implementing relations (43) and (44) into
equation (42) allows for obtaining the conventional form of CGLE often found in literature [28]

∂E

∂t
= E + (1 + icD)

∂2E

∂z2
− (1 + icNL)|E|2E. (45)

In comparison with the laser master equation (31), the entire parameter space of CGLE has been
reduced to just two dimensions defined by the cD− cNL plane. Once again, it can be observed that
the LEF directly impacts both parameters in relation (44).

The CGLE represents one of the most celebrated nonlinear equations in physics. A vast amount
of nonlinear phenomena can be described on a qualitative, and often even on a quantitative level,
by employing the CGLE. These include nonlinear waves in diverse media, second-order transitions,
superconductivity, superfluidity, Bose-Einstein condensation, liquid crystals, and strings in field the-
ory. Realizing this, it should come as no surprise that nonlinear phenomena in fast semiconductor
lasers are also governed by the CGLE to some extent [13].

In order to explain the multimode instability, we can perform the linear stability analysis of the
CGLE (45), where a small perturbation of a single-mode wave is assumed. If the perturbation
grows over time instead of decaying, the single-mode solution is unstable. The analysis yields the
Benjamin-Feir-Newell criterion of stability

1 + cDcNL > 0. (46)

If the criterion is violated, a band of unstable wavenumbers arises and destabilizes the plane wave
solution. In a laser, a competition between multiple different optical modes emerges, resulting
in multimode emission. This means that a laser can go past its multimode instability threshold
depending only on the values of the parameters such as the GVD, Kerr nonlinearity or the LEF – if
1 + cDcNL < 0 holds. No additional effect (e.g. spatial hole burning) is required.

Bearing in mind the stability analysis of the CGLE that yielded the Benjamin-Feir-Newell crite-
rion of stability (46), we can divide the two-dimensional parameter space spun by cD and cNL into
two well defined regions – the stable one, where the laser emits a single-mode, and the unstable
region, where multimode emission occurs due to phase and amplitude turbulence (the white and
blue regions in Fig. 4). The boundary between the region is defined by the condition 1+cDcNL = 0.

Deep inside the unstable region, when 1 + cDcNL ≪ 0, we enter the defect turbulence regime
characterized by large variations of the intensity. The resulting laser state is broadband and gov-
erned by chaos, however it cannot form a stable frequency comb. Moving closer to the border of
the unstable region, where 1 + cDcNL ≲ 0, we switch to the phase turbulence regime. Here the
intensity variations are smaller, the spectral width is narrower, but the laser can form a periodic
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Figure 4: Parameter space of the CGLE spun by cD and cNL can be divided into the stable (white) region,
which supports single-mode laser emission, and the unstable (blue) region, where the laser operates in
multimode due to turbulence [13]. The regions are separated by the condition 1 + cDcNL = 0. Deep inside
the unstable region (1 + cDcNL ≪ 0), the laser is in the defect turbulence regime exhibiting large variations
of the intensity, and it cannot form a frequency comb. Closer to the stability boundary, the laser undergoes
phase turbulence where the intensity variations are smaller, eventually leading to a frequency comb state
known as homoclon. Probing a point in the stable region, a stable single-mode operation is observed.
However, at the same point, going beyond the linear stability analysis, the laser can undergo a multimode
instability, thus forming states known as Nozaki-Bekki holes. They are characterized as dark solitons – dark
solitary pulses that connect two plane waves.

waveform and emit a stable frequency comb, as is seen in Fig. 4. These states – known as ho-
moclons – were recently observed in QCL rings [13], thus explaining frequency comb formation in
these lasers.

Within this project, we have discovered yet another type of frequency combs that emerge in
fast semiconductor ring lasers. The findings are still unpublished.

2.5 Dark solitons in ring QCLs – Nozaki-Bekki holes of the CGLE

If we probe a point of the CGLE parameter space where 1 + cDcNL > 0, the single-mode plane
wave solution is found to be stable. However, if we go beyond the linear stability analysis and
assume the possibility of large perturbations, we can find that a multimode state can coexist with
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a stable single-mode wave at the same point in the CGLE parameter space, as can be seen in
Fig. 4. This state is known as a Nozakki-Bekki hole (NBH) [29]. The bandwidth of NHBs is similar
to the state of defect turbulence, yet it is perfectly periodic and forms a stable frequency comb. The
waveform exhibits a dark pulse, surrounded by an otherwise constant intensity, and it can be viewed
as a type of a dark soliton. Solitons represent localized, solitary waves that have become vastly
popular in photonics in recent years due to the fact that they form a broad equidistant spectrum
which can be used in numerous applications [30]. So far, solitons have been reported in optical
fibers and microresonators, and are driven by means of an external optical single-mode pump,
whereby the numerous sidemodes are excited by the crystalline Kerr nonlinearity. However , both
optical fibers and microresonators represent passive media with no optical gain, thus requiring an
external optical pump, which significantly raises the complexity of the system. The possibility of
emitting solitons from a monolithic, electrically-driven platform, such as a semiconductor laser, is
highly appealing and could be a game-changer in the field of integrated sensing.

2.5.1 Numerical results

A systematic parameter sweeps of the master equation (31) has indeed confirmed the existence
of the NBHs as well – thus deepening the connection between fast gain media such as QCLs and
the CGLE.

Figure 5: Simulated NBH with α̃ = 1.25 and waveguide GVD= 600 fs2/mm. a) The intensity spectrum with
the shaded region representing the zoomed part of the spectrum shown in b). c) Intermodal phases. The
d) intensity, e) instantaneous frequency, and f) instantaneous phase in the temporal domain.

One of the NBH states is shown in Fig. 5. It was obtained for α̃ = 1.25 and the waveguide GVD=

600 fs2/mm (the total GVD, that includes the gain dispersion accounted for by the LEF, is negative).
The spectrum is characterized with a strong single mode surrounded by a broadband smooth
spectral envelope. The intermodal phases, which represent the phase differences between the
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neighboring modes in the spectrum, are almost flat and identical throughout the spectrum, despite
having two offsets equal to π surrounding the strongest mode near the middle of the spectrum.
This means that all of the modes belonging to the broadband smooth envelope are in-phase with
each other, and the strong mode is exactly π out of phase. In the time domain, this means that
the strong mode, which is responsible by the continuous-wave intensity background, interferes
destructively with all of the weaker sidemodes. This means that there is a pronounced dark pulse
in the waveform, which is surrounded by the otherwise constant intensity (which comes from the
strongest mode) – a signature of a NBH dark soliton. Analyzing the instantaneous frequency, one
can observe that it changes only within the region of the dark soliton, and is completely constant
between the two consecutive solitons. This means that the dark soliton connects two plane waves,
which agrees with the CGLE theory of NBHs [28]. Another signature of these states is observed
from the instantaneous phase shown in Fig. 5f). At the position of the NBH, there is a steep linear
ramp of the phase whose height is exactly equal to 2π – a consequence of the the fact that the
strongest mode is anti-phase compared to the rest of the weaker modes in the spectrum.
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Figure 6: Simulated homoclon state with α̃ = 1.25 and waveguide GVD= −1200 fs2/mm.

For completeness, we simulated also a homoclon frequency comb state, depicted in Fig. 6. It is
obtained for larger values of negative dispersion, by bringing the laser parameters into the lineary-
unstable region of the master equation – akin to what was shown in Fig. 4. In this sense, a stable
single-mode laser operation or a NBH state cannot exist for the same value of parameters for which
a homoclon state can be obtained. From the Fig. 6, it is seen that the homoclons are fundamentally
different from the NBHs, although both represent localized structures in the waveform. The most
striking difference is apparent when comparing the intermodal phases, where for a homoclon they
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are grouped in two clusters separated by π in seemingly a random way.
Another sign of the solitonic nature of the NBHs is the multistability – a phenomenon where the

waveform can be different for the same values of laser parameters, depending on just the starting
conditions.
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Figure 7: Multistability of the simulated NBH states depending on the starting condition. From top to bottom:
single-mode oepration, single dark soliton, and two dark solitons per roundtrip.

The results of the simulations that confirm the multistability can be observed in Fig. 7. The
coexistence of a stable single-mode solution and a single NBH per roundtrip is seen on the upper
two plots. Furthemore, for the same laser parameters, a state which has two NBHs per roundtrip
can be seen in the bottom plot.
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Figure 8: Spectrum of the multisoliton state exhibiting two NBHs per roundtrip. The spectral envelope has
a characteristic modulated shape.

The multisoliton state that exhibits two NBHs per roundtrip can be analyzed in closer detail.
The optical spectrum is shown on Fig. 8. The spectral envelope becomes modulated and exhibits
”spectral holes” at regular intervals – akin to what was previously observed in multisoliton states
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from microresonators [30].
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Figure 9: Zoomed part of the spectrum from Fig. 8. The intermodal phases exhibit another π jump between
the two spectral smooth lobes, besides the two usual π jumps around the strongest mode. This results in
the formation of a second dark soliton (NBH) in the intensity waveform.

Going closer in detail, the zoomed multisoliton spectrum is shown in the top of Fig. 9, where
two smooth spectral lobes can be seen. The intermodal phases exhibit another π jump that oc-
curs between these two smooth lobes, besides the usual two π jumps around the strongest mode.
Multisoliton states with a larger number of NBHs per roundtrip have also been obtained for simi-
lar values of the parameters. In that case, the envelope of the spectrum becomes modulated in
an increasingly irregular way, in agreement with observations of multisoliton states in microres-
onators [30].

3 Task 2 – Device characterization and experimental measurements

Within the Task 2 of this project, we have first designed and fabricated an improved ring laser that
employs coupled cavities. We have furthermore characterized the device and built the SWIFTS
setup [31] in order to evaluate the coherence of the observed frequency comb states and extract
their temporal intensity waveform. We have confirmed our theoretical predictions from Task 1. The
results are not published yet.
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3.1 Ring QCL device

I will discuss here the ring QCL device that was fabricated within the scope of this project. The
device physics and characterization have been discussed and published in Ref. [32]. Instead of
fabricating a simple ring resonator, like it was done in Ref. [13], we have opted for an improved
design, as can be seen in Fig. 10.

Figure 10: a) Fabricated ring QCL with an active coupler waveguide for efficient light extraction. b) Zoomed
section where the coupler waveguide approaches the ring cavity. c) Zoomed straight coupling section of the
ring and the coupler. The waveguide’s width of both the ring and the coupler is 10 µm and the gap between
them is around 2 µm.

Having an ideal ring resonator, as is sketched in Fig. 1 implies one large practical problem –
there is no way how to deliberately extract the light that is propagating inside the cavity. The only
way how to measure the light is by random inefficient scattering, and even then the extracted light
power is in the range of microwatts [13]. This level of power is severely limiting device character-
ization and is not enough to characterize the frequency comb regime by employing the SWIFTS
technique. For this reason, we have fabricated our ring resonators in a shape of a racetrack, which
has two straight sections that connect semi-circle sections. The straight section is brought into
the vicinity of another straight waveguide so that they become coupled (Fig. 10). In this way, the
light that circulates inside the ring resonator can be outcoupled into the coupler waveguide and
then be emitted at much higher power levels compared to an ideal ring device. The ring and the
coupler waveguide are biased separately. This reason for this is twofold. First of all, separate elec-
trical bias allows different optical gain or absorption inside the two coupled cavities (the coupler
waveguide is too short to allow lasing on its own) thus enabling to tune their quality factor. Further-
more, changing the bias induces a change of the temperature which changes the refractive index
of the material. In this was, by providing a separate electrical bias, we allow to tune the refractive
index of the ring and of the coupler waveguide separately, which determines the coupling coeffi-
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cient between the two cavities. This has allowed to access undercoupled, critically-coupled, and
overcoupled regime with the same device. We show that one device, depending on its operating
point, can act as a tunable filter, a nonlinear frequency converter, or a frequency comb generator.
These concepts extend to the integration of multiple active resonators and waveguides in arbitrary
configurations, thus allowing the implementation of purpose-specific mid-infrared active photonic
integrated circuits for spectroscopy, communications, and microwave generation [32].

Figure 11: Measured light-current (LI) characteristic of the ring QCL device. We tune both the current of the
ring (JR) and the waveguide coupler (JWG).

The measured light-current (LI) characteristic of the ring QCL is shown in Fig. 11. We tune the
currents of both the ring and the waveguide coupler in order to remain near the optimal coupling
regime for power extraction. This allows the device to emit more than 10 mW of power, which is two
orders of magnitude larger than the ideal ring QCL fabricated from the same growth material [13],
and comparable to the emission from a Fabry-Perot ridge laser whose length is similar to the ring
circumference (around 7 mm) [32].

3.2 Frequency comb and dark soliton characterization

Figure 12: Measured optical beatnote of the ring QCL. The narrow profile indicates frequency comb
opetaion.

The first strong evidence that indicates frequency comb operation of the laser is its optical beat-
note. The neighboring modes in a multimode spectrum beat together and create a signal at their
difference frequency, due to the highly nonlinear active medium of the laser. If the difference fre-
quency of all of the neighboring modes is identical and equal to the repetition frequency, as is the
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case in a frequency comb, then all of the individual beating signals add together to produce a col-
lective beatnote with a narrow profile. However, if the laser spectrum is not completely equidistant,
the collective beatnote will be weaker and with a broad profile.

We have measured the optical beatnote by focusing the laser light onto a quantum well infrared
photodiode, and the data can be seen in Fig. 12. The strong beatnote with a narrow profile strongly
suggest that the laser is operating in a frequency comb regime.

In order to evaluate the intensity waveform of the comb, we employ a very elegant experimental
technique called SWIFTS [31]. In essence, it relies on the measurement of two interferograms
employing the Fourier-transform infrared (FTIR) spectrometer – one DC interferogram that yields
the intensity spectrum, and a second one at the repetition frequency, which allows to obtain the
complex beatnote spectrum. With this knowledge, it is possible to extract the value of the inter-
modal phases, and together with the modal amplitudes, we can then reconstruct the laser field in
the time domain.

Figure 13: Experimental characterization of a homoclon frequency comb state. The intensity spectra is
plotted on the top. The middle plot depicts the beatnote spectrum obtained from SWIFTS. If the state is
perfectly coherent, as it should be for a frequency comb, the beatnote spectrum amplitudes are equal to the
geometric average of the neighboring amplitudes of the intensity spectrum, which can be seen from the plot.
The intermodal phases (bottom) are grouped in two clusters separated by π.

We initially confirmed the existence of homoclon states in the newely-processed ring QCLs with
coupler waveguides. These states should be attained for a larger negative GVD, where the single-
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mode laser operation is destabilized [13]. The results can be seen in Fig. 13. The coherence of
the state is proven with the SWIFTS technique by comparing the SWIFTS beatnote spectrum with
the geometric average of neighboring modes in the intensity spectrum – if they overlap, the laser
operates in a frequency comb state. The intermodal phases can be seen to group in two clusters
separated by π, as was obtained in the simulation displayed in Fig. 6.

Figure 14: Experimental characterization of a dark soliton state. The left column shows from top to bottom
the intensity spectrum, the SWIFTS spectrum, and the intermodal phases. the identical π jump in the
intermodal phases can be observed around the strongest mode in the spectrum as is shown in Fig. 5
for a simulated dark soliton. The right column shows the reconstructed temporal intensity waveform, the
instantaneous wavenumber, and the phase. The instantaneous wavenumber changes only within the dark
pulse (NBH) and remains constant elsewhere. The phase exhibits a linear ramp of 2π across the dark
soltion.

Furthermore, by changing the electrical bias of the identical device, we were able to experi-
mentally confirm also the existence of predicted dark solitons in the form of NBHs (Fig. 14). The
intensity spectrum consisting of a strong mode surrounded by a single smooth envelope is plotted
in the top of the the left column, matching the zoomed portion of the simulated spectrum in Fig. 5b).
In the experiments, we are limited by the detector and the dynamic range barely exceeds three or-
ders of magnitude, in sharp contrast to the simulations, where the range is much larger. For this
reason we compare only the zoomed portion of the simulated spectrum. Furthermore, from the
SWIFTS spectrum, one can infer that the observed state is fully coherent and is indeed a frequency
comb. The intermodal phases are characterized by the π jumps around the strongest mode, and
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are nearly constant for for the sidemodes. In temporal domain (right column), one can observe a
dark pulse appearing once per roundtrip. The amplitude contrast of the dark pulse is not as large
as in the simulations, which can be explained by the limited bandwidth imposed by the dynamic
range of the detector, and phase errors. The instantaneous wavevector, which is proportional to the
instantaneous frequency, changes swiftly within the region of the dark pulse, and remains constant
elsewhere, indicating that the dark pulse is surrounded by a plane wave which contains a single
frequency – that of the strongest mode. This is in agreement with the simulated waveform from
Fig. 5 and also with the theory of NBHs in the CGLE formalism – furthermore corroborating the
soliton nature of the state. Finally, the temporal phase profile again agrees with our predictions – it
exhibits a sharp ramp of 2π across the soliton. The cumulative evidence and agreement with the
simulation and experiments depicted in Figs. 5 and 14 proves that we obtain a dark soliton in the
form of a NBH – thus making the ring QCL device the first integrated electrically-driven platform for
soliton generation.

Figure 15: Coherent control of the dark solitons states in the experiment (left column) and in the simulation
(right column). By changing the bias of the ring QCL in the experiments, we are able to influence the solitonic
state and change the position of the smooth spectral envelope relative to the position of the strong mode. In
the simulations, a similar effect is obtained by changing the waveguide GVD.

In the experiments, the only control knobs we posses are the bias currents of the ring laser and
of the coupler waveguide. Due to the improved QCL cavity device design [32], these two currents
provide a powerful control parameter. Fig. 15 displays on the left the evolution of the experimentally
measured spectra as we tune the bias of the ring QCL. We can observe that the solitonic smooth
spectral envelope moves relative to the position of the strong mode – from red to the blue side. As
we change the current of the laser, we influence many parameters, some of which are the refractive
index and the coupling coefficient between the ring and the waveguide. This strongly modifies the
GVD of the mode, which should have a gross impact on the laser state. We confirm this by

25



numerical simulations, where we can control the value of the waveguide GVD, as is displayed on
the right side of Fig. 15. The spectral envelope is influenced heavily by the value of the GVD, and
also shifts relative to the strongest mode. Further theoretical studies are necessary to determine
the exact influence of the dispersion on the NBH dark solitons. This knowledge could then be
applied to design ring laser devices with specific-tailored GVD in order to unlock the full potential
of dark soliton states.

Figure 16: Characterisation of a multisoliton state in a ring QCL. The figure is organized as Fig. 5.

Lastly, we demonstrate also a multisoliton state in our ring QCL, as is seen in Fig. 16. Again,
excellent agreement can be observed with the simulations (Fig. 9). The spectrum consists of two
separated smooth envelopes, which is a consequence of two NBHs existing within one roundtrip.
In the spectral domain, the intermodal phases show one more π phase jump exactly between
the two envelopes, besides the usual two jumps around the strongest mode. The instantaneous
wavenumber has two sharp peaks, each happening within the region of the corresponding dark
pulse. Furthermore, these peaks have opposite directions due to the fact that there is a π phase
jump between the two spectral envelopes. The blue-sided envelope is also wider than the red-sided
one, which explains why the corresponding peak of the instantaneous wavenumber is larger. The
instantaneous wavenumber is again constant in the remaining part of the roundtrip. The temporal
phase changes a total amount of 4π over the two dark solitons, in contrast to the case of only one
soliton per roundtrip, where the phase change was only 2π.
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4 Conclusion and impact of the conducted research

During my research visit at the Harvard University, within the scope of the Marshall Plan Scholar-
ship, we have achieved the bulk of the proposed investigation. First of all, the theoretical model of
the laser was improved by considering the linewidth enhancement factor (LEF), which is one of the
most important parameters of the lasers and has a huge impact on the dynamic evolution of the
multimode emission (results are published in my doctoral thesis). The state-of-the-art full Maxwell-
Bloch system of equations was furthermore greatly simplified in order to obtain a single master
equation that governs the laser dynamics and that includes all of the important mechanisms. The
cumulative efforts in developing a realistic theoretical description of laser physics resulted in a
highly sophisticated numerical model capable of simulating a plethora of laser multimode regimes.

The knowledge of the master equation allows to tame the complexity of the system and gain
intuitive insights – which led us to describe the QCL ring system within the formalism of the fa-
mous complex Ginzburg-Landau equation (CGLE). By doing this, we were able to explain the
single-mode instabilities that were observed in these lasers. Within this project, we build upon our
previous insights and go beyond the linear regime in order to predict the emission of dark solitons
in ring QCLs in the form of Nozaki-Bekki holes that are known from the CGLE theory, but haven’t
been observed so far in monolithic laser systems. For this reason we opted to deal only with
ring laser cavities within this project. Subsequently, we demonstrate the existence of predicted
dark solitons in ring QCLs – both in the simulations based on the master equation and also in
experiments. These results are in preparation to be submitted.

The impact of these findings is reflected in the discovery of a completely novel type of a fre-
quency comb. Optical solitons have previously been known mostly in microresonator cavities and
optical fibers, which are both passive media that require external optical injection. This significantly
increases the complexity and dimensions of the system, which prohibits any use outside of labo-
ratory conditions. Our findings were observed in a monotonically-integrated and electrically-driven
semiconductor laser, which can fit on a single chip. Besides this practical viewpoint, our findings
open a new chapter in photonics by demonstrating solitons in a medium that was thought to not be
able to support their existence according to traditional theory – thus begging for a theory revision
and adding more fuel to the everlasting search for new states of light.
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[11] M. Beiser, N. Opačak, J. Hillbrand, G. Strasser, and B. Schwarz. “Engineering the spec-
tral bandwidth of quantum cascade laser frequency combs”. Optics Letters 46 (July 2021)
p. 3416. doi: 10.1364/ol.424164.
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[26] M. Jaidl, N. Opačak, M. A. Kainz, D. Theiner, B. Limbacher, M. Beiser, M. Giparakis, A. M.
Andrews, G. Strasser, B. Schwarz, J. Darmo, and K. Unterrainer. “Silicon integrated terahertz
quantum cascade ring laser frequency comb”. Applied Physics Letters 120 (2022) p. 091106.
doi: 10.1063/5.0078749.

[27] “XXIX. An experimental investigation of the circumstances which determine whether the mo-
tion of water shall be direct or sinuous, and of the law of resistance in parallel channels”.
Philosophical Transactions of the Royal Society of London 174 (1883) pp. 935–982. doi:
10.1098/rstl.1883.0029.

[28] I. S. Aranson and L. Kramer. “The world of the complex Ginzburg-Landau equation”. Reviews
of Modern Physics 74 (2002) pp. 99–143. doi: 10.1103/revmodphys.74.99.

29

http://doi.org/10.1364/optica.377755
http://doi.org/10.1103/physreva.94.063807
http://doi.org/10.34726/HSS.2022.103442
http://doi.org/10.1063/1.1330575
http://doi.org/10.1109/JQE.1982.1071522
https://doi.org/10.1364/josab.5.000147
https://doi.org/10.1364/josab.5.000147
http://doi.org/10.1364/josab.5.000147
http://doi.org/10.1103/physrevlett.126.173903
http://doi.org/10.1364/optica.428096
http://doi.org/10.1364/optica.420674
http://doi.org/10.1364/optica.420674
http://doi.org/10.1063/5.0078749
http://doi.org/10.1098/rstl.1883.0029
http://doi.org/10.1103/revmodphys.74.99


[29] J. Lega. “Traveling hole solutions of the complex Ginzburg–Landau equation: a review”. Phys-
ica D: Nonlinear Phenomena 152-153 (2001) pp. 269–287. doi: 10.1016/s0167-2789(01)
00174-9.

[30] T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky. “Dissipative Kerr solitons in
optical microresonators”. Science 361, 6402 (2018). doi: 10.1126/science.aan8083.

[31] D. Burghoff, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu. “Evaluating the coher-
ence and time-domain profile of quantum cascade laser frequency combs”. Optics Express
23 (2015) p. 1190. doi: 10.1364/oe.23.001190.

[32] D. Kazakov, T. P. Letsou, M. Beiser, Y. Zhi, N. Opačak, M. Piccardo, B. Schwarz, and F.
Capasso. Semiconductor ring laser frequency combs with active directional couplers. 2022.
doi: 10.48550/ARXIV.2206.03379.

30

http://doi.org/10.1016/s0167-2789(01)00174-9
http://doi.org/10.1016/s0167-2789(01)00174-9
http://doi.org/10.1126/science.aan8083
https://doi.org/10.1364/oe.23.001190
https://doi.org/10.1364/oe.23.001190
http://doi.org/10.1364/oe.23.001190
http://doi.org/10.48550/ARXIV.2206.03379

	Introduction: Scientific Context of the Conducted Research
	Choice of the laser geometry

	Task 1 – Theoretical model and numerical simulations
	Maxwell-Bloch system of equations
	Inclusion of the linewidth enhancement factor (LEF)
	Master equation
	Complex Ginzburg-Landau theory of ring QCLs
	Dark solitons in ring QCLs – Nozaki-Bekki holes of the CGLE
	Numerical results


	Task 2 – Device characterization and experimental measurements
	Ring QCL device
	Frequency comb and dark soliton characterization 

	Conclusion and impact of the conducted research
	References

