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Abstract

Aortic dissection is a life-threatening condition, characterized by the abrupt formation of a new parallel flow

channel, the false lumen. Degeneration and aneurysm formation of the false lumen in the chronic phase of

the disease are the main cause for late complications and death. The interplay between anatomic remodeling,

hemodynamics and wall stress over the course of the disease are not yet well understood. We present a numerical

framework to investigate the evolution of a patient’s aortic dissection, captured by surveillance imaging with

computed tomography angiography from the subacute phase to five years after disease onset. However, the subject

of this report is only the examination of a single computed tomographic angiography image of the patient’s aortic

dissection. A two-way fluid–structure interaction model is implemented in the open-source software SimVascular

allowing for the implementation of varying wall thicknesses, prestresses, external tissue support and anisotropic

material properties of the dissected aorta. The aortic geometry, in vitro four-dimensional flow magnetic resonance

imaging and the patient’s blood pressure are used to then apply in vivo boundary conditions. This allows us to

study the interplay between deformation of the aorta and the hemodynamics in the diseased aorta. Furthermore,

to describe the microstructure of the pathological aortic wall, an anisotropic material is implemented in open-

source software SimVascular, followed by the required verification activities. Later, the dependency of the result

on anisotropic material models can be examined in comparison to a simple isotropic model. In the future, it is also

planned to examine further follow-up computed tomography angiography images of this particular patient.
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1 Introduction

Aortic dissection is a relatively uncommon but a highly lethal condition of the cardiovascular system, with incidences

ranging from 3 to 8 cases per 100 000 persons [15, 10]. Dissections are often accompanied by severe chest or back

pain and acute hemodynamic compromise [35]. When untreated, medical studies have shown that the mortality

rate of type A aortic dissections according to the Stanford classification [15] increases by 12% per hour within the

first 24 h upon reaching hospital, as a result, mortality rates of up to 50− 74% within the first 2 weeks have been
observed [10, 15]. Estimates suggest that even 40% are fatal prior to arrival [16]. In contrast, an uncomplicated,

acute, type B aortic dissection is usually less lethal, with survival rates of up to 89% in medically treated patients

at 1 month and 80% after 5 years [16]. Usually, aortic dissection is initiated by a small tear at the inner layer of the

aorta, which then gradually propagates within the aortic layers leading to a so-called false lumen. The presence of a

false lumen changes the local hemodynamics in the aorta, and consequently causes tissue remodeling (degradation)

and thrombus formation. To fully study the initiation and progression of aortic dissection, the mechanical behavior

of the pathological aortic wall under the impact of blood flow must be investigated. This can be evaluated by

means of fluid–structure interaction (FSI) simulations.

FSI, which combines computational fluid dynamics (CFD) and computational structural dynamics play a major

role in appropriate modeling of blood flow. Blood vessels act as compliant tubes that change size dynamically when

there are changes to blood pressure and velocity of flow. FSI modeling is the only modeling approach allowing

to study an interaction between blood flow, arterial wall material properties and arterial wall geometry. In other

words, the three entities involved in the process of pathological vessel wall development, such as atherosclerosis,

thrombus formation, development of aneurysms or aortic dissection.

Only a few FSI simulations of patient-specific aortic dissection have been published in the literature, see,

e.g., [2, 60, 59, 1], because simulations are still challenging for two reasons. First, the complex geometry of

an aortic dissection, in which the true and the false lumen are separated by a more or less stable dissection

flap, leads to complex flow patterns and an inhomogeneous stress distribution in the aortic wall with high stress

gradients. This means that the computational effort is enormous. Second, medical data from aortic dissection

patients are rare, especially high resolution medical data. Recently, Bäumler et al. [2] published an outstanding

work on a FSI simulation of patient-specific aortic dissection, in which a comprehensive numerical framework for

CFD simulations of aortic dissection was developed that captures the complex interplay between physiological

deformation and hemodynamic in a patient-specific model. The patient-specific aortic geometry was derived

from computed tomography angiography images, which were provided by Prof. Dominik Fleischmann (3D and

Quantitative Imaging Laboratory, Department of Radiology, Stanford University, CA, U). In addition, due to the

availability of three-dimensional phase-contrast magnetic resonance imaging, blood pressure could be used to define

physiologically realistic, patient-specific boundary conditions. Notwithstanding the importance of this study, the

model lacks incorporation of the microstructure of the aortic wall. In other words, Bäumler et al. [2] applied an

isotropic neo-Hookean model to describe the material behavior of the aortic wall. In fact, the aortic wall shows

anisotropic material behavior, i.e. the circumferential direction is usually stiffer than the axial direction, mainly

caused by circumstantially oriented collagen fibers.

In this project, an advanced material model reflecting the microstructural composition of the aortic wall will be

implemented in the open-source software SimVascular [54] to improve the computational results of FSI simulations

of patient-specific aortic dissection. In particular, an advanced material model will be compared with the results

of the already implemented neo-Hookean material model, which was applied by Bäumler et al. [2] and assumes an

isotropic behavior of the aortic wall. This assumption simplifies the material behavior considerably. Subsequently,

by using novel medical data, more precisely computed tomography angiography images of an aortic dissection

patient with multiple images per cardiac cycle, a novel FSI simulation of the patient-specific aortic dissection will

be developed, which will include the creation of meshes for the solid and the fluid domain, the determination of

in vivo boundary conditions, the identification of the model parameters, and the tuning of numerical parameters.

The results of this new model will then be validated against available medical data. Note that this report will

not fully cover this subject, as stated in the project proposal. Here, only the implementation and verification of

the anisotropic material model as well as the numerical framework of the patient-specific FSI model of a patient’s

aortic dissection including some preliminary results will be presented. Future work will then include solving specific

numerical problems, post-processing the results and examining other follow-up computed tomography angiography

images of this particular patient.

The report is organized as follows: Section 2 provides background information on aortic dissection and the

microstructure of the aorta to improve understanding of the following sections. Section 3 explains the constitutive

framework of the introduced anisotropic material model, specifically the discrete fiber dispersion (DFD) method, and

demonstrates its implementation in the open-source software SimVascular [54], along with the required verification

activities. In Section 4, the model is then applied to patient-specific FSI simulations of aortic dissection in the open-
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Figure 1: Schematic representative of the DeBakey and the Stanford classification systems, which are the most

common systems used. The DeBakey classification system offers great anatomic detail, whereas the Stanford

classification system is simpler. It essentially differentiates dissections that involve the ascending aorta from

dissections that do not involve the ascending aorta [23].

source software SimVascular [54], utilizing medical data, generated models, and preliminary results and challenges.

Lastly, the obtained results are discussed in Section 5.

2 Background

In the following, background information is provided to better understand the content of this report, i.e. the disease

aortic dissection and the microstucture of the aortic wall.

2.1 Aortic dissection

Aortic dissection is a complex condition that can be classified into different types. The two major classification

methods are the DeBakey classification and the more widely used Stanford classification [23]. Both methods are

illustrated in Fig. 1.

The DeBakey classification describes three different types of aortic dissection. Type I aortic dissections originate

in the ascending aorta and typically extend through the aortic arch and further. Type II aortic dissections begin

and end in the ascending aorta, while Type III aortic dissections begin and end in the descending aorta. Type III

can also be further divided into two sub-types: Type IIIa, which is confined to the thoracic descending aorta and

does not reach the diaphragm, and Type IIIb, which extends beyond the diaphragm. In contrast, the Stanford

classification is simpler and includes just two types: Type A aortic dissections, which include the ascending aorta,

the aortic arch, or both, and Type B aortic dissections, which only include the descending aorta. Dissections that

originate in the descending aorta and extend into the aortic arch and beyond are also possible.

Aortic dissection can be classified into three phases: Acute, subacute (occurring within the first 90 days of

symptom onset), and chronic. While acute aortic dissections receive a lot of attention, chronic aortic dissections

are not as well-known [14]. However, more patients are surviving the acute phase and living with a chronic aortic

dissection for many years, which requires specialized care and surveillance. Late complications, such as false lumen

degeneration and aneurysm formation, often require surgical or endovascular interventions. The need for ongoing
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monitoring and specialized medical and surgical care for these patients is becoming a growing healthcare concern.

Open surgical repair is still the most widely used method for treating chronic aneurysmal aortic dissections

[14]. This is due to the limitations of current endovascular techniques, such as limitations in the location of

the treatment, the non-compliance of the dissection flap, and the uncertain long-term effectiveness of thoracic

endovascular aortic repair (TEVAR), as well as the positive effects that recent advancements in surgical techniques,

such as improved management of circulation, cerebrospinal fluid drainage, brain and nerve monitoring, and pre-

and post-operative protocols have had on surgical outcomes.

2.2 Aortic microstructure in health and disease

The aorta is composed of the three layers intima, media, and adventitia with different structures and functions. The

intima is mechanically negligible in young and healthy aortas and consists of a single layer of endothelial cells but

becomes mechanically relevant due to non-atherosclerotic thickening with age, where collagen fibers are deposited

[21]. The media consists of several concentric lamellar units, where each unit contains smooth muscle cells with

their radially tilted longer axes oriented at an angle closer to the circumferential direction and is surrounded by

collagen fibrils (Type III) and elastic fibers forming elastic lamellas [33]. The adventitia, the outermost layer, consists

mostly collagen fibers (Type I, arranged as two helically fiber families) admixed with a few elastin fibers, nerves,

fibroblasts and the vasa vasorum. The media, with two symmetric families of collagen fibers oriented towards the

circumferential direction [41], is the main load bearing layer at physiological loads, and the adventitia, with two

symmetric families of collagen fibers oriented towards the longitudinal direction [41], acts as a stiff jacket-like tube

at higher levels of pressure, which prevents the artery from overstretch and rupture [17]. In the pathological aorta,

this complex matrix has found to be altered, which can be modeled with advanced material models that incorporate

its anisotropic material behavior.

A key structural change in thoracic aortic dissections is associated with medial degeneration, as first reported

by [11]. It involves smooth muscle cell loss, elastic fiber fragmentation, and an accumulation of proteoglycans

[9, 5, 58]. A weakened aortic wall due to medial degeneration is also typical for aneurysms of the ascending aorta

[8]. Versican and aggrecan were identified as the major components of such accumulations in thoracic aortic

aneurysm and dissection patients [7]. Additionally, the elastic fiber structure of a dissected aorta, where the elastic

structure connecting the lamellar units are highly degenerated compared to a control aorta [31]. Interestingly,

for aortic dissections collagen content was reported to be increased [57, 56, 6] or decreased with an increased

disruption [9, 8].

3 Implementation of DFD method in open-source software SimVascular

Currently, there are two main approaches for modeling dispersed fiber distributions in a constitutive equation,

namely the “generalized structure tensor” and the “angular integration” approaches [18]. In the angular integration

approach [19], the strain energy of a single collagen fiber is assumed to be a function of the fiber stretch. The fiber

dispersion in the tissue is incorporated into the strain-energy function by an integration of the single fiber strain

energy over all the fiber directions weighted with a continuous probability density function (PDF). As the terminology

angular integration is rather imprecise and does not explicitly mention fiber dispersion. Therefore, the terminology

“continuous fiber dispersion” is often used instead. If the fiber dispersion is incorporated as a summation of a finite

number of discrete fiber contributions, then we refer to this as the “discrete fiber dispersion”, or DFD, method.

Disadvantages and advantages of the related approaches are described in Li et al. [27]. In the following the DFD

method will be detailed and applied for the purposes of this report.

In the following, the constitutive framework is briefly described and then implemented in the open-source

software SimVascular [54]. After the implementation, the required verification activities are described in order

to apply this model to more comprehensive computational studies later, in particular to FSI simulations of a

patient-specific aortic dissection. The described constitutive framework is based on previous works, as described in

Rolf-Pissarczyk et al. [38] while the code verification is based on the work of Li et al. [27].

3.1 Constitutive framework of the DFD method

We first introduce the deformation gradient F relative to a predefined reference configuration. If we consider

an incompressible material, we require that the determinant of F, known as the Jacobian J, is equal to unity or

detF ≡ 1. For this model we can now decouple F into a volumetric (dilatational) part J1/3I and an isochoric
(distortional) part F = J−1/3F, where I is the second-order unit tensor. The right Cauchy–Green tensor C = FTF

is the basic kinematic variable formulated in the reference configuration, together with its modified counterpart

C = F
T
F and the corresponding first invariants I1 = trC and Ī1 = trC.
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Figure 2: Illustrative discretization of a unit hemisphere with spherical triangles applied to a non-symmetric PDF

of collagen fibers, represented by a bivariate von Mises distribution with the mean fiber direction m (red arrow).

Image is taken from Rolf-Pissarczyk et al. [39].

The direction of a fiber in the reference configuration, denoted by the vector N, is given by

N(Θ,Φ) = sinΘ cosΦE1 + sinΘ sinΦE2 + cosΘE3, (1)

where Ei , i = 1, 2, 3, are the Cartesian unit basis vectors, while Θ and Φ are the polar and azimuth angles,

respectively. We further define that the unit vector N(Θ) lies on the unit hemisphere S = {(Θ,Φ)|Θ ∈ [0, π],Φ ∈
[0, π]}. Because of symmetry, only half of the unit hemisphere needs to be considered. We then discretize the
unit hemisphere into a finite number of elementary areas ∆Sn, n = 1, . . . , m, more precisely spherical triangles, as
shown in Fig. 2.

By assuming a hyperelastic material, we now introduce the strain-energy function Ψ in a decoupled form as

Ψ = Ψvol +Ψiso, (2)

where Ψvol and Ψiso represent the purely volumetric and isochoric parts. The volumetric part can be defined as

Ψvol =
K

4
(J2 − 1− 2 ln J), (3)

and the isochoric part can be further decomposed into

Ψiso = Ψg +Ψc, (4)

where Ψg represents the ground substance modeled by a neo-Hookean model and Ψc represents the energies stored

in the collagen fibers.

To formulate the strain-energy function of collagen fibers in terms of the DFD method, we can write

Ψc =
∑
i=4,6

m∑
n=1

ρcnΨcn(Īicn), (5)

where ρcn defines the discrete density of a fiber, Ψcn(Īicn) is the single fiber strain energy represented by an

exponential approach to model the stiffening of collagen fibers and Īicn = C : Nn⊗Nn for two collagen fiber families
i . The choice of (5) must ensure the condition Ψn(1) = Ψ

′
n(1) = 0. After discretizing the unit hemisphere in m

elementary areas, the discrete density ρcn of collagen fibers can be expressed as

ρcn =
1

2π

∫
∆Sn

ρc(Θ,Φ) sinΘdΘdΦ. (6)

In addition, we must satisfy the normalization condition, which by definition is satisfied by the choice of the

distribution function. For the discrete approach, i.e.

m∑
n=1

ρcn = 1. (7)

Then, to exclude compressed collagen fibers from the total strain-energy function, we distinguish the cases where

fc represents the mathematical expression of the strain-energy function of a single collagen fiber, while Iicn =

C : Nn ⊗Nn.

6



The isochoric part of the strain-energy function then reads

Ψiso = Ψg(Ī1) +
∑
i=4,6

m∑
n=1

ρcnΨcn(Īicn). (8)

In order to implement the constitutive model framework in the open-source software SimVascular [54], the Cauchy

stress tensor and the elasticity tensor need to be formulated. In this context, reference is made to previous studies

[38, 39, 36].

We differentiate the isochoric strain-energy function (8) with respect to C/2 to identify the fictitious second

Piola-Kirchhoff stress tensor S, i.e.

S = 2
∂Ψiso

∂C
= 2ψ′g(Ī1)I+ 2

∑
i=4,6

m∑
n=1

ρcnScn(Īicn), (9)

where ψ′g(Īg) = ∂Ψg(Ī1)/∂Ī1. The fictitious second Piola-Kirchhoff stress tensors for a single collagen fiber is

denoted by Scn. In analogy to Li et al. [27], we formulate

Scn =

{
f ′c (Īicn)Nn ⊗Nn if Iicn ≥ 1,
0 if Iicn < 1,

(10)

where f ′c (Īcn) = ∂fc(Īcn)/∂Īcn. Applying the push-forward to (9) gives the fictitious Cauchy stress tensor σ. Hence,

σ = J−1FSF
T
= 2J−1

(
ψ′g(Ī1)b+

∑
i=4,6

m∑
n=1

ρcnσcn(Īicn)

)
, (11)

with

σcn =

{
f ′c (Īicn)nn ⊗ nn if Iicn ≥ 1,
0 if Iicn < 1,

(12)

where nn = FNn. Next let us introduce the fourth-order projection tensor p = I− 1
3 I⊗ I furnishing the physically

correct deviator in the Eulerian description. Then, the double dot product of the projection tensor and the fictitious

Cauchy stress tensor provides the isochoric Cauchy stress tensor, i.e.

σiso = p : σ, (13)

where I denotes the symmetric fourth-order identity tensor, which can be represented by recalling the definition of
the Kronecker delta δad in component notation, i.e. (I)abcd =

1
2(δacδbd + δadδbc).

We formulate the fourth-order fictitious elasticity tensor C in the Lagrangian description by differentiating the
fictitious second Piola-Kirchhoff stress tensor S with respect to C/2, and, subsequently, multiply it with the factor

J−4/3, so that we obtain

C = 2J−4/3
∂S

∂C
= 4J−4/3

(
ψ′′g(Ī1)I⊗ I+

∑
i=4,6

m∑
n=1

ρcnCcn(Īicn)

)
, (14)

with

Ccn =

{
f ′′c (Īicn)Nn ⊗Nn ⊗Nn ⊗Nn if Iicn ≥ 1,
0 if Iicn < 1,

(15)

where

ψ′′g(Ī1) =
∂2Ψg(Ī1)

∂Ī1∂Ī1
, f ′′c (Īicn) =

∂2fc(Īicn)

∂Īicn∂Īicn
. (16)

The fictitious elasticity tensor c in the Eulerian description is then obtained by applying the push-forward to (14),
which results in

c = 4J−1
∑
i=4,6

m∑
n=1

ρcnccn(Īicn) (17)
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with

ccn =

{
f ′′c (Īicn)nn ⊗ nn ⊗ nn ⊗ nn if Iicn ≥ 1
0 if Iicn < 1,

(18)

where nn = FNn. Note that the term associated with the ground substance vanishes because the second derivative

of the neo-Hookean model leads to ψ′′g(Ī1) = 0. Following on, the isochoric elasticity tensor ciso is then obtained
from (17), as defined in Holzapfel [20],

ciso = p : c : p+
2

3
tr(σ)p−

2

3
(σiso ⊗ I+ I⊗ σiso). (19)

3.2 Implementation

SimVascular [54] is an open-source software that allows for the simulation of blood flow and cardiovascular systems.

It is primarily used for cardiovascular research and education and is designed to work with image-based patient-

specific models. The software allows for the creation of detailed three-dimensional models of blood vessels and

the surrounding tissue, and it can be used to simulate blood flow and pressure, as well as to study the mechanics

of cardiovascular disease and the effects of different treatment options. SimVascular is developed and maintained

by a community of researchers, engineers, and clinicians, and it can be used in combination with other simulation

tools.

The SimVascular [54] software was first developed in 2007 by Charles Taylor’s lab at Stanford University.

In 2013, the software was revitalized and advanced capabilities, such as discrete modeling and fluid-structure

interaction modeling, were added to the source-code. The software offers a complete simulation pipeline for

cardiovascular simulations, including medical image data segmentation, patient-specific blood flow simulation, and

analysis. The software includes various solvers, such as svSolver, svZeroDsolver, svOneDsolver and svFSI, for

solving different types of problems. Here, the author of this report used the svFSI solver to perform both structural

and fluid-structure interaction problems.

One goal of this report is to implement an anisotropic material model, i.e. the introduced DFD method, see

Section 3.1, into the existing Fortran source code. The implementation process involved incorporating the explicit

second Piola-Kirchhoff stress tensor and the tangent in the reference configuration on a Gauss-point level, both

were introduced before. The framework was designed to handle nearly incompressible cases, using a standard

element formulation with a penalty term for the volumetric part. To ensure the accuracy and effectiveness of

the model, various verification activities were carried out, including the use of representative examples. These

activities helped confirm that the implemented model is suitable for use in larger computational studies, i.e. in FSI

simulations, and the results of these activities are discussed in more detail in this report.

3.3 Verification

For the code verification, two representative numerical examples were generated to proof the correct implementation

of the anisotropic material model (DFD method), i.e. simple tension and simple shear. The numerical solutions

obtained with open-source software SimVascular [54] were here compared to an analytical solution.

Simple tension

In the present example, we consider a uniaxial extension test of an incompressible unit cube with the geometry

1× 1× 1mm composed of 32 tetrahedral elements, see Fig. 3(b).
The faces of the unit cube are aligned with the unit Cartesian basis vectors E1,E2 and E3. On the top face

of the unit cube, we apply a displacement boundary condition. A rotational symmetric dispersion of two family of

collagen fibers are assumed to demonstrate the performance of the proposed constitutive model. Due to symmetry,

the deformation gradient for this problem is

[F] = diag[λ−1/2, λ−1/2, λ], (20)

where λ represents the stretch in the E3-direction. In analogy, for any fiber direction N within the half sphere,

I(·)(N) is given by

I(·)(N) = λ
−1 sin2Θ+ λ2 cos2Θ, (·) = 4, 6. (21)
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(a) (b)

Figure 3: (a) Comparison of the solutions of a uniaxial extension test obtained by using the continuous fiber

dispersion method [26] in MATLAB and the finite element solutions obtained by using the isoparametric DFD

method [39] in svFSI-struct with m = 256 discrete fiber directions. In this example, we applied a stretch of

λ = 1.2 in the E3-direction. For both fiber families, the material parameters µ = 50 kPa, k1 = 8 kPa and

k2 = 12, the value b = 3 of the concentration parameter, and the bulk modulus of K = 2.5 · 105 was used [50].
(b) Reference and deformed configurations of a unit cube of rotationally symmetric dispersions of collagen fibers

(mean fiber direction aligned with the loading direction).

Note that I(·)(N) is independent of Φ for this particular case. Then, the Cauchy stress tensor σ over the integration

domain Ω = {(Θ,Φ)|Θ ∈ [0, π/2],Φ ∈ [0, 2π]} of a half sphere, when the fiber dispersion is treated continuously,
is

σ =− pI+ µb+
k1
π

∫
Ω

ρ(Θ,Φ)exp[k2(I4 − 1)2]× (I4 − 1) sinΘn⊗ ndΘdΦ+ (22)

+
k1
π

∫
Ω

ρ(Θ,Φ)exp[k2(I6 − 1)2]× (I6 − 1) sinΘn⊗ ndΘdΦ (23)

where p represents the Lagrange multiplier to ensure incompressibility. For this case, ρ(Θ,Φ) reduces to

ρ(Θ) = 4

√
b

2π

exp
(
2b cos2Θ

)
erfi(
√
2b )

. (24)

Following Li et al. [28], the uniaxial Cauchy stress σ ≡ σ33 in the E3-direction is expressed by

σ = (µ+ α4 + α6)λ
2 − (µ+ β4 + β6)λ−1, (25)

where α(·) and β(·) are defined over the domain Σ = {Θ ∈ [0, π/2]} as

α(·) = 2k1

∫
Σ

ρ(θ)exp[k2(I(·) − 1)2](I(·) − 1) sinΘ cos2ΘdΘ, (26)

β(·) = k1

∫
Σ

ρ(θ)exp[k2(I(·) − 1)2](I(·) − 1) sin3ΘdΘ. (27)

The numerical integrations of the coefficients α(·) and β(·) were evaluated in MATLAB with the built-in function

quadgk using the adaptive Gauss-Kronrod quadrature method to verify the finite element solution of this problem

by using the DFD model, see Li et al. [26].

The Cauchy stress versus stretch result was implemented in MATLAB, and we obtained solutions of this problem

with material parameters µ = 100 kPa, k1 = 8 kPa and k2 = 12 for both fiber families, the value b = 3 of the

concentration parameter, and the bulk modulus of K = 2.5 · 105 [50]. The relationship between the Cauchy
stress and the stretch in the loading direction is shown in Fig. 3(a). For comparison, we have plotted the finite

element solutions (open circles) by using the isoparametric DFD model in svFSI-struct with m = 256 discrete fiber

directions, which is enough to obtain very accurate results. As can be seen in Fig. 3(a), a very good match between

the MATLAB and the finite element solution has been obtained.
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(a) (b)

Figure 4: (a) Comparison of the solutions of a simple shear test obtained by using the continuous fiber dispersion

method [26] in MATHEMATICA and the finite element solutions obtained by the isoparametric DFD method [39]

in svFSI-struct with m = 256 discrte fiber directions. In this example, we applied an amount of shear of c = 0.5

(with and without tension-compression switch of collagen fibers). For both fiber families, the material parameters

are µ = 100 kPa, k1 = 80 kPa and k2 = 12, the value b = 3 of the concentration parameter, and the bulk modulus

of K = 2.5 · 107 [50]. (b) Deformation of a unit cube under simple shear in the (E1, E3)-plane. The mean fiber
direction is aligned at 135◦ clockwise from the E3 direction in the reference configuration (in the (E1, E3)-plane).

Simple shear

In this example, we apply a simple shear deformation to an incompressible unit cube in the (E1,E3)-plane with the

geometry of 1× 1× 1mm, which is discretized by 32 tetrahedral elements, as illustrated in Fig. 4(b).
Boundary conditions are chosen such that all the nodes on the (E1,E2)-plane are constrained in all three

translational degrees of freedom, and on the top face of the unit cube a horizontal displacement in the E1-direction

is applied. Thus, for this particular case, we can formulate the deformation gradient in the matrix form as

[F] =

1 0 c

0 1 0

0 0 1

 , (28)

where c represents the amount of shear, and I(·)(N) is given in the explicit by

I(·)(Θ,Φ) = 1 + c
2 cos2Θ+ c sin 2ΘcosΦ. (29)

In analogy to Li et al. [28], the Cauchy shear stress component σ13 in the (E1,E2)-plane is given by

σ13 = (µ+ α4 + α6)c + γ4 + γ6, (30)

where the factors α(·) and β(·) are defined over the domain Ω = {(Θ,Φ) ∈ S|I(·) > 1} as

α(·) =
k1
π

∫
Ω

ρ(Θ,Φ)(I(·) − 1)exp[k2(I(·) − 1)2] sinΘ cos2ΘdΘdΦ, (31)

γ(·) =
k1
π

∫
Ω

ρ(Θ,Φ)(I(·) − 1)exp[k2(I(·) − 1)2] sin2ΘcosΘcosΦdΘdΦ. (32)

We implemented the result in MATHEMATICA and obtained the solution for σ13 as a function of the amount

of shear. For this problem, for two families of collagen fibers, we used the material parameters µ = 100 kPa,

k1 = 80 kPa and k2 = 12, the value b = 3 of the concentration parameter, and the bulk modulus of K = 2.5 · 107
[50]. As can be seen, the numerical results match very well with the corresponding analytical results from Li et

al. [26].

4 A patient-specific FSI model of aortic dissection

The patient-specific FSI framework is explained in the next section. It starts by providing an overview of the

patient data, then explains the model and mesh generation process and the governing equations used in the
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Figure 5: Cross-section of the patient-specific type B aortic dissection with varying wall thicknesses for the outer

wall true lumen (TL), for the dissection flap and for the outer wall false lumen (FL).

arbitrary lagrangian eulerian (ALE) framework. Lastly, the numerical framework for the FSI simulation is outlined,

including information on boundary conditions, the creation of a local coordinate system, material parameters, and

the method for calculating prestresses in the aortic wall.

4.1 Patient data

A three-dimensional computed tomography angiography imaging data of a type B aortic dissection case from a 28-

year-old female before receiving a graft was selected from the institutional database of Prof. Dominik Fleischmann.

The imaging protocol followed relevant regulations and was approved by the institutional review board of Stanford

University. Written informed consent was obtained before the computed tomography angiography acquisition. The

type B aortic dissection case showed a tear in the proximal area near the left subclavian artery and another tear

in the distal area above the celiac trunk. The approximate size of the entry tear in a double oblique plane was

228mm2 and the size of the exit tear was 227mm2. No other vessels, except for intercostal arteries, were found

branching off of the true lumen or false lumen.

4.2 Model generation

We segmented the patient-specific anatomic model using computed tomography angiography images taken during

mid-diastole. The model includes the following branch vessels: the brachiocephalic trunk, the left common carotid,

and the left subclavian artery in the aortic arch, the celiac artery, the superior mesenteric artery, and the renal

arteries in the abdomen, as well as the internal and external iliac arteries. The image segmentation and model

generation were performed using SimVascular [54], the open-source patient-specific cardiovascular flow modeling

software. Additional editing was done using Meshmixer (Autodesk, Inc.).

The FSI simulation requires two separate meshes: One for the fluid domain and a second for the structural

domain, which includes the vessel wall and dissection flap. We have designed a special procedure to ensure that the

outer wall of the fluid domain aligns with the inner wall of the structural domain. The modeling pipeline includes

the following steps:

1. Fluid domain segmentation: We began by creating two separate surface models: One for the true lumen and

another “combined” model, which included the outer arterial wall (adventitial layer), the true lumen, and

the dissection flap. Using Meshmixer, we then created an additional model, called the “extruded true lumen

model,” by extending the true lumen model. By subtracting the extruded model from the combined model

using Boolean operations, we obtained the false lumen model. By merging the initial true lumen model with

this false lumen model, and performing local smoothing operations, we created a model of the fluid domain.

The previous extrusion of the true lumen model resulted in a uniform dissection flap separating the true and

false lumen.

2. Solid domain segmentation: To obtain the solid domain model (the model of the vessel wall and the dissection

flap), we first outwardly extruded the individual domains by a uniform parameter hwall , which defines the outer

wall thickness (Fig. 5). To be more specific, a wall thickness for the outer wall true lumen, the dissection

flap, the outer wall false lumen and the branch vessels was defined, which were based on measurements

on dissected tissue performed in our laboratory (Institute of Biomechanics, Graz University of Technology,
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Figure 6: An image of the patient-specific geometry meshed with tetrahedral elements is presented. The fluid

domain was approximatively meshed with 1million finite elements and the solid domain with 0.33million finite

elements.

Austria, Graz). The Boolean difference between this extruded model and the fluid domain model, again

followed by local smoothing operations, resulted in the structural domain model. These values are within the

reported range average adult arterial wall thickness [40, 34].

4.3 Mesh generation

For the geometric model, we created unstructured tetrahedral meshes for the fluid and structural domains using

the TetGen mesh generator [49], which is integrated in open-source software SimVascular [54]. The fluid mesh

consisted of approximately 1 million finite elements and the solid domain was meshed with 0.33 million finite

elements. The fluid and structural meshes were designed so that the nodes at the interface between the two

domains coincide, which eliminates the need for additional numerical treatments to handle the interface constraints

that are detailed later. More information about the mesh generation process can be found at the given reference:

http://simvascular.github.io/docssvFSI.html.

4.4 Governing equations

The blood flow in the patient-specific model is modeled as an incompressible, Newtonian fluid, which is a common

assumption for larger arteries [55]. The Navier-Stokes equations, in ALE formulation, are used to govern the fluid

flow

ϱf ∂̂tv + ϱ((v − v̂) · ∇)v − divσf = 0 inΩf (t) (33)

div v = 0 inΩf (t), (34)

taking into account the deformability of the fluid domain Ωf (t) via the grid velocity v̂ and via the ALE time

derivative ∂̂t . The Cauchy stress tensor for the blood, which is assumed to be a Newtonian fluid, is represented

by σf . It is given as σf = µf (∇v +∇vT) − pI, where v is the fluid velocity and p is the pressure. The gradient
operator ∇ is used for spatial derivatives in the Eulerian frame and I is the identity tensor. The fluid density and
viscosity are represented by ϱf and µf , respectively, and have been assigned the values of 1060 kg/m

3 and 0.004Pa

s.

The arterial wall is modeled as a homogeneous, anisotropic, and nonlinear material using the constitutive

framework in Section 3.1. A mapping linking the coordinates in the current domain x at time t to the material

coordinates in the reference configuration X is defined through the displacement field u, as

x(X, t) = X + u(X, t), (35)

The reference configuration is chosen to be the same as the initial configuration. The governing equation in the

reference domain Ωs is given by

ϱs∂ttu+ div X(FS) = 0 inΩs , (36)

where ϱs is the structural density, F is the deformation gradient tensor, and S is the second Piola–Kirchhoff stress

tensor. External forces such as gravity are neglected, and the reference domain is independent of time t.
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4.5 Numerical framework

The numerical simulations are carried out using the svFSI finite element solver from the open-source software

SimVascular [54], which utilizes linear elements for velocity and pressure. The finite element spaces are stabilized

with weighted residuals, using the residual-based variational multiscale method (RBVMS). This technique acts as a

stabilization for the P1/P1 finite element space, which otherwise does not fulfill the Ladyzhenskaya–Babuška–Brezzi
(LBB) stability condition, and also in the strong advective regime. The RBVMS has been previously validated in a

variety of cardiovascular simulations [12, 53]. For more information, the reader can refer to the references provided

[3, 4, 52, 13]. The fluid and structural domain are solved as a strongly coupled linear system using the monolithic

approach. Backflow stabilization is applied at the fluid outlets as described in previous studies [12].

Fluid domain boundary conditions

At the inlet, we prescribe a time-dependent Dirichlet condition with a given velocity vin. The inlet flow rate

is obtained from the patient-specific inflow profil, see [60]. Nodal values at the inlet face are then prescribed by

assuming a parabolic cross-sectional flow profile. In cardiovascular simulations, it is important to choose appropriate

outlet boundary conditions that incorporate downstream vasculature effects into the three-dimensional simulation,

such as vessel wall impedance and wave propagation. We prescribe three-element Windkessel boundary conditions,

according to the coupled multidomain method as described in [12]. Details of the tuning procedure to identify the

Windkessel parameters are given later.

Prestress

The arterial wall is constantly subjected to mechanical forces such as blood pressure and viscous forces. To

accurately simulate these conditions, our numerical methodology takes into account the initial loading state of the

anatomic model derived from computed tomography angiography data, which is in equilibrium with hemodynamic

conditions at diastole.

Two main approaches have been reported for this purpose. The first approach involves determining an ini-

tial zero-stress geometry by deflating the model [53, 51], so that when the model is subsequently subjected to

hemodynamic equilibrium conditions, the inflated model matches the original segmentation. The second approach,

proposed by Hsu and Bazilevs [22], involves determining a prestress tensor, which allows for the vessel deformation

to correspond to the segmentation derived from the imaging data when the prestressed vessel is subjected to

hemodynamic equilibrium conditions. In this report, we adopt the second approach, which includes determining a

prestress tensor and subsequently applying it to the model. It consists of the following steps, which are described

in Bäumler et al.[2]:

1. To begin, an approximation of the traction h on the aortic walls during diastole is obtained by conducting a

simplified CFD simulation. This simulation considers rigid walls and a constant inflow rate, and the outlets

are set as resistance boundary conditions to achieve a steady state that corresponds to the patient’s diastolic

pressure and flow. Once the steady state of velocity v and pressure p is achieved, the traction vector

h = σ(v, p)n is calculated on the outer wall of the fluid domain.

2. In the second step of the numerical methodology, we aim to identify a prestress tensor S0 in the arterial

wall that satisfies the momentum balance between the structure’s internal stresses and fluid traction for all

vector-valued test functions w ,

(∇xw,FS0)Ωs + (w,h)Γ(t=0) = 0. (37)

This equation generates multiple possible solutions for S0 and we use an iterative method to identify a specific

solution. The process starts by initializing n = 0 and Sn0 = 000. Then, we repeat steps (a) to (c) until we find

a solution.

(a) Set S0 = S
n
0 and u = 0. This also sets F = I and S = 0.

(b) Find u such that for all vector-valued test functions the variational formulation

(w, ϱs∂ttu)Ωs + (∇Xw,F(S+ S0))Ωs + (w,h)Γ(t=0) = 0 (38)

is satisfied. Here, the previously determined traction vector h is applied as the boundary condition at

the fluid–structure interface Γ.
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(a) (b)

Figure 7: An image of the patient-specific geometry with the local fiber direction in (a) longitudinal direction and

(b) circumferential direction.

(c) Update Sn+10 = S+ Sn0, increment n by n = n + 1.

The iterations are stopped once an equilibrium is established and the aortic wall, subject to prestress

and prescribed traction, yields zero displacement u = 0, F = I, and S = 0. Consequently, the solution
S0 satisfies Eq. (37).

3. After the prestress tensor S0 is determined, we perform two-way FSI simulations by augmenting the stress

tensor with S0:

ϱs∂ttu+ div X(F(S+ S0)) = 0 inΩs(t) (39)

Under diastolic flow conditions, augmented by the prestress tensor, the prestressed arterial wall maintains

the shape extracted from the computed tomography angiography scan.

The method outlined above, which involves determining an initial zero-stress geometry by deflating the model

and then applying a prestress tensor to it, was first proposed by Hsu and Bazilevs [22] for geometries with an intact

arterial wall. However, in the case of a dissection flap, the pressure differential is much smaller, and the flap remains

relatively still during diastole. Therefore, it is assumed that the dissection flap is not prestressed during diastole in

vivo, and the prestress tensor S0 is only applied to the outer arterial wall in the final step of the algorithm.

Local fiber direction

Creating a material orientation for the patient-specific model used in the report (see Fig. 7) that accurately

represents the local physiology of complex solid shapes is challenging, as described by Schussnig et al. [45]. To

overcome this, various computational methods are used that are designed to be fast, reliable and easy to adjust by

the user. These methods often involve solving multiple Laplace problems with user-specified boundary data, which

can be applied to a vessel network and can be formulated as

−∆φl =0 in Ω̂s , (40)

φl =0 on Γ̂in,s , (41)

n̂s · ∇φl =hl ,i on Γ̂i ,s , i = 1, . . . , Nout , (42)

n̂s · ∇φl =0 on Σ̂ ∪ Γ̂R,s , (43)

where the auxiliary scalar φl for the longitudinal orientation is prescribed at the inlet face of the solid Γ̂in,s , normal

fluxes hl ,i are prescribed at the solid outlet faces Γ̂i ,s , i = 1, . . . , Nout and zero fluxes are enforced at the interface

and exterior boundary. The hl ,i are tuned to yield φl with a large enough gradient, such that

e2 :=
∇φl
||∇φl ||

(44)
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approximates the longitudinal direction e2 reasonably well. In a similar manner, a scalar φn to approximate the

tissue-normal direction can be constructed via

−∆φn =0 in Ω̂s , (45)

φn =0 on Σ̂, (46)

n̂s · ∇φn =0 on Γ̂in,s ∪ Γ̂i ,s , i = 1, . . . , Nout , (47)

n̂s · ∇φn =hn on Γ̂R,s , (48)

setting appropriate values hn to achieve a reasonable tissue-normal direction e3 := ∇φn/||∇φn||. The rule-based
assignment of boundary conditions and tuning parameters, while effective for handling complex geometries such as

curved, bulging, or bifurcating vessels, is not well-suited for changes that are confined to the cross-section of the

vessel alone. A prime example of this is found in aortic dissection, where the original lumen splits into distinct true

and false lumina, as seen in references such as [48, 35, 10]. In this scenario, identifying the tissue layer separating

these lumina and assigning proper boundary conditions, or even dividing the problem into multiple subproblems, is

necessary to achieve accurate material orientation throughout the dissected vessel. However, this approach may

require additional tuning parameters or manual markers, making it less practical for clinical applications.

The algorithm utilizes a method of extrapolating the averaged normal vector on the fluid-structure interface

into the structural domain to approximate the tissue normal direction. This approach is effective even in areas

where the fluid is in contact with the tissue from both sides. The first step in the process is to determine the

normal vectors n̂s on the fluid-structure interface Σ̂ for all elements that lie on it. Next, the mean orientations of

all elements that are in contact with the previously marked element layer are determined, taking into consideration

the neighbors of each element. This second step is repeated until the interface normal, which will later be used as

e3, is set in all elements. It is important to consider either only data from the first neighbor of each element that

has an orientation, or, as an alternative, to consider all neighbors of a given element that have a radial direction

e3,j deviating from the first encountered neighbor with orientation e3,i that satisfies the following equation:

αtol ≥ arccos
(
e3,i · e3,j
||e3,i || ||e3,i ||

)
. (49)

This algorithm incorporates the normal direction e3,j from a neighboring element j only if the angle between e3,j
and e3,i from the first encountered neighbor deviates less than a tolerance angle αtol . This is done by repeating

a few conditional averaging cycles in order to obtain a satisfactory vector field. It is important to note that the

tissue circumferential direction e1, which is constructed from the normal e3 and longitudinal directions e2, may be

inverted. Therefore, this method is only applicable when the tissue’s response does not change when inverting the

circumferential direction e1, which is the case for symmetric fiber reinforcements typically used in the cardiovascular

context.

The extrapolation of n̂s into Ω̂s is then directly used as the tissue-normal direction e3, while the step to generate

the longitudinal orientation e2 remains unchanged (see, e.g., [46, 43, 42]). Based on the normalised longitudinal

direction e2 and normal direction e3, the circumferential direction is defined as

e1 :=
e2 × e3
||e2 × e3||

(50)

The mean fiber directionsmi , symmetrically inclined by some angle αc from circumferential to longitudinal direction,

are then conveniently constructed via

m4 :=
e1 + e2tan (αc)

||e1 + e2tan (αc)||
, m6 :=

e2 + e2tan (−αc)
||e1 + e2tan (−αc)||

(51)

These mean fiber directionsmi , i = 4, 6 are then needed for the definition of the PDFs, as introduced in Section 3.1.

The overall approach construct physiologically meaningful material orientation vectors e1 and e2 with extrapolated

interface normal and conditional averaging is summarised in the Algorithm shown in the study of Schussnig et

al. [45].

For vessels with a curved centreline, bifurcations or even aneurysms, material orientations based on two Laplace

problems with suitable boundary conditions can yield satisfactory results as, e.g., shown in our previous work [44]

for an idealised abdominal aortic aneurysm.

Solving another Laplace equation requires not only a subdivision into regions, but also detecting a specific side

of the dissection flap. As spatial discretisations of such cases can lead to rather smooth transitions in the flap’s

surface mesh more involved techniques or even manual intervention are necessary here. Thus, assigning appropriate

boundary conditions is non-trivial. Such an approach is indeed applicable for obtaining a material orientation in
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the aortic wall; however, in the flap region (wetted from both sides), the constructed e1 does not even remotely

approximate the expected circumferential direction. A suitable orientation can be constructed by using an Algorithm

shown by Schussnig et al. [45] with αtol = 120
◦ for conditional averaging and Navg = 5 cycles of averaging after

initial extrapolation of the interface normal. Inspecting the vector fields, substantial improvements are obvious.

Structural domain boundary condition

At each ring-shaped outlet of the structural domain, we prescribe homogeneous Dirichlet boundary conditions,

u = 0, to fix the outlets in place. Additional treatment is necessary to apply boundary conditions on the outer

arterial wall. The aorta is surrounded by various tissues and organs which restrict its movement and dilation. To

account for this, we apply an external tissue support as described below. As a result, we choose a Robin-type

boundary condition,

σsn = −ksu− cs∂tu− p0n, (52)

which has been used to account for viscoelastic tissue support on the outer arterial wall [30, 29, 37]. The user-

chosen parameters ks and cs model the viscoelastic response of the external tissue and p0 the external pressure in

the thoracic and abdominal cavities. We prescribe a nonzero value ks = 1 · 107 Nsm3 and set p0 = cs = 0, which is
within the range of parameters reported in the literature and accounts for tethering of the external wall. Simulation

results with and without external tissue support (ks = 0
Ns
m3 and ks = 1 · 10

7 Ns
m3 ).

Interface

At the interface Γ(t) between the fluid and structural domain, the kinematic and dynamic boundary condition needs

to be fulfilled, given as

v = ∂tu on Γ(t) (53)

σf nf + σsn = 0 onΓ(t). (54)

Both equations are automatically fulfilled in our numerical method, since we enforce a nodal correspondence of

velocity and pressure values at the fluid–structure interface during model creation.

Material parameters

The material properties for the simulation are based on biaxial extension tests on dissected tissue, which were

perform in our laboratory. We defined for the specific domains, i.e. the outer wall true lumen, the dissection flap

and the outer wall false lumen, specific material parameters. For comparison, in a healthy aorta, the elastic modulus

is reported to be in the range of 200–800 kPa [32]. Literature data for the elastic modulus of the dissection flap

tissue is not available. Arterial tissue is generally considered incompressible [17]. However, in the current framework

we model the tissue as nearly incompressible by setting the Poisson ratio ν = 0.49 in the whole structural domain.

Tuning of Windkessel parameters

Once the prestress tensor S0 is determined, we manually tune the three-element Windkessel parameters to match

patient-specific pressure (125/75 mmHg). Tuning is considered successful when the systolic blood pressure Psys ,

the diastolic blood pressure Pdia, the mean blood pressure Pmean =
1
3(Psys+2Pdia), as well as the pressure amplitude

are met within a tolerance of 10%. To reduce computational cost, we perform an initial tuning procedure on a

coarse mesh. Once the initial tuning is successful, we fine-tune the parameters on the fine mesh.

The total resistance RT and capacitance CT are distributed proportional to the flow at each outlet i: RT,i =

RT /qi and Ci = CT · qi . This distribution yields an approximation to the flow splits. The distal and proximal
resistance at each outlet is then given by Rd,i = kdRT,i , and Rp,i = (1− kd)RT,i , where the factor kd defines the
ratio of distal to total resistance in our three-element Windkessel model, and was fixed for all outlets to kd = 0.9

[25, 24].

Discretization

To determine the necessary spatial resolution, we ran a sequence of simulations on successively refined meshes with

uniform edge sizes. The final mesh of the full model consisted of approximately 1.3 million tetrahedral elements.

The temporal resolution was set to 4000 timesteps per cardiac cycle, with a cycle length of 0.78 s, corresponding to

a time step size of 0.195 ms. We used an iterative GMRES linear solver with a resistance preconditioner as described
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Figure 8: An image of the patient-specific geometry with the local fiber direction in longitudinal direction, where

the red arrow shows the area of incorrect local fiber directions.

in Esmaily-Moghadam et al [13] and Seo et al. [47]. With the final setup, one cardiac cycle runs for approximately

9 h on 336 cores on Intel Xeon Platinum 8160 (‘Skylake’) compute nodes. Depending on the configuration of

the simulation, cycle-to-cycle periodicity is usually achieved within 3 to 5 cycles. To report simulation results, we

evaluate the results from the last cardiac cycle.

4.6 Preliminary results and problems encountered

We successfully performed FSI simulations with an isotropic material model of the aortic wall. This model does

not incorporate the anisotropic material response of the aortic wall and hence also does not require a local fiber

direction. The material model is only describe by isotropic part of the material model introduced in Section 3.1, i.e.

only a single material parameter, the shear modulus µ, describes the material behavior. However, only preliminary

results are available until now, because we did not complete the post-processing within the time frame of the

research stay. The post-processed result will be obtained in the following weeks and months and will be published

in a original paper. In the following, specific numerical problems that have arisen will be discussed.

The simulations with the anisotropic material model did not converge at this point. We observed several

problems in the numericeal model that might have led to the convergence problems. First, as reported in previous

study, the local fiber orientation shows local inconsistencies. For example, as shown in Fig. 8, the local coordinate

system proximal to the intimal tear is incorrect. This can be laid back to the numerical approach used. Here,

we set up a heat-transfer problem, which is described within the scope of this report, to compute the local fiber

orientation. The nature of this approach causes the local fiber orientation to go around the intimal tear. At this

point, is it not clear how to the change it, but other studies showed that it can still produce reasonable results.

A second problem are stress concentrations in some regions, which led to the abortion of simulations. They

were observed at the intimal tear (as shown in Fig. 9) and in between two domains, e.g., between the outer wall

of the false lumen and the dissection flap. Here, the material parameters changes suddenly. To circumvent this

problem, we will investigate on different solutions. One solution could be to use a finer finite element mesh. A

finer mesh could increase the quality of the finite elements, which subsequently leads to improved convergence.

Another solution could be to implement different numerical damping methods in the finite element code. This

solution could reduce the effect of oscillations in the numerical solution. Finally, another reason could be that

the convergence is too sensitive to the choice of material parameters. It is known that specific sets of material

parameter, in particular related to the anisotropic part led to a badly converging solution. Hence, different sets of

material parameters need to be investigated.

Another problem to mention here is the high computational time of the anisotropic material model, which

was presented in Section 3.1. It takes up to 10 times longer than a simple isotropic, material model like the

neo-Hookean material model. Efforts have already been made to make the model more efficient, with success.

However, it is still significantly slower than other approaches, such as the Holzapfel-Gasser-Ogden model, which is

already implemented in SimVascular.

5 Discussion

In this report, we provided an overall overview about this project with the necessary background information.

Then, we detailed the constitutive framework of the anisotropic model that was subsequently implemented in the
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Figure 9: A picture showing the area of large displacements near the intimal flap. In general, large displacement

can often be are related to high stresses.

open-source software SimVascular [54]. For this, representative numerical examples were shown to show that the

implementation was correctly done. In a section part, patient-specific data from an aortic dissection patient was

used to develop of a FSI model, where the DFD method was applied and tested. More precisely, the imaging

data, the model generation and the numerical model was briefly detailed. As we are still solving several numerical

problems discussed earlier, the numerical problems have been presented and discussed along with some preliminary

results.

Once I got used to the open-source software SimVascular [54], the implementation process went pretty smooth.

Because the source code is very convoluted, the specific locations within the code must be determined in order

to successfully implement the material model. Then, in a subsequent step, the input file has been generated and

its format must be understood and followed. After this, the verification activities were successfully performed.

However, first estimates showed that the computational time with the chosen DFD method in comparison with, for

example, a neo-Hookean material model or a so-called Holzapfel-Gasser-Ogden model [17], both are implemented

in SimVascular [54], increases significantly. Subsequently, an attempt was also made to optimize the source code

and reduce the number of discrete elements in order to reduce the computation time with a view to later use in

patient-specific geometries, which have significantly more degrees of freedom and therefore require a large amount

of computation time.

With the support of Prof. Dominik Fleischmann, we were able to apply the implemented constitutive model to a

patient-specific geometry of an aortic dissection, as previously detailed. After some internal iterations, models were

generated from the computed tomography angiography scans, the models were meshed and boundary conditions

were determined and set. Also, the simulations ran smoothly after applying a standard neo-Hookean material

model. However, first trial simulations showed some numerical convergence issues related to the DFD method.

Though, it was not clear if these problems were due to the material model itself, the mesh quality or others. After

several discussions, we isolated the problem with several suggestion in order to resolve the problem in the nearer

future.

In the future, this generated FSI model will be further investigated. As stated in the initial report, we will not

be able to complete this project within the time framework of three month, since the task is just to comprehensive.

However, we initiated this outstanding project and progressed very well over the last month. Now, after completing

the research stay, we still work closely together in order to address and resolve the outline problems. Moreover,

in the future, it is also planned to examine further follow-up computed tomography angiography images of this

particular patient.
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[42] R. Schussnig, K. Bäumler, and T.-P. Fries. Multi-layered tissue models in patient-specific simulations of aortic

dissection. In Proc Appl Math Mech, volume 21, page e202100090, 2021.

[43] R. Schussnig and T.-P. Fries. Coupled multiphysics modeling of aortic dissection. In 14th WCCM ECCOMAS

Congress 2020, Virtual Congress, 2020.

[44] R. Schussnig, D. Pacheco, and T.-P. Fries. Efficient split-step schemes for fluid–structure interaction involving

incompressible generalised ßnewtonian flows. Comput. Struct, 260:106718, 2022.

[45] R. Schussnig, D. R. Q. Pacheco, M. Kaltenbacher, and T. P. Fries. Semi-implicit fluid–structure interaction

in biomedical applications. Comput Methods Appl Mech Eng, 400:115489, 2022.

[46] R. Schussnig, M. Rolf-Pissarczyk, G. A. Holzapfel, and T. P. Fries. Fluid-structure interaction simulations of

aortic dissection. In Proc Appl Math Mech, volume 20, 2020.

[47] J. Seo, D. E. Schiavazzi, and A. L. Marsden. Performance of preconditioned iterative linear solvers for

cardiovascular simulations in rigid and deformable vessels. Comput Mech, 64:717–739, 2019.

[48] S. Sherifova and G. A. Holzapfel. Biomechanics of aortic wall failure with a focus on dissection and aneurysm:

a review. Acta Biomater, 99:1–17, 2019.

[49] H. Si. Adaptive tetrahedral mesh generation by constrained delaunay refinement. Int J Numer Meth Eng,

75:856–880, 2008.

[50] J. C. Simo and R. L. Taylor. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and

numerical algorithms. Comput Meth Appl Mech Eng, 85(3):273–310, 1991.

[51] K. Takizawa, T. E. Tezduyar, and T. Sasaki. Estimation of element-based zero-stress state in arterial fsi

computations with isogeometric wall discretization. Lect Notes Appl Comput Mech, 84:101–122, 2018.

[52] T. E. Tezduyar, S. Mittal, S. E. Ray, and R. Shih. Incompressible flow computations with stabilized bilinear and

linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng, 95:221–242,

1992.

21



[53] T. E. Tezduyar, S. Sathe, M. Schwaab, and B. S. Conklin. Arterial fluid mechanics modeling with the stabilized

space-time fluid—structure interaction technique. Int J Numer Methods Fluids, 57:601–629, 2008.

[54] A. Updegrove, N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open

source pipeline for cardiovascular simulation. Ann Biomed Eng, 45:525–541, 2016.

[55] W. N. Wan Ab Naim, P. B. Ganesan, Z. Sun, K. H. Chee, S. A. Hashim, and L. Einly. A perspective review

on numerical simulations of hemodynamics in aortic dissection. ScientificWorldJournal, 2014:652520, 2014.

[56] L. Wang, J. Zhang, W. Fu, D. Guo, J. Jiang, and Y. Wang. Association of smooth muscle cell phenotypes

with extracellular matrix disorders in thoracic aortic dissection. J Vasc Surg, 56(6):1698–709, 1709.e1, 2012.

[57] X. Wang, S. A. LeMaire, L. Chen, Y. H. Shen, Y. Gan, H. Bartsch, S. A. Carter, B. Utama, H. Ou, J. S.

Coselli, and X. L. Wang. Increased collagen deposition and elevated expression of connective tissue growth

factor in human thoracic aortic dissection. Circulation, 114(1 Suppl):I200–5, 2006.

[58] D. Wu, Y. H. Shen, L. Russell, J. S. Coselli, and S. A. LeMaire. Molecular mechanisms of thoracic aortic

dissection. J Surg Res, 184(2):907–24, 2013.

[59] Y. Zhu, S. Mirsadraee, U. Rosendahl, J. Pepper, and X. Y. Xu. Fluid-structure interaction simulations

of repaired type A aortic dissection: a comprehensive comparison with rigid wall models. Front Physiol,

13:913457, 2022.
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